关于数学思想方法的学习

合集下载

数学思想数学方法总结

数学思想数学方法总结

数学思想数学方法总结数学思想与数学方法是数学研究和解决问题的基础,它们相互影响、相互促进。

数学思想是指数学家对数学对象和数学问题的认识、思考和探索所形成的思维方式和观点,而数学方法则是指通过数学思想来解决数学问题的具体方式和步骤。

本文将总结一些常见的数学思想和方法,并阐述它们的重要性和应用。

一、抽象思维是数学的重要思想之一。

数学通过将具体的数学对象抽象成一般的数学结构,从而研究和解决更一般的问题。

抽象思维使得数学理论的适用范围更广,且能够通过类比和推广,从一个具体问题中得到一般结论。

例如,数学中的向量空间概念是从几何空间中的向量概念抽象而来的,它不仅可以应用于几何问题,还可以应用于代数、物理等领域。

二、归纳思维是数学证明的重要方法之一。

通过观察和推理,我们可以从特殊情况出发,逐步推广到一般情况,从而得到一个数学结论。

归纳思维使得数学证明更加简洁和具有普遍性。

例如,数学归纳法是一种常用的证明方法,通过证明当一个命题在某个特定条件下成立时,它在所有符合该条件的情况下也成立,从而得到一般情况的结论。

三、逻辑思维是数学推理的重要方法之一。

逻辑思维能够帮助我们分析问题的结构和关系,从而找到解决问题的合适方法和步骤。

逻辑思维使得数学推理更加准确和严谨。

例如,通过使用和运用各种逻辑规则和定理,我们可以推导出新的数学结论,并证明该结论的正确性。

四、建立模型是解决实际问题的重要数学方法之一。

数学可以将现实世界的问题抽象成数学模型,通过建立数学模型,分析问题的关键因素和规律,进而找到解决问题的有效方法。

模型建立和分析是数学方法的核心内容之一。

例如,经济学中的供求模型、物理学中的力学模型,都可以通过数学的方法进行建模分析,从而得到有关经济或物理问题的解决方案。

五、计算和推测是辅助数学问题解决的重要方法之一。

通过计算和推测,我们可以验证数学问题的正确性,也可以得到一些数学问题的近似解。

计算和推测是数学方法的实践和运用过程。

学好数学的方法及思想总结

学好数学的方法及思想总结

学好数学的方法及思想总结学习数学是一门训练思维的科学,它在培养人的逻辑思维能力、分析问题的能力、解决问题的能力等方面具有独特的价值。

下面我将介绍学好数学的方法及思想的总结。

首先,学好数学的方法之一是理论联系实际。

数学是一门抽象的学科,学习数学需要将其与实际问题联系起来,把抽象的概念与具体的应用联系在一起。

通过解决实际问题,学生可以更好地理解数学的概念和原理,提高数学学习的实际效果。

其次,学好数学的方法之二是由浅入深,由简单到复杂。

数学是一门渐进式的学科,学生在学习数学时应该从基础知识开始,逐步深入,循序渐进。

在学习过程中,应该先掌握基本的概念和方法,然后逐步学习更深入的知识和技巧。

通过有序的学习,可以循序渐进地提高数学能力。

第三,学好数学的方法之三是理解与记忆相结合。

数学是一门需要记忆知识的学科,但单纯的记忆是远远不够的,更重要的是要理解数学的概念和原理。

只有真正理解了数学的概念和原理,才能在解题过程中灵活运用,提高解题的效率和准确度。

第四,学好数学的方法之四是形象思维和抽象思维相结合。

数学是一门既有形象思维又有抽象思维的学科,通过形象思维可以更好地理解和记忆数学的概念和原理,而通过抽象思维可以将具体的问题抽象成数学模型、方程等形式,从而解决复杂的实际问题。

在学习数学时,要注意培养和发展形象思维和抽象思维,使二者相互促进,提高数学学习的效果。

第五,学好数学的方法之五是理论与实践相结合。

数学是一门理论和实践相结合的学科,只有在实践中才能真正理解和运用数学的概念和方法。

通过解决实际问题,学生可以将抽象的数学知识应用到具体的实际情境中,提高数学学习的实用性。

总之,学好数学的方法和思想是多方面的,以上只是其中的一部分,学生在学习数学时应综合运用这些方法和思想,不断提高数学的学习效果。

同时,要根据自身的学习特点和目标,灵活调整和优化学习方法,提高数学学习的效率和质量。

希望通过这些方法和思想的总结,能够帮助广大学生更好地学好数学,取得好的学习效果。

数学学习的八种思维方法

数学学习的八种思维方法

数学学习的八种思维方法数学学习的八种思维方法_数学学好数学的关键是公式的掌握,数学能让我们思考任何问题的时候都比较缜密,而不至于思绪紊乱。

还能使我们的脑子反映灵活,对突发事件的处理手段也更理性。

下面是小编为大家整理的数学学习的八种思维方法,希望能帮助到大家!数学学习的八种思维方法1.代数思想这是基本的数学思想之一,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!2.数形结合是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3.转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

