研究生《数值分析》试卷(带答案)

合集下载

研究生数值分析试题

研究生数值分析试题
第三章 线性方程组的直接解法自测题
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分)
1、一般用高斯消元法解线性代数方程组要采用的技术是(

(1)调换方程位置; (2)选主元; (3)直接求解; (4)化简方程组。
⎛ 2 2 3⎞ ⎛ 1 0 0 ⎞⎛2 2 3⎞
2、设矩阵
A
为初值迭代一步。
四、(12 分)应用牛顿法于方程
f (x) =
xn
−a
Байду номын сангаас
=
0和
f (x) =1−
a xn
= 0 ,分别导出求 n
a

迭代公式,并求极限 lim n a − xk+1 。 k→∞ ( n a − xk )2
五 、 ( 12 ) 方 程 x3 − 6 x − 8 = 0 在 x = 3 附 近 有 根 , 把 方 程 写 成 三 种 不 同 的 等 价 形 式
零, A = LU 为 Doolitte 分解,则上三角矩阵 U 的上半带宽为

5、设对称正定矩阵
A
=
(aij
)∈
Rn×n , a11

0
,经过一次
Gauss
消元得到形如
A
=
⎛ ⎜ ⎝
a11 0
∗⎞
A1
⎟ ⎠

矩阵,则 A1 是
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤
3、设矩阵 A ∈ Rn×n , Q ∈ Rn×n ,且 QT Q = E ,则下列关系式不成立的是(

(1) A = AQ ;(2) QA = A ;(3) Qx = x ,其中 x ∈ Rn ;

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

数值分析试题及答案..(优选)

数值分析试题及答案..(优选)

一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。

A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。

5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---()12x L x -=-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

数值分析试题及答案

数值分析试题及答案

数值分析试题及答案一、选择题(每题2分,共20分)1. 以下哪个算法是数值分析中用于求解线性方程组的直接方法?A. 牛顿法B. 高斯消元法C. 梯度下降法D. 蒙特卡洛方法答案:B2. 插值法中,拉格朗日插值法和牛顿插值法的共同点是:A. 都是多项式插值B. 都使用差商C. 都只适用于等距节点D. 都需要预先知道所有数据点答案:A3. 在数值积分中,辛普森(Simpson)公式比梯形公式的误差:A. 更大B. 更小C. 相同D. 无法比较答案:B4. 以下哪个是数值稳定性分析中常用的方法?A. 条件数B. 收敛性C. 收敛速度D. 误差分析答案:A5. 在求解常微分方程的数值解时,欧拉方法属于:A. 单步法B. 多步法C. 隐式方法D. 显式方法答案:A6. 以下哪个是数值分析中求解非线性方程的迭代方法?A. 高斯-约当消元法B. 牛顿-拉弗森方法C. 雅可比迭代法D. 高斯-赛德尔迭代法答案:B7. 线性插值公式中,如果给定两个点\( (x_0, y_0) \)和\( (x_1, y_1) \),插值多项式是:A. \( y = y_0 + \frac{y_1 - y_0}{x_1 - x_0}(x - x_0) \)B. \( y = y_0 + \frac{y_1 - y_0}{x_0 - x_1}(x - x_0) \)C. \( y = y_0 + \frac{x - x_0}{x_1 - x_0}(y_1 - y_0) \)D. \( y = y_1 + \frac{x_1 - x}{x_1 - x_0}(y_0 - y_1) \)答案:C8. 以下哪个是数值分析中用于求解特征值问题的算法?A. 幂法B. 共轭梯度法C. 牛顿法D. 欧拉法答案:A9. 在数值微分中,使用有限差分法来近似导数时,中心差分法的误差:A. 与步长成正比B. 与步长的平方成正比C. 与步长的立方成正比D. 与步长的四次方成正比答案:B10. 以下哪个是数值分析中用于求解线性最小二乘问题的算法?A. 梯度下降法B. 牛顿法C. 奇异值分解法D. 共轭梯度法答案:C二、简答题(每题10分,共30分)1. 简述数值分析中病态问题的特点及其对算法的影响。

