人教版高中数学选修2-3统计案例2
高中数学选修2-3统计案例之线性回归方程习题课

1.相关关系的分类从散点图上看,点散布在从左下角到右上角的区域内,对于两个变量的这种相关关系,我们将它称为正相关;点散布在从左上角到右下角的区域内,两个变量的这种相关关系称为负相关.2.线性相关从散点图上看,如果这些点从整体上看大致分布在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫回归直线.3.回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离平方和最小的方法叫最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n),其回归方程为y^=b^x+a^,则b^,a^其中,b 是回归方程的斜率,a是在y轴上的截距.4.样本相关系数r=∑i=1nx i-x y i-y∑i=1nx i-x2∑i=1ny i-y2,用它来衡量两个变量间的线性相关关系.(1)当r>0时,表明两个变量正相关;(2)当r<0时,表明两个变量负相关;(3)r的绝对值越接近1,表明两个变量的线性相关性越强;r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常当|r|>0.75时,认为两个变量有很强的线性相关关系.5.线性回归模型(1)y=bx+a+e中,a、b称为模型的未知参数;e称为随机误差.(2)相关指数用相关指数R2来刻画回归的效果,其计算公式是:R2=,R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好.在线性回归模型中,R2表示解释变量对预报变量变化的贡献率,R2越接近于1,表示回归效果越好.规律(1)函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.注意(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.(2)线性回归方程中的截距和斜率都是通过样本数据估计而来的,存在误差,这种误差会导致预报结果的偏差;而且回归方程只适用于我们所研究的样本总体.考向一相关关系的判断例1.下列选项中,两个变量具有相关关系的是( )A.正方形的面积与周长B.匀速行驶车辆的行驶路程与时间C.人的身高与体重D.人的身高与视力答案:C例2.对变量x、y有观测数据(x i,y i)(i =1,2,…,10),得散点图1;对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由题图1可知,各点整体呈递减趋势,x与y负相关,由题图2可知,各点整体呈递增趋势,u与v正相关.例3.下面哪些变量是相关关系( ).A.出租车车费与行驶的里程B.房屋面积与房屋价格C.身高与体重D.铁块的大小与质量解析A,B,D都是函数关系,其中A一般是分段函数,只有C是相关关系.答案C例4.如图所示,有5组(x,y)数据,去掉________组数据后,剩下的4组数据的线性相关性最大.解析:因为A、B、C、E四点分布在一条直线附近且贴近某一直线,D点离得远.答案:D例5.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v有观测数据(u i、v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断( ).A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析由题图(1)可知,各点整体呈递减趋势,x与y负相关;由题图(2)可知,各点整体呈递增趋势,u与v正相关.答案C例6.下列关系属于线性负相关的是( )A.父母的身高与子女身高的关系B.球的体积与半径之间的关系C.汽车的重量与汽车每消耗1 L汽油所行驶的平均路程D.一个家庭的收入与支出解析:选C.A、D中的两个变量属于线性正相关,B中两个变量是函数关系.例7.山东鲁洁棉业公司的科研人员在7块并排、形状大小相同的试验田上对某棉花新品种进行施化肥量x对产量y影响的试验,得到如下表所示的一组数据(单位:kg):棉花产量y3334536540544545455(1)(2)判断是否具有相关关系.[审题视点] (1)用x轴表示化肥施用量,y轴表示棉花产量,逐一画点.(2)根据散点图,分析两个变量是否存在相关关系.解(1)散点图如图所示(2)由散点图知,各组数据对应点大致都在一条直线附近,所以施化肥量x与产量y具有线性相关关系.利用散点图判断两个变量是否有相关关系是比较简便的方法.在散点图中如果所有的样本点都落在某一函数的曲线上,就用该函数来描述变量之间的关系.即变量之间具有函数关系.如果所有的样本点落在某一函数的曲线附近,变量之间就有相关关系;如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.例8. 根据两个变量x,y之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).解析从散点图看,散点图的分布成团状,无任何规律,所以两个变量不具有线性相关关系.