5.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

6.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会(通用15篇)

数学思想方法理论学习的心得体会数学思想方法理论学习的心得体会(通用15篇)我们得到了一些心得体会以后,写心得体会是一个不错的选择,这么做可以让我们不断思考不断进步。

是不是无从下笔、没有头绪?以下是小编为大家收集的数学思想方法理论学习的心得体会,仅供参考,欢迎大家阅读。

数学思想方法理论学习的心得体会篇120xx年10月,我有幸成为田老师“省能手工作站”中的成员。

在田老师的带领下,我们团队积极开展活动,首先确立了第一个研讨主题—————“关于小学数学思想方法在课堂中的渗透”。

为了更好的开展课题研究活动,我们首先收集了许多资料、文献,进行基础理论学习,为后面的研究实践奠定良好的基础。

通过一次又一次的学习、交流,让我对数学思维能力培养的重要性和小学阶段常用的数学思维方法有了更新、更深刻的认识。

数学思维能力是数学能力的核心,是我们运用数学知识分析和解决问题能力的前提。

但数学思维能力的形成需要一个漫长过程,是离不开一节节数学课的积淀的。

我想,作为一名数学老师,在课堂上不仅仅要传授数学知识,更重要的是渗透数学思想方法,培养孩子创新独立能力,这样才能有助于学生形成良好的思维习惯和品质,使其终生受益。

一、注重独立思考当我们遇到新问题的时候,首先要给予学生独立思考判断的空间。

如:这个问题中已经给出的条件是什么,要干什么?需要用到哪些知识,怎么来解决比较合理等等。

当学生的思维判断有困难时,我们进行适当的点拨,或跟他们合作进行研究来解决。

在这样的过程中,学生的思维力会得到训练和提高。

二、强调实践操作在学生的学习过程中,我们要创设有利于质疑、探究的情境,让学生在独立学习的基础上学会与他人合作。

同时,引导学生主动参与、乐于探索、勤于动手、学思结合,把抽象的知识具体化、形象化,从中感受认识、理解、掌握知识,在解决问题的过程中提高思维能力。

三、提倡逆向思维课堂的40分钟是有限的,但学生的思维方向不能是单一的。

这就要求我们在教学设计是,充分研读教材、整合资源,同时把握顺向、逆向这两条思维主线,通过“观察、实验、比较、归纳、猜想、推理、反思”等活动,优化思维品质,提高思维能力,培养创新精神和实践能力。

