哺乳动物细胞表达系统
列举常用的蛋白质表达系统并阐述其基本表达策略

常用的蛋白质表达系统及其基本表达策略1. 介绍蛋白质表达系统是在生物技术领域中广泛应用的重要技术,它可以在大量生产目的蛋白质时提供帮助。
在选择蛋白质表达系统时,科研人员通常需要考虑表达效率、纯度、可溶性和最终产物活性等因素。
在本文中,我们将介绍一些常用的蛋白质表达系统,并阐述它们的基本表达策略。
2. 细菌表达系统细菌表达系统是最常用的蛋白质表达系统之一,其中大肠杆菌表达系统是应用最为广泛的。
基本表达策略包括将目的基因插入原核表达载体中,通过大肠杆菌的代谢系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、选择合适的宿主菌株以及优化表达条件等因素。
3. 酵母表达系统酵母表达系统通常采用酿酒酵母或毕赤酵母。
基本表达策略包括将目的基因插入酵母表达载体中,通过酵母的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择合适的启动子、选择适当的宿主菌株以及与酵母细胞适应的表达条件等因素。
4. 昆虫细胞表达系统昆虫细胞表达系统常用于大规模生产蛋白质。
基本表达策略包括将目的基因插入昆虫表达载体中,通过昆虫细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择合适的启动子、适当的宿主昆虫细胞系以及适合昆虫细胞生长的表达条件等因素。
5. 哺乳动物细胞表达系统哺乳动物细胞表达系统通常用于生产高度活性的蛋白质。
基本表达策略包括将目的基因插入哺乳动物表达载体中,通过哺乳动物细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、选择适合的宿主细胞系以及适合哺乳动物细胞生长的表达条件等因素。
6. 植物细胞表达系统植物细胞表达系统是一种新兴的蛋白质表达系统,常用于农业生物技术和药物开发领域。
基本表达策略包括将目的基因插入植物表达载体中,通过植物细胞的翻译后修饰系统表达目的蛋白质。
在表达前,需要考虑选择适当的启动子、适合的宿主植物组织以及适合植物细胞生长的表达条件等因素。
结论在选择蛋白质表达系统时,科研人员需要根据目的蛋白质的性质、表达需求以及实验条件等因素综合考虑,并选择最适合的表达系统和基本表达策略。
不同表达系统在蛋白质产生方面的优缺点

不同表达系统在蛋白质产生方面的优缺点随着科技的日益发展,人们对于生物学研究的需求也越来越高。
而蛋白质作为生命体代谢过程中的重要组成部分,其产生机制的研究也变得越来越重要。
不同的表达系统在蛋白质产生方面有着不同的优缺点,本文将从多个方面进行分析。
一、概述蛋白质表达是指将 DNA 序列转录为 RNA 后再将其翻译为相应的蛋白质的过程。
在这个过程中,表达系统起到了至关重要的作用。
不同表达系统的优缺点直接影响了蛋白质的产率和质量。
二、大肠杆菌表达系统大肠杆菌系统是最常用的表达系统之一。
其最大的优点是表达量高,结构简单且易于操作。
此外,大肠杆菌表达系统还具有以下优点:1. 成本低廉:大肠杆菌的培养和酵母细胞相比较简单,生产成本相对较低。
2. 短周期:大肠杆菌表达系统的周期短,能够较快产生大量的蛋白质。
3. 稳定性高:大肠杆菌表达系统非常稳定,可以长期保存和传代。
但是,大肠杆菌表达系统也存在一些缺点:1. 没有真核系统那样完善的修饰功能:大肠杆菌表达的蛋白质无法进行真核系统所特有的复杂后修饰。
2. 易受到毒素的影响:表达的蛋白质会容易受到毒素、有害物质的影响。
三、哺乳动物系统表达系统哺乳动物系统表达系统可以表达具有多种复杂后翻译修饰的蛋白质,这些蛋白质更接近自然状态,因此常用于生产生物药物、抗体的制备。