答案否考向二线性回归方程例9.对有线性相关关系的两个变量建立的回归直线方程y^=a+bx中,回归系数b( )A.不能小于0 B.不能大于0C.不能等于0 D.只能小于0解析:选C.∵b=0时,r=0,这时不具有线性相关关系,但b能大于0也能小于0.例10.已知回归方程y^=4.4x+838.19,则可估计x与y的增长速度之比约为________.解析:x与y的增长速度之比即为回归方程的斜率的倒数14.4=1044=522.答案:5 22例11.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是( ).A.y^=-10x+200 B.y^=10x+200 C.y^=-10x-200 D.y^=10x-200解析因为销量与价格负相关,由函数关系考虑为减函数,又因为x,y不能为负数,再排除C,故选A.答案A例12.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y^=b^x+a^;(3)已知该厂技改前生产100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程.预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)[审题视点] (2)问利用公式求a^、b^,即可求出线性回归方程.(3)问将x=100代入回归直线方程即可.解(1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:∑i =14x 2i =86, x =3+4+5+64= 4.5(吨),y =2.5+3+4+4.54=3.5(吨). 已知∑i =14x i y i =66.5,所以,由最小二乘法确定的回归方程的系数为:b^=∑i=14x i y i-4x·y∑i=14x2i-4x2=66.5-4×4.5×3.586-4×4.52=0.7,a^=y-b^x=3.5-0.7×4.5=0.35.因此,所求的线性回归方程为y^=0.7x+0.35.(3)由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:90-(0.7×100+0.35)=19.65(吨标准煤).在解决具体问题时,要先进行相关性检验,通过检验确认两个变量是否具有线性相关关系,若它们之间有线性相关关系,再求回归直线方程.例13.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y对x的线性回归方程为( ).A.y=x-1 B.y=x+1C.y=88+12x D.y=176解析由题意得x=174+176+176+176+1785=176(cm),y=175+175+176+177+1775=176(cm),由于(x,y)一定满足线性回归方程,经验证知选C.答案C例14.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)回归直线方程y^=bx+a;(2)利用(1)中所求出的直线方程预测该地2012年的粮食需求量.解(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:x=0,y=3.2,b=26040=6.5,a=y-b x=3.2.由上述计算结果,知所求回归直线方程为y -257=b(x-2 006)+a=6.5(x-2 006)+3.2,即y^=6.5(x-2 006)+260.2.①(2)利用直线方程①,可预测2012年的粮食需求量为6.5(2 012-2 006)+260.2=6.5×6+260.2=299.2(万吨).例15.下列有关回归直线方程y^=bx+a 的叙述正确的是( )①反映y^与x之间的函数关系;②反映y与x之间的函数关系;③表示y^与x之间的不确定关系;④表示最接近y与x之间真实关系的一条直线.A.①② B.②③C.③④ D.①④解析:选D.y^=bx+a表示y^与x之间的函数关系,而不是y与x之间的函数关系;但它反映的关系最接近y与x之间的真实关系,故选D.例16.设有一个回归方程y^=3-5x,变量x增加一个单位时( )A.y平均增加3个单位B.y平均减少5个单位C.y平均增加5个单位D.y平均减少3个单位解析:选B.∵-5是斜率的估计值,说明x每增加一个单位,y平均减少5个单位.例17.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不.正确的是( ) A.由样本数据得到的回归方程y^=b^x+a^必过样本中心(x,y)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=-0.9362,则变量y 和x 之间具有线性相关关系解析:选C.C 中应为R 2越大拟合效果越好.例18.已知回归方程y ^=2x +1,而试验得到一组数据是(2,4.9),(3,7.1),(4,9.1),则残差平方和是( )A .0.01B .0.02C .0.03D .0.04解析:选C.