常用的数学思想方法

常用的数学思想方法

常用的数学思想方法常用的数学思想方法大全在数学的学习过程中,有哪些常见的思想方法呢?下面是店铺网络整理的常见的数学思想方法以供大家学习。

常用的数学思想方法篇11、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。

初一数学教学中的数学思想与方法引导

初一数学教学中的数学思想与方法引导

初一数学教学中的数学思想与方法引导数学是一门理论与实践相结合的学科,是培养学生思维能力和解决问题能力的重要工具。

在初一数学教学中,如何引导学生正确理解数学思想和掌握数学方法成为关键。

本文将从数学思想的培养和数学方法的引导两个方面讨论初一数学教学的相关问题。

一、数学思想的培养数学思想的培养是初一数学教学中的核心任务之一。

数学思想的培养旨在培养学生抽象思维、逻辑思维和创造思维以及解决实际问题的能力。

以下是一些数学思想的培养方法:1. 提倡探究学习法首先,教师应该鼓励学生主动参与数学学习,并提倡探究学习法。

通过引导学生自主探索、发现问题、解决问题的过程,激发学生的求知欲和思考能力。

例如,在学习平行线性质时,可以设计一些探究性的问题,引导学生通过实际操作和观察得出结论。

2. 强调数学模型的建立与运用其次,教师应强调数学模型的建立与运用。

数学模型是数学思想的具体体现,通过建立数学模型,学生能够将虚拟的数学概念与实际生活相联系,提高数学思维的深度和广度。

例如,在学习比例问题时,可以引导学生将实际问题转化为数学模型,进而求解问题。

3. 鼓励学生运用多种解决方法最后,教师应鼓励学生运用多种解决方法。

数学思想的培养并不局限于一种解决方法,而是要培养学生运用不同方法解决问题的能力。

通过引导学生比较和评价不同解决方法的优缺点,培养学生的思维灵活性和多元思维。

二、数学方法的引导数学方法的引导是初一数学教学中的另一个重要方面。

数学方法的引导旨在帮助学生熟练掌握数学计算和解题方法,提高数学应用能力。

以下是一些数学方法的引导:1. 强调基本概念和基本方法的掌握首先,教师应强调学生对数学的基本概念和基本方法的掌握。

基本概念和基本方法是学习数学的基础,在学习进阶内容时起到桥梁作用。

例如,在学习分数运算时,学生必须熟练掌握分数的基本概念和基本运算方法,才能正确理解和应用后续的知识。

2. 提供适应性练习其次,教师应根据学生的具体情况,提供适应性的练习。

数学学习的思想方法

数学学习的思想方法

数学学习的思想方法摘要:数学思想方法是数学的精髓,只有掌握了数学的思想方法,才算真正掌握了数学。

在教学中渗透和运用这些数学思想方法,能增加学习的趣味性,激发学生的学习兴趣和学习的主动性;能启迪思维,发展学生的数学智能;有利于学生形成牢固、完善的认识结构。

关键词:数学思想方法转化数形结合集合对应归纳数学思想方法是数学的精髓,只有掌握了数学的思想方法,才算真正掌握了数学。

因而,在数学教学中,教师不仅要完成教学任务,更应该注重培养学生的数学思想方法。

在数学教学中,有些数学思想渗透于各类内容,所以称他们为基本思想方法,对这些基本的思想方法,在教学中要注重培养。

一、转化的思想方法数学问题的解决过程往往是一系列转化的过程。

转化是化繁为简、化难为易、化抽象为具体的有效手段,比如四边形的问题多半要转化为三角形问题来解决。

通过作辅助线把四边形分成两个三角形,2×180°=360°,从而求出了四边形的内角和。

二、数形结合的思想方法数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

“数形结合”可以借助简单的图形、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

例如,我们常用画线段图的方法来解答应用题,这是用图形来代替数量关系的一种方法。

我们又可以通过代数方法来研究几何图形的周长、面积、体积等,这些都体现了数形结合的思想。

三、集合的思想方法把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象,如数学上的点、数、式放在一起作为研究对象,这种思想就是集合思想。

集合思想作为一种思想,在小学数学中就有所体现。

在小学数学中,集合概念是通过画集合图的办法来渗透的。

如用圆圈图向学生直观的渗透集合概念。

让他们感知圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合。

数学思想方法范文

数学思想方法范文

数学思想方法范文数学是一门基于逻辑推理和证明的学科,其思想方法也是基于这一特点。

数学思想方法涵盖了数学的基本原则、解题思路和证明方法等方面。

下面将对数学思想方法进行详细的探讨。

首先,数学的思想方法是基于严密的逻辑推理的。

数学家们在进行数学研究时,需要遵循一定的逻辑规律和推理步骤。

数学的基本思想是建立在逻辑的基础上的,必须符合严格的逻辑关系。

数学家们通过逐步推理和演绎,将问题分解为一系列较为简单的部分,然后在这些部分上进行逻辑推理,最终得出问题的解答。

其次,数学的思想方法包括问题的抽象和建模。

数学家们在解决实际问题时,会首先将问题抽象成数学问题,然后通过建立适当的数学模型来描述问题的数学特征和关系。

这种思维方法可以将实际问题转化为更易于分析和求解的数学问题,从而更好地理解和解决问题。

另外,数学的思想方法还包括归纳和演绎两种基本推理方法。

归纳是指通过观察和实例的分析,概括出一般规律和定理。

数学家们通过对一系列特殊情况的研究和归纳总结,得出普遍定理的结论。

演绎则是指从已知条件出发,逐步推导出结论的过程。

演绎是数学证明的核心思想方法,它要求逻辑严密,每一步推理都必须有充分的理由和依据。

此外,数学思想方法还强调对数学对象的精确定义和性质的研究。

数学家们在研究一个数学对象时,首先需要对该对象进行准确的定义,并在此基础上研究其性质和特征。

精确定义是数学思想方法的基础,只有将问题和对象清晰地定义出来,才能进行正确的分析和推理。

最后,数学思想方法还强调创造性思维和发散思维。

数学是一门富于创造性的学科,数学家们在解决问题时需要发散思维,不断尝试各种可能的方法和思路。

创造性思维可以帮助数学家们发现隐藏在问题中的规律和特点,从而寻找到更优的解决方法。

总结起来,数学思想方法是一种基于逻辑推理和证明的思维方式。

它包括逻辑严密、问题的抽象与建模、归纳和演绎、精确定义和性质研究,以及创造性思维和发散思维等方面。

这些思想方法是数学家们研究和探索数学世界的重要工具,也是培养学生数学思维能力的基本途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于数学思想方法的学习
拉萨江苏中学杨凌冰科学家达尔文说:“关于方法的知识是最有用的知识。