哺乳动物系统表达系统相较其他表达系统的优点包括:1. 复杂修饰:哺乳动物系统表达的蛋白质可以被修饰成比较接近自然状态的蛋白质。
2. 有利于生产生物药:哺乳动物系统表达的蛋白质可以用于生产许多生物药。
但是,哺乳动物系统表达不是没有缺点,主要包括:1. 成本高:哺乳动物系统表达的成本比其他表达系统高。
2. 周期长:哺乳动物表达系统周期长,需要更长时间才能产生足够的蛋白质。
四、昆虫系统表达系统昆虫系统表达是近年来发展起来的新一代表达系统。
这种表达系统的优点主要有:1. 微生物介导不良反应少:由于昆虫细胞培养液比微生物培养液更接近人体环境,所以由昆虫细胞表达的蛋白质导致的过敏反应很少。
生物制药中的表达系统选择和使用注意事项

生物制药中的表达系统选择和使用注意事项生物制药是一项利用生物学原理和技术来生产药物的领域,其中表达系统的选择和使用是至关重要的步骤。
表达系统是指将目标基因转录成mRNA并翻译成蛋白质的系统,它直接关系到生物制药中药物产量、质量和效力等方面。
在选择和使用表达系统时,需要考虑多种因素,包括目标蛋白的性质、产量要求、系统稳定性和成本效益等。
首先,选择表达系统时需要考虑目标蛋白的性质。
不同的蛋白质具有不同的结构和功能,因此需要根据目标蛋白是否是酶、激素、抗体等来选择合适的表达系统。
例如,如果目标蛋白是细胞内酶,可以考虑使用大肠杆菌表达系统,因为大肠杆菌对这类蛋白的表达效果较好。
而如果目标蛋白是复杂的膜蛋白,可以考虑使用哺乳动物细胞表达系统,因为哺乳动物细胞具有更接近人体细胞的表达环境。
其次,生物制药中的表达系统选择还需考虑产量要求。
不同的表达系统对蛋白质的表达能力有所差异,选择合适的表达系统可以提高蛋白质的产量。
例如,选择细胞系表达系统时,可以选择具有高复制和表达能力的细胞系,如CHO细胞。
此外,一些表达系统还可以通过基因工程技术增加蛋白质的产量。
例如,可以通过插入多个目标基因拷贝、优化启动子序列和信使RNA的稳定性等方式来提高表达系统的产量。
同时,选择表达系统还需要考虑系统的稳定性。
所谓稳定性指的是表达系统能否持续稳定地表达目标蛋白。
在生物制药中,长时间和稳定的表达对于大规模生产药物至关重要。
因此,选择具有稳定表达能力的表达系统非常重要。
例如,大肠杆菌表达系统常常因为由于毒力基因的表达而导致大规模突变,从而降低了系统的稳定性。
而哺乳动物细胞表达系统,虽然表达系统稳定性较高,但细胞系的稳定性会受到外界环境的影响。
此外,成本效益也是选择表达系统时需要考虑的因素。
不同的表达系统所需的设备、耗材和操作成本都不同。
因此,在选择表达系统时,需要综合考虑产量要求和成本效益。
对于小规模生产或科研用途而言,大肠杆菌表达系统通常是较为经济的选择;而对于大规模生产企业而言,哺乳动物细胞表达系统可能更具成本效益。
cho细胞表达重组蛋白方案

CHO (Chinese Hamster Ovary) 细胞是常用的哺乳动物细胞系统,用于表达重组蛋白的研究和生产。
以下是一般性的CHO 细胞表达重组蛋白的方案:
1. 购买表达载体:选择适合的表达载体,可以是质粒或病毒载体。
载体应包含适当的启动子、选择标记等。
2. 转染CHO 细胞:将表达载体导入CHO 细胞中。
转染方法可以选择经典的化学或电穿孔法,也可以选择使用特定的转染试剂或转染仪器。
3. 选择稳定转染株:在转染后,使用适当的选择剂(如抗生素) 处理细胞,以选择稳定表达重组蛋白的细胞株。
可通过单克隆分离等方法筛选和扩增单一细胞克隆。
4. 细胞培养条件优化:优化培养基配方和细胞培养条件,包括温度、pH 值、培养基组分等,以提高重组蛋白的产量和纯度。
5. 表达蛋白的诱导:使用适当的诱导剂或方法,例如添加诱导剂(如甲酪酸) 到培养基中,以启动重组蛋白的表达。