当x =2时,y ^=5,当x =3时,y ^=7,当x =4时,y ^=9.∴e ^1=4.9-5=-0.1,e ^2=7.1-7=0.1, e ^3=9.1-9=0.1.∴ i =13e ^i 2=(-0.1)2+(0.1)2+(0.1)2=0.03. 例19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②回归方程y^=bx+a必过点(x,y);③曲线上的点与该点的坐标之间具有相关关系;④在一个2×2列联表中,由计算得K2=13.079,则其两个变量间有关系的可能性是90%.其中错误的是________.解析:①正确.由回归方程的定义及最小二乘法思想,知②正确.③④不正确.答案:③④例20.在2009年十一国庆8天黄金周期间,某市物价部门,对本市五个商场销售的某商品的一天销售量及其价格进行调查,五个商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 99.5110.511销售量y 1110865yx具有线性相关关系,则销售量y对商品的价格x的回归直线方程为________.解析:由数据表可得x=10,y=8,离差x-x:-1,-0.5,0,0.5,1;离差y-y:3,2,0,-2,-3.∴b^=-1×3-0.5×2-0.5×2-1×3 1+0.25+0+0.25+1=-3.2,a^=y-b^x=40,∴回归直线方程为y^=-3.2x+40.答案:y^=-3.2x+40例21.在某地区的12~30岁居民中随机抽取了10个人的身高和体重的统计资料如表:身高(cm)14315615917216517117716116416体重(kg)41496179686974696854的身高和体重之间是否有相关关系.解:以x轴表示身高,y轴表示体重,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为正相关.12.某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期12月1日12月2日12月3日12月4日12月5日温差x(℃)101113128发芽数y(颗)2325302616组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程y^=b^x +a^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?解:(1)设抽到不相邻2组数据为事件A,因为从5组数据中选取2组数据共有10种情况,每种情况都是等可能出现的,其中抽到相邻2组数据的情况有4种,所以P(A)=1-410=35.(2)由数据求得,x=12,y=27,由公式求得.b^=52,a^=y-b^x=-3.所以y关于x的线性回归方程为y^=52x-3.(3)当x=10时,y^=52×10-3=22,|22-23|<2;当x=8时,y^=52×8-3=17,|17-16|<2.所以该研究所得到的线性回归方程是可靠的.。
最新人教版高中数学选修2-3《统计案例》本章综述

第三章统计案例
本章综述
本章的主要内容是回归直线方程的分析及其相关性检验,独立性检验两部分.重点是回归分析的初步应用,难点是独立性检验的应用.
数理统计学是研究、收集、分析数据,并对所研究的问题作出结论的科学和艺术.小到日常生活,大到国计民生,我们都能发现统计的影子,如研究生活习惯对健康的影响;环境与国家发展的关系;吸烟与肺癌的关系等.解决这些问题,不能仅凭主观意愿作出结论,需要通过数据进行分析.本章是在学习过抽样、样本估计总体、相互独立事件同时发生的概率、线性回归等基本知识的基础上提出来的,所以在学习本章知识前要先对这些内容进行系统的复习回顾.以此为出发点学习新的内容.同时要注重对案例的分析,体会理解概念的实际意义,突出统计中处理问题的基本思想、方法,并多动手,结合实例解决一些实际问题,加深对相关知识的认识和理解.
随着高考改革的进行,试题中必然会愈来愈多地设置实践性和动手能力强的题目,而统计内容具有很好的现实背景和较强的实践性,因而会成为今后高考的热点之一.。
人教版高中选修2-3第三章统计案例教学设计

人教版高中选修2-3第三章统计案例教学设计一、教学背景本教学设计面向人教版高中数学选修2-3第三章《统计》的教学内容,本章节主要讲解相关的统计知识,包括频率分布、分组、频率分布直方图、累计频率分布、等分点、统计标准差等等。
本教学设计针对高中学生特点,通过设计案例,激发学生的学习兴趣,增强学生的统计知识复习和巩固的效果,提高学生的学习兴趣和学习效果,通过实际案例让学生更好地理解理论知识,拓宽学生的思维维度,提高他们的综合应用能力。
二、教学目标1.了解和掌握统计的相关概念和方法2.掌握构造频数分布表、频数分布图、累计频数分布表、累计频数分布图的方法3.熟练应用统计方法解决实际问题4.培养数据分析和解决问题的能力三、教学内容1.频数分布•频数分布表•频数分布图2.累计频数分布•累计频数分布表•累计频数分布图3.等分点及等分位数4.统计标准差本教学设计采用讲授、案例分析和问答等教学方法相结合。
教师通过针对教学目标讲解知识点,设计相关案例进行分析,让学生参与案例分析过程中,深入了解教学重点。