研究生数值分析练习题答案

研究生数值分析练习题答案

------------------------------------------------ 装 ---------------------------------订 ---------------------------------线 ------------------------------------------------装 订 线 左 侧 不 要 书 写 内 容允许使用计算器一、 填空题 (本大题共10小题,每小题 2分,共 20分)1. 若2.71828x e == ,取近似值* 2.7180x =,则*x 具有 4 位有效数字。

2.为了提高数值计算精度,应将8格式进行计算。

3.已知n=3时牛顿—柯特斯系数(3)(3)(3)012133,,888C C C ===,那么(3)3C =18 。

4.设3()1f x x x =+-,则函数的四阶差商[0,1,2,3,4]f = 0 。

5. 用牛顿迭代法解方程0x x e --=在0.5x =附近的近似实根的牛顿迭代格式为)1,0(e 1e )()(1=+--='-=--+n x x x f x f x x nnx x n n n n n n6. 对给定的剖分01:n a x x x b ∆=<<<= ,当()s x 满足条件 ()s x 在[a,b]有2阶连续导数且在每个子区间上是个3次多项式 时是三次样条函数。

7.用最小二乘法拟合三点()()()0,1,1,3,2,2A B C 的直线是1322y x =+。

8.向量序列()211cos ,sin ,3Tk k x e k k k k -⎛⎫=+ ⎪⎝⎭ 的极限向量为()0,1,3T9.求积公式 10311()()(1)434f x dx f f ≈+⎰的代数精度为 2 。

10.若绝对误差限为31102-⨯,那么近似数0.03600有 2 位有效数字二、单项选择题(本大题共5小题,每小题 2 分,共 10分)1. 已知实验数据555521111(,)(1,2,3,4,5),15,31,55,105.5,k k k k kk k k k k k x y k x y x x y =========∑∑∑∑其中则用最小二乘法求近似公式01y a a x =+的法方程为( C )A 0101153155105.5a a a a +=⎧⎨+=⎩B 0101515551531105.5a a a a +=⎧⎨+=⎩C 0101515311555105.5a a a a +=⎧⎨+=⎩ D0101531153155105.5a a a a +=⎧⎨+=⎩ 2. 以下矩阵是严格对角占优矩阵的是( B )A 3210141011410012⎛⎫ ⎪ ⎪ ⎪⎪⎝⎭ B 2100131013610113-⎛⎫⎪--⎪ ⎪-- ⎪-⎝⎭C 5210113121410012-⎛⎫⎪--⎪ ⎪⎪⎝⎭D 4211141021411315⎛⎫⎪ ⎪⎪- ⎪⎝⎭3.已知两种递推公式11(1)35(1,2,,20)31(2)(20,,1)55n n n n I nI n I I n n n--=-==-= 则在数值计算过程中( C )。

数值分析版试题及答案

数值分析版试题及答案

数值分析版试题及答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-例1、已知函数表求()f x的Lagrange二次插值多项式和Newton二次插值多项式。

解:(1)由题可知插值基函数分别为故所求二次拉格朗日插值多项式为(2)一阶均差、二阶均差分别为均差表为故所求Newton 二次插值多项式为例2、 设2()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。

解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,且()1x ρ=,这样,有 所以,法方程为01123126119234a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦,经过消元得01231162110123a a ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 再回代解该方程,得到14a =,0116a =故,所求最佳平方逼近多项式为*111()46S x x =+ 例3、 设()x f x e =,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{}span 1,x Φ=的最佳平方逼近多项式。

解:若{}span 1,x Φ=,则0()1x ϕ=,1()x x ϕ=,这样,有 所以,法方程为解法方程,得到00.8732a =,1 1.6902a =, 故,所求最佳平方逼近多项式为例4、 用4n =的复合梯形和复合辛普森公式计算积分1⎰。

解:(1)用4n =的复合梯形公式由于2h =,()f x =,()121,2,3k x k k =+=,所以,有 (2)用4n =的复合辛普森公式由于2h =,()f x =,()121,2,3k x k k =+=,()12220,1,2,3k xk k +=+=,所以,有例5、 用列主元消去法求解下列线性方程组的解。