6. 重组蛋白的纯化和分析:通过细胞破碎和不同的纯化步骤(如亲和层析、离子交换层析、凝胶过滤等)从培养基或细胞提取物中纯化目标重组蛋白,并使用适当的分析方法验证表达的蛋白的纯度和功能。
在每个步骤中,需要根据具体的重组蛋白和研究目的进行优化和调整。
此外,合理的培养细胞和操作操作也至关重要,以确保产量和纯度的理想达到。
这些方案的细节将根据具体的实验目的和需要进行个体化定制。
原核,昆虫,哺乳动物表达系统 对比

表达系统是生物体进行交流和传递信息的重要工具,不同类裙的生物体在表达系统上有着独特的特点和功能。
本文将就原核、昆虫和哺乳动物的表达系统进行对比分析。
一、原核1. 原核生物是一类较为简单的生物体,其表达系统主要包括RNA转录和翻译,以及一些原核生物特有的机制,如转座子、限制酶等。
2. 在原核生物中,基因的表达和调控相对简单,通常是通过DNA的转录产生mRNA,然后再通过翻译产生蛋白质。
原核生物的基因组相对较小,基因的结构也相对简单。
3. 原核生物的表达系统不仅包括基本的基因表达,还包括许多在分子水平上进行信息交流和传递的机制,如质粒介导的DNA转移、RNA 介导的基因沉默等。
二、昆虫1. 昆虫是一类较为复杂的生物裙体,其表达系统包括了多种不同的信号传导和调控机制,如激素系统、化学信号系统等。
2. 在昆虫中,基因的表达和调控已经相对复杂起来,有许多基因调控网络参与其中。
除了mRNA的转录和翻译外,昆虫还具有一些特殊的表达机制,如miRNA介导的基因沉默、垂体激素调控等。
3. 昆虫的表达系统在进化上相对比较保守,但在不同物种和不同环境中,表达系统也会出现一些特殊的适应性和多样性。
三、哺乳动物1. 哺乳动物是一类高度复杂的生物裙体,其表达系统包括了多种不同的信号传导和调控机制,如内分泌系统、神经系统等。
哺乳动物的基因组相对较大,基因的结构也十分复杂。
2. 在哺乳动物中,基因的表达和调控已经相对复杂起来,有许多基因调控网络参与其中。
哺乳动物具有多种不同的表达机制,如DNA甲基化、组蛋白修饰等。
3. 哺乳动物的表达系统在进化上相对比较灵活,不同物种和不同环境中会呈现出不同的表达模式和调控机制。
在哺乳动物中,基因表达的调控和信号传导机制十分复杂,涉及到许多不同的细胞信号通路和调控网络。
原核、昆虫和哺乳动物在表达系统上具有明显的差异。
原核生物表达系统相对简单,主要是基因的转录和翻译,以及一些特殊的表达机制。
昆虫和哺乳动物的表达系统则相对复杂,涉及到多种不同的信号传导和调控机制。
CHO细胞表达抗体

表达载体结构组成 ◆ 骨架序列 ◆ 选择性标志基因 ◆ 表达盒 ◆ 特殊的调控序列
7
选择标志基因
共扩增基因
( DFHR和GS)
当环境中存在高浓度
(MTX 、MSX)时,标记
基因可自发在染色体上扩 增拷贝数 ,连带其上下游 的序列一起扩增 ,共扩增 序列可达上千个bp ,拷贝 数可增加几百到几千倍。
THE END
THANK YOU ! 22
将右图质粒共转染CHO(DHFR- )
◆ 宿主菌须在含有GHT(甘氨酸、次黄 嘌呤、胸腺嘧啶) 的培养基中生长
◆ 重组质粒Poptivec-target整合到宿 主菌染色体组上后的阳性菌可在不含 GHT的培养基中生长。
◆ 进一步用G418和MTX筛选 , 在MTX浓度 选择压力下 , dhfr基因与其共转染的 目的基因一起扩增 , 提高目的蛋白表 达。 11
3
CHOClassificat ion
补充: 1980年CHO-K1经化学突变得到CHO- DXB11 ( 一个等位基因缺失) 1983年的电离辐射经诱变株CHO-DG44 (两个等位基因缺失) 由于CHO-DXB11 DHFR缺陷不彻底 ,很快被完全无DHFR活性 的CHO-DG44取代 注释: ATCC (American Type Culture Collection) 美国菌种保藏中心 ECACC(European Collection of Authenticated Cell Cultures) 欧洲细胞株/微生物保藏中心
