浅谈初中数学思想方法的教学
浅谈初中数学思想和方法的教学

学生 学 习惯于 的需 要 , 使学 生 在 这 知识 的 学 习 , 结概 括 之 中 不 断发 现 总 数学 知识 的新 天地 。激 发 出求 新 求 异思 想 , 开拓 新 的 思维 。 发展 自己的
教 师在 教学 中不 单单 要 解 放 学 生 的嘴 , 他 们 敢 闯 , 要 教 给学 生 创新 思维 , 使 还 培养 自已的创新 能力 。 提 问题 的方 法 , 他们 会 问 , 践 证 明 引导 学 生多 角 度 多方 面 的 思 考 问 使 实 面 向新 世 纪 的创新 教育 , 教师还 要具 备很 好 的创 新 素 质 。要有 强 烈 题 , 出 问题 , 培 养学 生 创新 能 力 的 好方 法 。如 在 教 学三 角 形 内 角 和 的敬 业 、 献进 取精 神 , 提 是 奉 以及 崇高 的职 业道 德 , 要有 广博 精 深 的文 化科 学 时 , 师 问学 生 : 三角 形 的 内角 和为 什 么要 是 为 1 0 , 不 定其 它 的 知识 索质 。要 有创 造性 的教 学方 法 , 教 “ 8度 而 这些 方法 表现 在语 言 、 导 问题 、 引 模 度 数 ? 学 生 说 : 角是 3 0度 。教 师 : , 为什 么 周 角 的度 数 定 为 3 0 型制 造 , 演能 力等 等 方 方 面面 上 能 激 发 学生 在 学 习 知 识 上 的 不 断 需 ” 周 6 好 那 6 表 度 ?沉 默 了一 段 时 间 , 学 生 说 : 3 0度 能 被 很 多 数 整 除 。 学 生 们 要 。采取 “ 有 “6 ” 授人 以鱼 , 如授 人 以渔” 不 的教 学策 略 。这 样 方 能很 好地 施 展 哦— — , 生们 在 教 学 中 既 学 会 了 提 问 问 题 , 增 长 了 知 识 , 拓 了 创 新 教育 。 学 又 开
新课标下浅谈初中数学思想和数学方法的教学

由于初 中学 生数 学知 识 比较贫 乏 , 抽 数 学 思 概 括 数 学 思 想 一 般 可 分 两 步 进 行 :
是 揭 示 数 学 思 想 的 内容 、 律 , 将 数 学 【】张 冠 乎 . 学 思 想 是 解 题 的 灵 魂 [】 中 规 即 4 数 J.
学 数 学 教 育初 中版 , 中学 数 学 教 育 杂 志
数 学 教 材 是 采 用 蕴 含 披 露 的 方 式 将 数 [ 3 】黄殊 悌 , 光 耀 . 谈 中 学 数 学 思 想 方 林 浅 学 思 想 溶 于 数 学 知识 体 系 中 , 因此 , 时 对 适
一
法 教 学 的 实施 方 案 【】福 建 中 学 数 学 , J.
20 04, 2. 1
1 对 数 学 思 想 方 法 的 认 识
理 念 , 映 出数 学 基 本 概 念 和 各 知 识 点 所 反 代 表 的 实 体 同抽 象 的 数 学 思 想 方法 之 间 的
中 。 如 概 念 的 形 成 过 程 、 论 的 推 导 过 诸 结
去 , 而 实 现 从 个 别 性 认 识 上 升 为 一 般 性 从
思 规 通 X- )+( ) 中学 数 学 知 识 结 构 涵 盖 了 辩 证 思 想 的 程 、 路 的探 索 过 程 、 律 的揭 示 过 程 等 等 认 识 。比 如 , 过 解 方 程 ( -2 x一2 一 都 蕴 藏 着 大 量 的 数 学 思 想 方 法 。 如 : 行 2 0 发 现 也 可 用 换 元 法 来 求 解 。 此 基 础 例 进 = , 在 同 底 数 幂 的 乘 法 教 学 时 , 数 的 运 算 特 例 上 推 广 也 可 用 换 元 法 求 解 。 此 概 括 出 换 从 由 从 中 , 象 概 括 出幂 的 一 般 运 算 性 质 。 让 学 元 法 可 以 将 复 杂 方 程 转 化 为 简 单 方 程 , 抽 先 而 认 识 到 化 归 思 想 是 对 换 元 法 的 高 度 概 后 将 底 数 一 般 化 : 算 a 接 着 再 将 指 数 括 , 可 进 一 步 认 识 到 数 学 思 想 是 数 学 的 计 a , 还
如何在初中数学教育中渗透数学思想方法