教师根据学生的学习情况提问,引导学生思考,提高学生的思维能力和综合应用能力。
五、课程安排第一节课:频数分布1.讲解概念,构造表格2.讲解构造频数分布图方法3.讲解统计数据分析第二节课:累计频数分布1.讲解累计频数分布概念2.构造累计频数分布表3.构造累计频数分布图4.讲解累计数据分析第三节课:等分点及等分位数1.讲解概念2.讲解求解方法3.应用案例分析第四节课: 统计标准差1.讲解概念2.讲解求解方法3.应用案例分析通过本教学设计的教学实践,学生们以案例为基础,通过讲述来了解和掌握统计的相关概念和方法、熟练应用统计方法解决实际问题、培养数据分析和解决问题的能力。
教学效果良好,学生积极参与,学习效果明显。
值得注意的是,案例的选择要与学生相关,注重实用性,让学生通过教学理论知识的学习能够得到运用和提升。
在教学过程中,要注重学生的积极性,充分发挥案例分析的效果,让学生通过实例了解和理解知识点,提高学习效率和兴趣。
高中数学-选修2-3-第八章统计和概率

概率与统计学问点:1、随机变量:假如随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而改变,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示。
2、离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按肯定次序一一列出,这样的随机变量叫做离散型随机变量.3、离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列4、分布列性质① p i ≥0, i =1,2, … ;② p 1 + p 2 +…+p n = 1.5、二项分布:假如随机变量X 的分布列为:其中0<p<1,q=1-p ,则称离散型随机变量X 听从参数p 的二点分布6、超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从全部物品中任取n(n ≤N)件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为,其中,且 7、条件概率:对随意事务A 和事务B ,在已知事务A 发生的条件下事务B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率8、公式:9、相互独立事务:事务A(或B)是否发生对事务B(或A)发生的概率没有影响,这样的两个事务叫做相互独立事务。
10、n 次独立重复事务:在同等条件下进行的,各次之间相互独立的一种试验11、二项分布: 设在n 次独立重复试验中某个事务A 发生的次数,A 发生次数ξ是一个随机变量.假如在一次试验中某事务发生的概率是p ,事务A 不发生的概率为q=1-p ,那么在n 次独立重复试验中 (其中 k=0,1, ……,n ,q=1-p )于是可得随机变量ξ的概率分布如下:这样的随机变量ξ听从二项分布,记作ξ~B(n ,p) ,其中n ,p 为参数12、数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 E ξ=x1p1+x2p2+…+xnpn +…为ξ的数学期望或平均数、均值,数学期望又简称为期()(0,1,2,,)k n k M N M n N C C P X k k m C --==={}min ,m M n =*,,,,n N M N n M N N ∈≤≤.0)(,)()()|(>=A P A P AB P A B P )()()(B P A P B A P ⋅=⋅)(k P =ξkn k k n q p C -=望.是离散型随机变量。
数学人教A版选修2-3本章解说:第三章统计案例 含解析

第三章统计案例
本章解说
知识概要
在现实生活中,我们经常会遇到类似下面的问题:肺癌是严重威胁人类生命的一种疾病,吸烟与患肺癌有关系吗?
肥胖是影响人类健康的一个重要因素,身高与体重之间是否存在线性相关关系?等等. 为了回答这些问题,必须明确问题涉及的对象(总体)是什么,用怎样的量来描述要解决的问题,并确定获取变量值(数据)的方法.然后用恰当的方法分析数据,以得到最可靠的结论.
在必修模块中,我们学习过关于抽样,用样本估计总体,线性回归等基础知识.本章中,我们将在此基础上,通过对典型案例的讨论,进一步讨论线性回归分析方法及其应用,并初步了解独立性检验的基本思想,认识统计方法在决策中的作用.
1.本章的主要内容有随机误差、残差、残差分析、列联表及独立性检验等概念.
2.用残差分析、判断线性回归模型的拟合效果.
3.建立回归模型的基本步骤.
4.通过对典型案例的研究,了解回归的基本思想、方法及初步应用.
5.通过对典型案例的研究,了解独立性检验的基本思想、方法及初步应用.
6.根据题目所给的列联表判断结论的可能性.
学法指导
1.在实际问题中,经常会面临需要推断的问题.比如研制出一种新药,需要推断此药是否有效?有人怀疑吸烟的人更易患肺癌,那么吸烟是否与患肺癌有关呢?等等.在对类似的问题作出推断时,我们不能仅凭主观意愿作出结论,需要通过试验来收集数据,并依据独立性检验的原理作出合理的推断.