4
DHFR缺陷型
宿主细胞
DG44 DUXB11
PcDNA3.3/Poptivec 载体系统 Life Technology公司
宿主细胞: DG44 质粒: 共转染PcDNA3.3(Neo抗 性基因 , ¥2000) 和Poptivec 筛选试剂: G418(遗传霉素)/MTX (氨甲喋呤)
生物制药技术中的表达系统研究

生物制药技术中的表达系统研究生物制药技术一直是医药行业的热门领域,在制药过程中,表达系统的研究是非常重要的一部分。
表达系统是生物制药技术中利用细胞合成目标蛋白的关键工具。
目前,表达系统主要被用于制造重要的药物和生物制剂。
1. 表达系统的概念和分类表达系统是通过改变细胞或微生物的基因,使其能够合成一个目标蛋白质的过程。
表达系统主要有两大类:原核表达系统和真核表达系统。
前者是指以细菌、酵母菌、噬菌体等微生物作为表达的载体的表达系统,后者是指以哺乳动物、昆虫、真菌等真核细胞作为表达载体的表达系统。
其中,细菌表达系统应用最为广泛。
2. 细菌表达系统的研究现状目前,大肠杆菌是最常用的细菌表达系统。
因为其简单易操作、高效、低成本、质量稳定等显著优势。
大肠杆菌表达系统的原理主要是:将细胞质中的基因组 DNA 转化为 RNA,然后将 mRNA翻译成蛋白质。
研究表明,大肠杆菌表达系统可以实现许多不同的表达目的,如疫苗生产、技术嵌入、工业酶生产等。
此外,大肠杆菌表达系统在改进和增强中也有很大的发展空间。
目前,研究人员正在进行大肠杆菌表达系统的优化,以提高表达效率并改善产品质量。
例如尝试提高细胞中目标蛋白质的产量,新的表达载体的设计和改进等。
3. 真核表达系统的研究进展在真核表达系统中,以哺乳动物作为载体的表达系统应用最为广泛。
目前,最常用的哺乳动物表达系统是CHO细胞。
CHO细胞是一类美国老鼠卵巢细胞,其表达性能优越,具有较高的表达效率和高质量的表达产物。
除此之外,人类胚胎肾细胞(HEK)是另一种被广泛应用的真核表达载体。
这种类型的表达系统能够产生大量的蛋白质,并且可快速扩展,更加适合于大规模的制剂生产。
总的来说,生物制药技术中的表达系统的研究对于医疗行业的发展起着非常重要的作用。
通过对表达系统的研究,我们能够使得生产更加高效、快速、有效。
另外,还可以提高医药制品的质量和稳定性,为医疗卫生行业提供更高质量的药品和治疗方案。
哺乳动物表达系统原理

哺乳动物表达系统原理引言:哺乳动物表达系统是指哺乳动物通过语言、声音、姿势和化学信号等方式进行交流和传递信息的机制。
这种表达系统在哺乳动物种群中起着至关重要的作用,它有助于个体之间的合作、繁殖和求偶行为的进行。
本文将介绍哺乳动物表达系统的原理及其在不同物种中的表现。
一、语言交流:语言是人类最为重要的交流方式之一,但在其他哺乳动物中并不普遍存在。
然而,一些哺乳动物如海豚、鲸鱼和某些灵长类动物,通过发出特定的声音来传递信息。
这些声音可以包括呼吸声、鸣叫声、鸣叫声等。
它们通过调整声音的频率、音量和时长来传递不同的意义,从而实现交流。
这种语言交流对于维持个体之间的社交关系、警戒和求偶行为至关重要。
二、声音表达:除了语言交流外,声音也是哺乳动物表达系统中的重要组成部分。
许多哺乳动物通过发出特定的声音来传达不同的信息。
例如,大象通过发出嘶吼声、波动声和低音鼻音来进行交流。
这些声音可以传达警告、求偶和社交的信息。
类似地,狗通过吠叫声来表达不同的心情和需求,如警戒、寻求注意和表达快乐。
三、姿势和动作:除了声音外,姿势和动作也是哺乳动物表达系统中的重要组成部分。
例如,狗通过摇尾巴、耳朵的姿势和身体的动作来表达不同的情绪和意图。