”“方法”是人类生活经验的总结,不仅适用于科学研究,也适用于人类活动领域。

军事家把兵法作为生命,教师也应该把教学当作生命。

战争的失败,会使大量的人丧命,这是显而易见的。

而教学的失败,虽然不能一下子看出影响,但是最终也会造成人才的浪费。

作为中学的一门基础学科——数学,更应讲究其数学思想方法的教学,使学生在教学过程中体会数学思想,从而能够自觉的运用数学思想来解决日常中的一些问题。

数学思想方法的学习能够促成我们由对正确方法盲目的、不自觉的应用向有意识的、自觉的应用转化。

而数学思想方法的学习,贯穿于教学的始终。

因为某一种思想方法的领会和掌握,需经较长的时间,所以我们作为一个教师要长期的、有意识的、有目的的启发诱导学生。

但是,还要靠学生自己不断体会、挖掘、领悟、深化才能实现。

学习数学思想方法的过程是一种特殊的认识过程,其中包括感知、理解、自觉应用阶段。

一、数学思想方法学习的感知阶段
感知是数学思想方法学习的初始环节,因为数学教学内容中的每一章、每一节,它都反映了数学基础知识和数学思
想方法两者有机的结合,而在数学课上,由于学生能力的制约,对所感知的事物的强者容易引起注意,而对感知弱者就忽略了。

因此造成了学生往往只注意了知识的学习,死板的理解,而没有注意解决这些问题的数学思想和方法策略。

那么作为教师在教学过程中一定要注意让学生对一些数学思想方法引起重视。

例如:在排列、组合这一章中,有这样一道题:用0到9这10个数字,可以组成多少个没有重复数字的三位数?解决此题的关键是找到内隐的限制条件“百位不能为0”,因此可以采用:
(1) 特殊位置的数学思想方法:先排百位,再排十位、个位,1299A A ⨯=648。

(2) 特殊数字的数学思想方法:一类是不含数字0,一类是含数字0,32992A A +=648。

(3) 从一般到特殊的思想方法:①从任意10个元素
中取3个作排列310A ;②其中以0为排头的排列数为29A ,所以
32109A A -=648。

虽然,好多同学能够做出这道题,但是对这些数学思想方法未完全理解,他们只知道以后遇到这样的题按这样的方法做就可以了。

二、数学思想方法学习的理解阶段
理解是学生学习数学思想方法的一个中心环节,学生在接触较多的数学问题之后,就对某一些数学思想方法有些理
解,开始理解解题过程中所使用的探索方法和策略。

例如:在推导球的表面积公式时,学生就会自觉地再次运用推导球体积公式的方法:分割——求近似和——化为准确和,这一数学思想来解决这个问题,说明学生对数学思想由感知到理解了。

三、数学思想方法学习的自觉应用阶段
无论我们学习什么知识,其主要目的是利用这些解决实际问题。

学生对数学思想方法由感知到理解,再到灵活运用这一阶段是我们学习数学思想方法的目的意义所在。

此阶段要求学习者能根据题意,恰当运用某种思想方法进行探索,以求得问题解决。

例:长方体的全面积为9平方厘米,所有棱长之和为20厘米,则这个长方体的一条对角线的长等于多少?
当学生看到此题后,根据题意设长方题的棱长分别为a厘米、b厘米、c厘米。

2()9..........14()20..............2ab bc ac a b c ++=⎧⎨++=⎩
()() 然后企图单独求出a 、b 、 c ,再利用对角线
L=
求出L,但是发现两个方程中有三个未知
数,感觉条件不足,而题目中又不可能再列出第三个方程,然后学生就转化思想,采用其他思想方法,把“a+b+c”看成一个整体,对(2)式两边同时平方。

∴22222225
+++++=
a b c ab bc ac
∴22225916
++=-=
a b c

(厘米)
此时学生能够自觉主动地根据题目灵活地运用数学思想方法解决探索性的数学问题。

学生的这三个学习阶段,界限不是像楼梯一样分明,但是它们不可逾越、或替代、颠倒顺序。

由于个体的差异性,这三个阶段的时间由于学生不同而不同,教学的任务是促进前两个阶段的形成,尽快达到第三个阶段。

因此学生平时要多注意、多理解数学解题过程中的思想方法。

相关文档
最新文档