2.统计方法是可能犯错误的:不管是回归分析还是独立性检验,得出的结论都可能犯错误,好的统计方法就是要尽量降低犯错误的概率,比如在推断吸烟与患肺癌是否有关时,通过收集数据、整理分析数据得到“吸烟与患肺癌有关”的结论,而且这个结论出错的概率在0.01以下.实际上,这是统计思维与确定性思维差异的反应.。
人教A版高中数学选修2-3全册同步练习及单元检测含答案

⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
高中数学 第三章 统计案例综合训练学案 新人教A版选修2-3-新人教A版高二选修2-3数学学案

第三章统计案例(综合训练1)一、学习要求1.通过典型案例的探究,了解统计学中对两个变量统计分析的思想方法和步骤;2.能综合运用概率、统计的知识解决有关问题。
二、问题探究■合作探究例1.【10新课标(文19)】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要40 30不需要160 270(1)估计该地区老年人中,需要志愿者提供帮助的老年人比例;(2)能否有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:0.050 0.010 0.0013.841 6.635 10.828。
【解析】(1)样本中,该地区的老年人需要志愿者提供帮助的有:403070+=(人),∴估计该地区老年人中,需要志愿者提供帮助的老年人比例为:707 50050=。
(2)根据表中数据,得到:,∵,∴有的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关。
(3)根据(2)的结论可知,地区的老年人是否需要志愿者提供帮助与性别有关,所以可按性别进行分层抽样调查,从而能更好地估计该地区的老年人中需要志愿者提供帮助的老年人的比例。
■自主探究1.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查,得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生 5女生10合计50已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为。
(Ⅰ)补充完整上面的列联表,并判断是否有的把握认为喜爱打篮球与性别有关?(Ⅱ)若采用分层抽样的方法从喜爱打篮球的学生中随机抽取3人,则男生和女生抽取的人数分别是多少?解:(Ⅰ)这50人中喜爱打篮球的人数为:(人)。
列联表补充如下:喜爱打篮球不喜爱打篮球合计男生20 5 25女生10 15 25合计30 20 50,∵,∴有的把握认为喜爱打篮球与性别有关。
人教版A版高中数学选修2-3:第三章 统计案例 复习课件

4
xi2 14,
4
xi zi 0 2 8 15 25,
4
i 1
zi2 46,
2
4x 9,
i 1
i 1
4
2
4z 36,
b
i 1 4
xi zi 4x z
xi 2
2
4x
25 18 7 14 9 5
i 1
a z bx 3 7 1.5 9 , z 7 x 9
a
y
i 1
bx.
i 1
例1(安徽卷)某地最近十年粮食需求量逐年上升,下 表是部分统计数据:
年份
2002 2004 2006 2008 2010
需求量(万吨) 236 246 257 276 286
(1)利用所给数据求年需求量与年份之间的回归直线
方程 yˆ=bx a ;(2)利用(1)中所求出的直线方程预测该
yi--y
0
1
3 -4
4
(y y)2
R2
1
i 1 4
(y y)2
i 1
0.1923
1
(1.5)2 02
0.52 12
3.52 (2.5) 32 (4)2
2
回归直线方程是y x 5
R2 0.1923
2
相关指数越大,越 接近于1,模拟的拟 合效果越好;相关 指数越小,拟合的 效果越差!
x 0123 y 2 4 16 32
(1)画出散点图;(2)试建立y与x之间的回归方程.