摇尾巴可以表示高兴、友好或兴奋,而低垂的耳朵和身体的低姿态则可能表示害怕或不安。
类似地,猫通过抓、踩和搔抓等动作来表达不同的意思,如攻击、抚摸和警告。
四、化学信号:除了声音、姿势和动作,化学信号也是哺乳动物表达系统中的重要组成部分。
许多哺乳动物通过释放具有特定化学成分的信息素来传递信息。
例如,狗通过尿液中的信息素来标记自己的领地和状态,以及吸引异性。
类似地,许多灵长类动物通过分泌具有特定化学成分的汗液来进行社交和求偶行为。
五、不同物种中的表现:不同的哺乳动物在表达系统中的表现也存在差异。
例如,灵长类动物如黑猩猩和猴子可以通过复杂的声音、姿势和面部表情来进行交流。
而大象则以低音的鸣叫声和身体姿势来进行交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哺乳动物细胞表达系统按照宿主细胞的类型,可将基因表达系统大致分为原核、酵母、植物、昆虫和哺乳动物细胞表达系统。
与其它系统相比,哺乳动物细胞表达系统的优势在于能够指导蛋白质的正确折叠,提供复杂的N型糖基化和准确的O型糖基化等多种翻译后加工功能,因而表达产物在分子结构、理化特性和生物学功能方面最接近于天然的高等生物蛋白质分子。
从最开始以裸露DNA直接转染哺乳动物细胞至今的30余年间,哺乳动物细胞表达系统不仅已成为多种基因工程药物的生产平台,在新基因的发现、蛋白质的结构和功能研究中亦起了极为重要的作用。
本文主要从表达系统及其两个组成部分——表达载体和宿主细胞等方面,简要介绍哺乳动物细胞表达系统和相关的研究进展。
研究现状①部分蛋白在哺乳动物细胞中的表达已从实验室研究迈向生产或中试生产阶段。
②已有许多重要的蛋白及糖蛋白利用哺乳动物细胞系统表达和大量制备、生产。
如人组织型血纤蛋白酶原激活因子、凝血因子Ⅷ、干扰素、乙肝表面抗原、红血球生成激素、人生长激素、人抗凝血素Ⅲ,集落刺激因子等。
有些产品已投入临床应用或试用。
③虽然经过多年努力,哺乳动物细胞表达系统的表达水平有大幅度增高,但从整个水平上看仍偏低,一般处在杂交瘤细胞单克隆抗体蛋白产率的下限,即1-30μg/l08细胞/24小时。
有人认为其限速步骤可嚣是在工程细胞中(对于重组蛋白来讲,常是异源的),重组蛋白的分泌效率较低。
1 表达载体1.1 表达栽体的类型哺乳动物细胞表达外源重组蛋白可利用质粒转染和病毒载体的感染。
利用质粒转染获得稳定的转染细胞需几周甚至几个月时间,而利用病毒表达系统则可快速感染细胞,在几天内使外源基因整合到病毒载体中,尤其适用于从大量表达产物中检测出目的蛋白。
根据进入宿主细胞的方式,可将表达载体分为病毒载体与质粒载体。
病毒载体是以病毒颗粒的方式,通过病毒包膜蛋白与宿主细胞膜的相互作用使外源基因进入到细胞内。
常用的病毒载体有腺病毒、腺相关病毒、逆转录病毒、semliki森林病毒(sFv)载体等。
另外,杆状病毒载体应用于哺乳动物细胞的表达在近几年颇受重视,这是因为它与其它病毒载体相比有特有优势,如可通过昆虫细胞大量制备病毒颗粒;可感染多种哺乳动物细胞,但在细胞内无复制能力,生物安全度高;可插入高达38 kb的外源基因等。
质粒载体则是借助于物理或化学的作用导人细胞内。
依据质粒在宿主细胞内是否具有自我复制能力,可将质粒载体分为整合型和附加体型载体两类。
整合型载体无复制能力,需整合于宿主细胞染色体内方能稳定存在,如SV40病毒载体、反转录病毒载体和游离型如痘苗病毒、腺病毒载体。
利用Sindbis virus(SV)、Scmliki Forest virus(sFV) 和痘苗病毒载体感染哺乳动物细胞表达的蛋白在结构与功能上与天然哺乳动物来源的蛋白更相似。
Liljestrom等利用SFV病毒载体感染哺乳动物细胞获得的外源蛋白占细胞总蛋白的;而附加体型载体则是在细胞内以染色体外可自我复制的附加体形式存在。