数值分析考试及答案

数值分析考试及答案

数值分析考试及答案作者:日期:班级• • •• • •• • •• • • o • • •学号• • •• • •姓名密• • •• • •o• • •• • •东北大学研究生院考试试卷2011 —2012 学年第一学期课程名称:数值分析(共3页)一、解答下列各题:(每题5分,共30分)1.设近似值x具有5位有效数字,则x的相对误差限为多少? 解:记x* 0.吋2…10m,则x的相对误差为:0.5 10m 50.a1a2... 10m0.5 10 50.10.5 10即,相对误差限为:0.5 102.问a, b满足什么条件时,矩阵Ao • • •• • •• • •线总分一——二三四五4 2 02 5a有分解式A GG T,并求a b 2时0 b 54 2 0 2 1 0解:由于A 2 5 a 1 2 a/2 (A对称正定时)0 b 5 0 b/2 5 ab/4所以,当2 .5 a b 2 5时有分解式 A GG T,a b 2 时有:4 2 0 2 0 0 2 1 0A 2 5 2 1 2 0 0 2 10 2 5 0 1 2 0 0 23.解线性方程组X1 2x2 2 的Jacobi 迭代法是否收敛,为什么?2x19x2 3的分解式(其中G是对角线元素大于零的下三角形矩阵)解:Jacobi迭代矩阵为:B2/92,所以,(B) 2/3 1所以,Jacobi迭代法是否收敛.4.对方程f (x) (x3 a)20建立敛?若收敛,收敛阶是多少?解:Newton迭代格式为:X k 1 X kf(xk)f (X k)由于迭代函数为:(x)?X ka6x2所以,此迭代格式收敛,收敛阶是Newton迭代格式,并说明此迭代格式是否收3X k a2~ ,x k6X k,方程根为:1.56k 6:k2, k 012-3 a,所以,5.设f (x) 4x3 3x 5,求差商f[0,1], f[1,2,3,4]和f [1,2,3,4,5]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009级研究生《数值分析》试卷一.(6分) 已知描述某实际问题的数学模型为xy y x y x u 223),(+=,其中,y x ,由统计方法得到,分别为4,2==y x,统计方法的误差限为0.01,试求出u 的误差限)(u ε和相对误差限)(u r ε.解:)(23)(6)(),()(),()(222y x y x x x y xy y y y x u x x y x u u εεεεε⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=∂∂+∂∂≈ 6.016.044.001.0)412(01.0)448(=+=⨯++⨯-= 0.010714566.03)()(22=≈+=xy y x u u r εε 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f .解:21142512)1()2(]2,1[,311401)0()1(]1,0[=-=--==-=--=f f f f f f9232102]1,0[]2,1[]2,1,0[=-=--=f f f ,0!4)(]4,3,2,1,0[)4(==ξff 三.(6分)试确定求积公式: )]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰的代数精度.解:记⎰=10)(dx x f I )]1(')0('[121)]1()0([21f f f f I n -++= 1)(=x f 时:1110==⎰dx I1]00[121]2[21=-+=n I x x f =)(时:2110==⎰xdx I 21]11[121]1[21=-+=n I2)(x x f =时:31102==⎰dx x I 31]20[121]1[21=-+=n I3)(x x f =时:41103==⎰dx x I 41]30[121]1[21=-+=n I 4)(x x f =时:51104==⎰dx x I 61]40[121]1[21=-+=n I求积公式)]1(')0('[121)]1()0([21)(1f f f f dx x f -++≈⎰具有3次代数精度. 四.(12分) 已知函数122)(23-++=x x x x f 定义在区间[-1,1]上,在空间},,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式.其中,权函数1)(=x ρ,154))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ϕϕϕ.解:0))(),(())(),((21))(),((1101101100=====⎰⎰--dx x x x x x dx x x ϕϕϕϕϕϕ32))(),(())(),(())(),((112110220====⎰-dx x x x x x x x ϕϕϕϕϕϕ0))(),(())(),((1131221===⎰-dx x x x x x ϕϕϕϕ 52))(),((11422==⎰-dx x x x ϕϕ解方程组⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛154153234520320320320221a a a 得⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛15161210a a a 则)(x f 的最佳平方逼近多项式为:1516)(2-+=x x x p 五.(16分) 设函数)(x f 满足表中条件:(1) 填写均差计算表((2) 分别求出满足条件22k k k k 的 2次 Lagrange 和 Newton 差值多项式.