解:(1)作出散点图如右图所示: 32
y 2c2xc1 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修2-3统计案例2一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·宁夏银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,其线性回归直线方程是y ^=-0.7x +a ,则a 等于( )A .10.5B .5.15C .5.2D .5.252.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵轴上的截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的符号相反D .a 与r 的符号相反 3.有下列说法:①随机误差是引起预报值与真实值之间的误差的原因之一; ②残差平方和越小,预报精度越高;③在独立性检验中,通过二维条形图和三维柱形图可以粗略判断两个分类变量是否有关系.其中真命题的个数是( ) A .0 B .1 C .2D .34.有甲、乙两种钢材,从中各取等量样品检验它们的抗拉强度指标如下: 甲乙现要比较两种钢材哪一种抗拉强度较好,应考察哪项指标( ) A .期望与方差 B .正态分布 C .卡方K 2D .概率5.为调查中学生近视情况,测得某校男生150名中有80名近视,女生140名中有70名近视.在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( )A .期望与方差B .排列与组合C .独立性检验D .概率6.(2009·海南宁夏理,3)对变量x ,y 观测数据(x 1,y 1)(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u 1,v 1)(i =1,2,…,10),得散点图2.由这两个散点图可以判断.( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关7.某地2010年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:行业名称 计算机 机械 营销 物流 贸易 应聘人数2158302002501546767457065280行业名称 计算机 营销 机械 建筑 化工 招聘人数124620102935891157651670436则根据表中数据,就业形势一定是( )A .计算机行业好于化工行业B .建筑行业好于物流行业C .机械行业最紧张D .营销行业比贸易行业紧张8.工人月工资y (单位:元)关于劳动生产率x (单位:千元)的回归方程为y ^=650+80x ,下列说法中正确的个数是( )①劳动生产率为1000元时,工资约为730元;②劳动生产率提高1000元时,则工资约提高80元; ③劳动生产率提高1000元时,则工资约提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1 B .2 C .3D .49.对两个变量y 和x 进行回归分析,得到一组样本数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则下列说法中不正确的是( )A .由样本数据得到的回归方程为y ^=b ^x +a ^必过样本点的中心(x -,y -) B .残差平方和越小的模型,拟合的效果越好C .用相关指数R 2来刻画回归效果,R 2的值越小,说明模型的拟合效果越好D .若变量y 和x 之间的相关系数r =-0.9362,则变量y 和x 之间具有线性相关关系 10.判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是( ) A .三维柱形图 B .二维条形图 C .等高条形图 D .独立性检验11.在建立两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合得最好的模型为( )A .模型1的相关指数R 2为0.75B .模型2的相关指数R 2为0.90C .模型3的相关指数R 2为0.25D .模型4的相关指数R 2为0.55 12.下面是某市场农产品的调查表. 市场供应量表:) A .(2.3,2.6) B .(2.4,2.6) C .(2.6,2.8)D .(2.8,2.9)二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.当且仅当r 满足________时,数据点(x i ,y i )(i =1,2,…,n )在一条直线上.14.已知一个回归直线方程为y ^=1.5x +45,x ∈{1,7,5,13,19},则y =__________.15.对具有线性相关关系的变量x 和y ,测得一组数据如下表.若已求得它们的回归直线方程的斜率为6.5,则这条回归直线的方程为________.16.(2010·广东文,12)某市居民2005~2009年家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:出有__________线性相关关系.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)为了调查胃病是否与生活规律有关,调查某地540名40岁以上的人得结果如下:18.(本题满分12分)一台机器可以按各种不同的速度运转,其生产的物件有一些会有问题,每小时生产有问题物件的多寡,随机器运转的速度而变化,下面表格中的数据是几次试验的结果.(1)(2)若实际生产中所允许的每小时最大问题物件数为10,那么机器的速度不得超过多少转/秒?19.(本题满分12分)在从烟台—大连的某次航运中,海上出现恶劣气候.随机调查男、女乘客在船上晕船的情况如下表所示:20.(本题满分12分)有两个分类变量X与Y,其一组观测的2×2列联表如下表.其中a,15-a均为大于5的整数,则a取何值时有90%以上的把握认为“X与Y之间有关系”?21.(本题满分12分)某超市为了了解热茶销售与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对比表如下表:22.