整合型载体一般是随机整合入染色体,其外源基因的表达受插入位点的影响,同时还可能会改变宿主细胞的生长特性。
相比之下,附加体型载体不存在这方面的问题,但载体DNA在复制中容易发生突变或重排。
附加体型载体在胞内的复制需要两种病毒成分:病毒DNA的复制起始点(ori)及复制相关蛋白。
根据病毒成分的来源不同,附加体型表达载体主要分为4大类,表2对这几类附加体载体进行了简要的概括。
载体的选择取决于外源基因的导人方式和其调控元件是否有利于转录和翻译。
真核生物基因高表达载体必须具有如下调控元件:①原核DNA序列,包括能在大肠杆菌中自身复制的复制子,便于筛选含萤组细菌的抗生素抗性基躅,以及便于目的基因插入的限制性酶切位点。
目前采州的哺乳动物细胞表达戟体大都带有来自pBR322的衍生质粒如pX[3、pBRd和pM[的原核序列;②启动子和增强子;③剪接信号;④终止信号和poIyA加尾信号。
为了将含目的基因的载体导入哺乳动物功物细胞.还必须加入遗传选择标记。
常用的标记基因有胸腺激酶(tk)基因、二氢叶酸还原酶(dh]r)基因、新霉素(neo)抗性基因、氯霉素乙酰基转移酶(cat)基因等dhfr还可作为共扩增基因使外源基因的表达产物增加。
当培养基中逐新增加氨甲蝶呤(MTX)的浓度时,随着细胞对MTX抗体的增加。
dhfr基因与外源基因均明显扩增。
据文献报道,在不断提高的选择压力下,dhfr及侧翼序列能扩增至上千个拷贝,大大增加目的基因的表达水平。
1.2 表达载体的结构元件哺乳动物细胞表达载体的必要元件包括:一个高活性的启动子、转录终止序列和一个有效的mRNA翻译信号。
可视实验需要加入标志基因、复制起始点序列、内部核糖体进入位点等。
基于启动子/增强子是表达载体中最重要的元件,我们这里仅对它做简要介绍。
外源基因在哺乳动物细胞中的表达与多种因素有关,主要是启动子和增强子的强弱以及它们之间的搭配。
启动子需包含两个识别序列:mRNA转录起始点和TA TA盒。
TATA盒位于转录起始值点上游25--30bp处,是引导RNA聚合酶在正确起始位点转录所必需的序列,即保证转录的精确起始。
其他上游启动子元件常位于TA TA盒上游100~200bp之间。
其功能是调节转录的起始频率和提高转录效率。
启动于和增强子受细胞类型的限制,在不同的细胞系中有很大不同,因此需根据宿主细胞的娄型选择不同的启动子和增强子以便于目的基因的高效表达。
目前常用的强启动子包括人巨细胞病毒早期启动子(CMV-IE)、人延伸因子1-亚基启动子和Rous肉瘤长末端重复序列;Invitrogen公司开发的pcDNA、pEF和pRL三种系列载体即分别是以这三种启动子驱动目的基因的表达。
近年来又发现了一些新的强启动子:如人leukosialin基因同和鼠3-磷酸甘油激酶l(PGKI)基因启动子,活性与CMV-IE相当;人编在蛋白(ubiquitin)C基因启动子不仅具有较高的活性,而且比CMV-IE、PGK1等启动子有更广泛的宿主细胞范围,几乎在转基因小鼠的所有组织细胞中都具有较高活性。
核内小RNA(snRNA)启动子亦具有与CMV-IE相近的活性,此前认为该启动子的转录产物不具有正常mRNA的修饰过程和功能,虽然转录同样是由RNA聚合酶Ⅱ完成;但Bartlett等的研究显示,Ul snRNA启动子合成的lacZ基因RNA可被正确地在5’端加帽和3’端加polyA 尾,并与核糖体结合引导Iacz蛋白的翻译。
常用的增强子有Rous肉癯病毒基因长末端重复序列和人巨细胞病毒增强子。
james等利用糖皮质类周醇诱导的鼠乳房瘤病毒(MMTV)启动子和鼠乳房痛病毒长末端重复序列(MMTV-LTR),在CHO细胞中表达分泌的碱性磷酸酶,产量为利用常规的SV40和CMV 启动子的10倍,超过0.4mg/ml。