浅谈如何在初中数学教育中渗透数学思想方法数学思想方法对认知结构的发展起着重要作用,是重要的基础知识,是知识转化为能力的桥梁。
学习基本数学思想方法是形成和发展数学能力的基础,学生一旦掌握了应具备的数学思想方法,则在较高的层次上获得了终生受用的知识,使学生素质乃至科学素质得到提高,使他们继续学习有了坚实的基础。
一、挖掘蕴涵的数学思想初中数学教材中蕴涵的数学思想有:符号思想、数形结合思想、方程与函数思想、转化思想、统计思想、分类讨论思想、对应思想、集合思想、数学建模思想等。
二、注意不失时机地渗透例如,通过“字母能表示什么”的教学,让学生初步感受字母表示数的思想,在学了有理数的运算后,通过以下问题,发展学生对数和运算的意义的认识,进一步领会字母表示数的思想。
:计算(1+1/2+1/3+1/4)(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)(1/2+1/3+1/4)对此式的运算可引导学生从其四个算式的内在联系与区别入手,设1+1/2+1/3+1/4=x,则原式=x(x-4/5)-(x+1/5)(x-1)=1/5 字母的出现,使数学问题变得较为抽象。
但字母的使用,又使数的运算法则有了一般性的表示。
三、循序渐进,并螺旋上升要研究数学思想教学的原则和方法。
数学思想的教学除应遵循数学教学的一般原则外,要特别强调几点:(一)把握载体,提炼数学思想。
要以数学概念、定理和数学方法等知识为载体。
只有通过载体的教学把隐藏在载体中的数学思想提炼出来,才能使数学思想的教学落到实处。
例如,学生学了有理数运算后,在数学培优中给出以下练习:计算:(1)1+3+3的平方+3的立方…+3的20次方;1/21/41/81/161/32(2)把一个面积为1的正方形等分成两个面积为1/2的矩形,接着把面积为1/2的矩形等分成两个面积为1/4的矩形,再把面积为1/4的矩形等分成两个面积为1/8的矩形,如此进行下去,试利用图形揭示的规律计算:1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/256的值。
浅谈数学思想和方法在初中数学教学中的应用

浅谈数学思想和方法在初中数学教学中的应用作者:庞永泉来源:《试题与研究·教学论坛》2015年第02期初中数学教学思想和方法在教学中起着至关重要的作用。
现在就我在二十多年的教学工作中积累的部分看法总结如下:一、数学思想和数学方法的关系所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。
所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。
数学思想是数学的灵魂,数学方法是数学的行为。
运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程度时就产生了质的飞跃,从而上升为数学思想。
二、数学思想和方法的不同层次要求数学思想主要是让学生达到了解层次,包括数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。
这里需要说明的是,有些数学思想在课标中并没有明确提出来,教师有必要指出来,让学生了解。
数学方法有的只求了解,有的则要求理解或会运用。
要求了解的方法有:分类法、类比法、反证法等;要求理解或会运用的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法等。
在教学中,要认真把握好“了解”“理解”“会应用”这三个层次。
不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生可能会觉得一些数学思想、方法抽象难懂、高深莫测,从而导致他们失去信心,给教学带来困难。
如初中几何,教材明确提出“反证法”的方法,且说明了运用“反证法”的一般步骤,有的教师可能会觉得有讲头,而详加讲解,并要求学生学会;但《课程标准》只是把“反证法”定位在“了解”的层次上,对照起来,这样的教学就失“度”了,拔高了,其结果是花费了许多教学时间,但收效甚微。
三、采用适当的方式教数学思想和数学方法1.以数学知识为载体,渗透“思想”和“方法”数学知识包括两方面,一方面是概念、法则、性质、公式、公理、定理等,另一方面是指思想和方法,而思想和方法是“由其内容所反映出来”,因而应该将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。
初中数学中常见的数学思想方法见解

初中数学中常见的数学思想方法见解作为一门基础学科,数学在我们的生活和学习中扮演着非常重要的角色。
在初中数学学习中,学生需要掌握许多基本概念、基本原理和方法。
除了常见的数学知识点之外,还有一些重要的数学思想方法,如数学归纳法、逆向思维、抽象思维等。
本文将针对初中数学中常见的数学思想方法进行探讨,重点分析其原理和实际应用,并给出具体的数学题例子。
一、数学归纳法数学归纳法是初中数学中常见的数学思想方法之一,它是证明自然数的某些性质时常用的一种方法。
数学归纳法的基本思想是:证明一个性质对于所有自然数都成立,只需证明当自然数 n = 1 时成立,且当自然数 n 成立时,自然数 n+1 也成立,即可推出该性质对于所有自然数都成立。
例如,我们要证明一个常见的命题:对于任意自然数 n,1+2+3+...+n = n(n+1)/2。
首先当 n=1 时,左侧等式为 1,右侧等式为 1×(1+1)/2=1,两边相等。
再假设对于自然数 n 成立,即1+2+3+...+n = n(n+1)/2,那么将 n+1 代入等式,得到:1+2+3+...+(n+1) = [1+2+3+...+n] + (n+1)由假设可得左侧等式为 n(n+1)/2 + (n+1),经过化简得到:(n+1)(n+2)/2 = (n+1)(n+2)/2,由此证明了该命题对于任意自然数 n 成立。
数学归纳法还可以用于证明一些更复杂的命题,例如利用数学归纳法证明斐波那契数列的性质。
斐波那契数列是一个非常经典的数学问题,其定义为:对于自然数 n,斐波那契数列的第 n 项 F(n) 等于前两项的和,即 F(n) = F(n-1) + F(n-2),其中 F(1)=1,F(2)=1。
利用数学归纳法可以证明:对于任意自然数 n,斐波那契数列的第 n 项 F(n) 满足 F(n) = (1/√5){[(1+√5)/2]^n - [(1-√5)/2]^n}。
浅谈初中数学思想方法教学