(本题满分14分)在一个文娱网络中,点击观看某个节目的累积人次和播放天数如下表:(1)画出散点图;(2)判断两变量之间是否具有线性相关关系,求回归直线方程是否有意义?选修2-3统计案例2 答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.[答案] D[解析]x=2.5,y=3.5,∵回归直线方程过定点(x,y),∴3.5=-0.7×2.5+a,∴a=5.25.故选D.2.[答案] A[解析]因为b>0时,两变量正相关,此时,r>0;b<0时,两变量负相关,此时r<0.3.[答案] D4.[答案] A5.[答案] C6.[答案] C[解析]本题主要考查了变量的相关知识,考查学生分析问题和解决问题的能力.用散点图可以判断变量x与y负相关,u与v正相关.7.[答案] B[解析]建筑行业的比值小于6528076516,物流行业的比值大于7457070436,故建筑好于物流.8.[答案] C[解析]代入方程计算可判断①②④正确.9.[答案] C[解析]R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C. 10.[答案] D[解析] 前三种方法只能直观地看出两个分类变量x 与y 是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.11. [答案] B[解析] 相关指数R 2的值越大,意味着残差平方和越小,也就是说模型的拟合效果越好,故选B.12. [答案] C[解析] 以横轴为单价,纵轴为市场供、需量,在同一坐标系中描点,用近似曲线观察可知选C.二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13. [答案] |r |=1[解析] 当数据点(x i ,y i )在一条直线上时,y 只受x 的影响,即数据点完全线性相关,此时|r |=1.14. [答案] 58.5[解析] 因为x =15(1+7+5+13+19)=9,且y =1.5x +45,所以y =1.5×9+45=58.5.本题易错之处是根据x 的值及y ^=1.5x +45求出y 的值再求y ,由y ^=1.5x +45求得的y 值不是原始数据,故错误.15. [答案] y ^=17.5+6.5x[解析] 由数据表得x =5,y =50,所以a ^=y -6.5x =17.5,即回归直线方程为y ^=17.5+6.5x .16.[答案] 13 正[解析] 中位数的定义的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数.由统计资料可以看出,当平均收入增多时,年平均支出也增多,因此两者之间具有正线性相关关系.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.[解析] k =540×(60×200-260×20)2320×220×80×460=2496960259072≈9.638∵9.638>6.635∴40岁以上的人患胃病与生活是否有规律有关,有99%的把握认为生活不规律的人易患胃病.18. [解析] (1)用x 表示机器速度,y 表示每小时生产有问题物件数,那么4个样本数据为:(8,5)、(12,8)、(14,9)、(16,11),则x -=12.5,y -=8.25.于是回归直线的斜率为b ^=∑x i y i -4x -y -∑x 2i -4x -2=25.535≈0.7286,a ^=y --b ^x -=-0.8575,所以所求的回归直线方程为y =0.7286x -0.8575.(2)根据公式y ^=0.7286x -0.8575,要使y ≤10,则就需要0.7286x -0.8575≤10,x ≤14.9019,即机器的旋转速度不能超过14.9019转/秒.19. [解析] 男人晕船所占比例为3283×100%=0.386,女人晕船所占比例为832×100%=0.25,虽然0.386远大于0.25,但我们不能用此判断在恶劣气候中航行,男人比女人更容易晕船,而应根据独立性检验进行分析.由公式得:K 2=115×(32×24-51×8)283×32×40×75≈1.870.因为1.870<2.706,所以我们没有充分的证据说晕船跟男女性别有关.20. [解析] 查表可知,要使有90%以上的把握认为X 与Y 之间有关系,则K 2>2.706, 而其观测值k =65[a (30+a )-(20-a )(15-a )]220×45×15×50=13(65a -300)260×45×50=13(13a -60)260×90,解k >2.706得a >7.19或a <2.04.又因为a >5且15-a >5,a ∈Z ,所以a =8,9,故当a 取8或9时有90%以上的把握认为“X 与Y 之间有关系”.21.[解析] 由表中数据画出散点图如图所示.由表中数据得x =16(26+18+13+10+4-1)≈11.67,y=16(20+24+34+38+50+64)≈38.33,∑i =16x i y i =26×20+18×24+13×34+10×38+4×50-1×64=1910,∑i =16x 2i =262+182+132+102+42+(-1)2=1286,∑i =16y 2i =202+242+342+382+502+642=10172,所以r ≈-0.97,因为|r |≈0.97>0.75,所以热茶销售量与气温之间具有很强的线性相关关系.22.[解析] (1)散点图如图所示.(2)由散点图知两变量线性相关,故求回归直线方程有意义.或借助科学计算器,完成下表中的有关计算. i 1 2 3 4 5 6 7 8 9 10 x i 1 2 3 4 5 6 7 8 9 10 y i 51 134 213 235 262 294 330 378 457 533 x i y i51268639940131017642310302441135330x =5.5,y =288.7,∑i =110x 2i =385,∑i =110y 2i =1020953,∑i =110x i y i =19749 r =19749-10×5.5×288.7(385-10×5.52)×(1020953-10×288.72)≈0.984>0.75.这说明累积人次与播放天数之间存在着线性相关关系,自然求回归直线方程有意义.。