构建杂合的启动子是获得新启动子的一个重要途径,比如由人ubiquitin C启动区序列与CMV增强子组成的杂合启动子、由SV40早期启动子和人I型T淋巴细胞病毒LTR 中的增强子序列(R-U5片段)组成的SR-α启动子的活性均与CMV-IE相当;而由鸡β-肌动蛋白启动子和CMV增强子序列构成的杂合启动子不仅活性比CMV—IE高,而且具有更为广谱的宿主细胞范围。
Novagen公司的pBacMam表达系统即是以该杂合启动子驱动目的基因的转录。
另一类杂合启动子是由活性很低的启动子与数个转录激活因子结合位点串联而成,这些位点与转录激活因子的结合受细胞外小分子药物的调控;这类启动子主要用作基因的诱导表达。
如Invitrogen公司的ecdysone诱导表达系统,其负责目的基因转录的启动子是由热休克蛋白启动子核心序列(minimal promotor)和5个E/GRE元件组成;Clontech公司开发的Tet-off系统中的启动子则由CMV启动子的核心序列和7个Tet阻遏蛋白结合位点组成。
这些启动子在诱导前后活性可相差4个数量级。
另外,在哺乳动物细胞中已发现存在大量在低氧环境中可诱导转录的基因,如编码红细胞生成素(EPO)转铁蛋白、血红素加氧酶-1等的基因,它们都有一个共同的顺式作用元件(CGTG ),有利于在5’或3’侧翼区的低氧诱导低氧诱导作用因子-1(HIF-1)和低氧反应增强子(HRE)结合,激活靶基因的转录,在低氧浓度下可使重组蛋白大量表达。
据报道红细胞生成素启动子在1%氧浓度比在21%氧浓度下活陛增强100倍。
这又是一种新的提高表达量的作用机制。
2 宿主细胞哺乳动物细胞表达外源蛋白最初是将抗体基因重新导人淋巴细胞中由病毒(如SV40)或lgG的启动子增强子引导。
产生的抗体具有相应的结合能力和数应功能,但表达量很低。
常用的非淋巴细胞类有中国仓鼠卵巢(CHO)细胞、小仓鼠肾(BHK)细胞、COS细胞、小鼠NSO胸腺瘤细胞和小鼠骨髓瘤SP2/0细胞等。
不同宿主细胞表达的重组蛋白其稳定性和蛋白糖基化类型不同,需根据要表达的目的蛋白选择最佳的宿主细胞。
COS细胞是进行外源基因瞬时表达时用途最广的宿主,其重组载件易于组建,便于使用,而且对插入DNA的量或者采用基因组DNA 序列的情况都没有什么限制,便于通过检测表达情况来确证cDNA的阳性克隆,也利于快速分析引入克隆化cDNA序列中的突变。
CHO细胞则利于外源基目的稳定整合,易于大规模培养,能在无血清和蛋白的条件下生比,是用于真核生物基因表达软为成功的宿主细胞。
已用于多种复杂的重组蛋白的生产,但其产量较低,一般仅占细胞蛋白的2.5%,而用细菌表达可获得占总蛋白50%的蛋白表达水平,但大肠杆菌表达的动物蛋白能进行正确的翻译后加工如糖基化和三维结构的形成,不具有与天然抗体相似的功能活性,且在人体内易于清除。
如果需要表达具有生物学功能的膜蛋白或分泌型蛋白,例如细胞表面的受体或细胞外的激素和酶,则不能在原棱细胞中表达。
而哺乳动物细胞表达的蛋白则具有天然蛋白的生物学活性。
为提高哺乳动物细胞的蛋白表达量,需选择合适的表达载体和有效的启动子和增强子。
近几年也陆续发现了几种新的有较大应用价值的细胞株:如来源于MadIin-Darby犬肾的高分化内皮细胞株(MDCK),Pei等用该细胞株表达分泌型的基质金属蛋白酶MMPI3,发现高表达的阳性细胞克隆可占转染细胞的5%~l0%,其中一个克隆的表达量可占细胞上清总蛋白的l5%~20%,在细胞单层贴壁培养情况下表达量达10 ms/L。
作者认为如此高的表达量可能与MDCK细胞的特性有关,因为同样的载体在CH0细胞中仅得到低水平的表达。
在球蛋白基因簇上游50kb处发现有一区域在红细胞系的细胞中起调控基因表达的作用,称为位点控制区域(LCR),LCR可调整附近区域染色体的结构并增强球蛋白的转录活性。