(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 解:12)12)(02()1)(0()20)(10()2)(1()(22+-=----+----=x x x x x x x L12)1)(0(1)0)(1(1)(22+-=--+--+=x x x x x x N 令)2)(1()(12)(24--+++-=x x x b ax x x x H则)2()()2)(1)(()2)(1(22)('4-++--++--+-=x x b ax x x b ax x x ax x x H)1()(-++x x b ax由 ⎩⎨⎧-=+=+⇒⎩⎨⎧=-++-=-=-++-=1220)12(2)2(24)2('2)21)((22)1('44b a b a b a H b a H ,解得 5,3=-=b a 因此1820143)2)(1()53(12)(23424++-+-=--+-++-=x x x x x x x x x x x H 六.(16分)(1). 用Romberg 方法计算⎰31dx x ,将计算结果填入下表(*号处不填).(2). 试确定三点 Gauss-Legender 求积公式⎰∑-=≈110)()(k k k x f A dx x f 的Gauss 点k x 与系数k A ,并用三点 Gauss-Legender 求积公式计算积分: ⎰31dx x .解:过点(1,-1)和点(3,1)作直线得 y t x +=所以积分⎰⎰-+=11312dt t dx x由三次Legendre 多项式 )35(21)(33x x x p -=得得Gauss 点: ,515,0,515210==-=x x x再由代数精度得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==+-==++⎰⎰⎰---32535305155152111220112011210dt x A A dt x A A dt A A A即 ⎪⎩⎪⎨⎧=+=-=++9/10022020210A A A A A A A 解得 ,95,98,95210===A A A所以三点Gauss-Legendre 求积公式为:()⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛-≈⎰-5159509851595)(11f f f dx x f 因此 79746.2515295298515295211=+++-≈+=⎰-dx t I七.(14分)(1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5110||-+<-k k x x ). 解:令 2ln )(--=x x x f),1(,011)('∞∈>-=x xx f > 即)(x f 在区间 ),1(∞ 单调增又 04)(,02ln )2(22>-=<-=e e f f 所以 02ln =--x x 在区间 ),1(∞有一单根 ),1(20e x ∈ Newton 迭代公式为1ln 112ln 1-+=----=+k k k k kk k k k x x x x x x x x x令 20=x 计算得八. (12分) 用追赶法求解方程组:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛022112111131124321x x x x 的解. 解: 由计算公式 ⎪⎩⎪⎨⎧-===+====-1,,2,,,2,,111111n i c n i b a c b i i ii i i i i i βααβγγβαα得 ,2,1,1,21,1,24321111======γγγββαα25211322212=⨯-=⇒=+ααβγb 52222222==⇒=αββαc c 53521133323=⨯-=⇒=+ααβγb 35333333==⇒=αββαc c37352144434-=⨯-=⇒=+ααβγb因此 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫⎝⎛135152121137253125121211113112即 LU A = 令 b Ly = 解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-022137253125124321y y y y 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛23753214321y y y y 令 y Ux =解 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛237532113515212114321x x x x 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛21104321x x x x九. (12分) 设求解初值问题⎩⎨⎧==00)(),('y x y y x f y 的计算格式为:)],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .解:)],(),([111--+++=n n n n n n y x bf y x af h y y )](')('[)(1-++=n n n x by x ay h x y])('''21)('')('[)(')(2++-++=n nn n n x y h x hy x y hb x hay x y ++-++=)('''21)('')(')()(32n n n n x by h x by h x y b a h x y对比 ++++=+)('''61)(''21)(')()(321n n n n n x y h x y h x hy x y x y得 ⎩⎨⎧==+2/11b b a , 即 2/1==b a 时该计算格式具有二阶精度.。

相关文档
最新文档