律 ab b a的学 习 等 。 x=x
二 、 学 课 中应 渗 透 的数 学 思想 方 法 的 途径 数 1通 过 小 结和 复 习提 炼 概 括 数 学 思 想 方 法 。 由 于 同一 内 .
长 和 宽 相 等 的长 方 形 , 即正 方 形 是一 种 特 殊 的 长方 形 , 集合 思 的 面积 . 原 草 坪 的边 长 为 Y, 设 想 可 使 数 学与 逻 辑 更 趋 于 统一 .从 而 有 利 于数 学 理 论 与 应 用 的研 究 。利用 集 合思 想 解 决 问题 , 以 防止 在 分 类 过程 中 出现 可
2培 养提 出 问题 的 能 力。 学 中要 注 重 培 养学 生 提 出问题 . 教
3建模 思 想 方法 。 学 建 模思 想 方法 就 是 把 现实 世 界 中有 的 能 力 , 设 问 题 情 境 , 学 生 留下 思 考 的时 间和 空 间 , 励 . 数 创 给 鼓 待 解 决 或 未 解 决 的 问 题 , 数 学 的 角 度 发 现 问 题 、 出 问 题 、 学 生用 批 判 的眼 光 看 问题 .教 师 要鼓 励 学 生 在 学 习 和生 活 中 从 提 理 解 问题 . 过 转 化 过 程 . 结 为一 类 已经解 决 或 较 易 解 决 的 多 用批 判 的眼 光去 观 察 、 分析 问题 。培养 学 生从 各 个方 面 提 通 归 去
为 一种 科 学 语 言 。 描 述 世 界 的工 具 , 是 贮存 和交 流 信 息 的 是 也
浅谈初中教学数学中几种常见的思想方法

分 组 . 生 合作 交流 、 纳 总 结 , 出结 论— — 有 三 种情 况 : 学 归 得
一 一
在 研 究与 解 决 数学 问题 时 。要 根 据 数 学对 象 的 本 质 属 学 教 学 中应 正 确 使 用 , 握 新 旧 知 识 的 区别 与 联 系 。如 在 掌
绝 运算 法 则 时 . 完 性 , 对 象 区 分 为不 同种 类 , 后 进 行 分 析 , 到 解 决 问 题 学 习实 数 的相 反 数 、 对 值 概 念 和 运 算 律 、 将 然 达 的 目的 。 学 中 的分类 是 按 照 数学 对 象 的相 同 点 和 差异 点 , 全 可 以 通 过 复 习有 理 数 的 相 反 数 、 对 值 、 算 律 和 运 算 数 绝 运 将 数学 对 象 区分 为不 同种类 的思 想方 法 ,分 类 以 比较 为 基 法 则 类 比得 出 。 比 的对 象 间 可 能 会 表 现 出 差 异 。如 有 理 类
以 看 出其 共 性 : 含 有一 个 未 知数 且 未 知 数 的次 数 是 1 的 只 次
整 式 方 程 叫一 元 一 次 方 程 , 标 准 形 式 是 a + = f 、 为 已 其 ) b 0a b 【
例: 较 I+ I I +BI 试比 A B 与 AI I 的大小
解 : 、 同号时 , l+ -Af I f 当A B 有 A B『f B + 当A B 、异号时, f+ { l 有 A Bf A l Bl < + 当A B 、 中至少有一个为零时, I+ II +B 有 A B =All I
浅谈在初中数学教学中数学思想方法的渗透

b
一
以可根据方程 的特点 , 含 有 的未知项 由 ( 一1 所 以 将 z ) 换为 y这样原方程 就转化 为关于 Y的一元二 次方 程 , , 问题就简单化了. 解: Y 令 —z 1 则 2 一5 一 , +2 . —0
0
4 渗透 函数 与方 程思 想 。 养 学 生数 学 建模 能 培
力
函数 是 对 于 客 观 事 物 的 运 动 变 化 过 程 中 , 个 变 各 量 之 间 的相 依 关 系 , 用 函 数 形 式 把 这 种 数 量 关 系 表 运 示 出来 并 加 以研 究 , 而 使 问 题 得 到 解 决 . 函 数 的 概 从 与 念 有 必 然 联 系 的 概 念 是 方 程 . 数 能 反 映 的 变 化 在 某 函 特 定 状 态 时 ( 量 值 相 等 ) 以 由 一个 方 程 来 描 述 . 如 可
一
所 以 一3或 一÷ , 故原方程 的解为 z =3或 一
3
2
2 渗透数 形 结合 的思 想方法 , 高学 生 的数 形 提 转 化能 力和迁 移思 维 的能力
数 形 结 合 思 想 : 学 数 学 研 究 的 对 象 是 现 实 世 界 中 的空间形式与数量关系. 是数形 结合 的根本依 据. 这 数 形 结 合 , 是 把 抽 象 的数 学 符 号 、 母 与 直 观 的 图 形 结 就 字 合 , 抽 象 思 维 与形 象 思 维 相 结 合 . 使
一
1 渗 透化 归思 想 。 高学 生解 决 问题 的 能力 提
化 归 思 想 : 未 知 向 已知 转 化 , 一 种 重 要 的思 维 将 是 模 式 , 是 解 决 数 学 问题 的一 种 重 要 的 思 想 和 方 法 . 也 正 是 通 过 不 断 的 转化 , 不 熟 悉 的 问 题 , 规 范 的 问题 转 把 不 化 为 规 范 化 的 问 题 , 复 杂 的 问题 转 化 为 简 单 的 问题 . 把 例 1 解 方 程 : ( 一1 。 5 z 1 + 2 2 z ) 一 ( — ) —0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈初中数学思想方法的教学
摘要:开展数学思想方法教育应作为新课改中所必须把握的教学要求,它是数学教育教学本身的需要,是以人为本的教育理念下培养学生素养为目标的需要,是提高学生解题能力的需要。
初中数学教学中要注意在知识发生过程中渗透数学思想方法,在思维教学活动过程中挖掘数学思想方法,在问题解决过程中强化数学思想方法,并及时总结以逐步内化数学思想方法。
关键词:数学思想方法中学数学渗透挖掘强化内化
新的《课程标准》突出强调:‚在教学中,应当引导学生在学好概念的基础上掌握数学的规律(包括法则、性质、公式、公理、定理、数学思想和方法)。
‛因此,开展数学思想方法教育应作为新课改中所必须把握的教学要求。
中学数学知识结构涵盖了辩证思想的理念,反映出数学基本概念和各知识点所代表的实体同抽象的数学思想方法之间的相互关系。
数学实体内部各单元之间相互渗透和维系的关系,升华为具有普遍意义的一般规律,便形成相对的数学思想方法,即对数学知识整体性的理解。
数学思想方法确立后,便超越了具体的数学概念和内容,只以抽象的形式而存在,控制及调整具体结论的建立、联系和组织,并以其为指引将数学知识灵活地运用到一切适合的范畴中去解决问题。
数学思想方法不仅会对数学思维活动、数学审美活动起着指导作角,而且会对个体的世界观、方法论产生深刻影响,形成数学学习效果的广泛迁移,甚至包括从数学领域向非数学领域的迁移,实现思维能力和思想素质的飞跃。
那么,初中数学思想方法有哪些呢?
一、认识初中数学思想方法。
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。
‛数缺形时少直观,形无数时难入微‛是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。
在数学教学中,许多定律、定理及公式等常可以用图形来描述。
而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。
2、分类讨论的思想象区分为不同种类的数学思想。
对数学内容进行分类,可以降低学习难度,增强学习的针对性。
因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想。
3、转化思想思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。
因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。
4、函数的思想,这就要求我们教学中重视函数的思想方法的教学。
华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中。
因此,教学上要有意识、有计划、有目的地培养函数的思想方法。
二、数学思想方法教学的心理学意义。
美国心理学家布鲁纳认为,‚不论我们选教什么学科,务必使学生理解该学科的基本结构。
‛所谓基本结构就是指‚基本的、统一的观点,或者是一般的、基本的原理。
‛‚学习结构就是学习事物是怎样相互关联的。
‛数学思想与方法为数学学科的一般原理的重要组成部分。
下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。
第一,‚懂得基本原理使得学科更容易理解‛。
心理学认为‚由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。
‛当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。
下位学习所学知识‚具有足够的稳定性,有利于牢固地固定新学习的意义,‛即使新知识能够较顺利地纳入到学生已有的认知结构中去。
学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
第二,有利于记忆。
布鲁纳认为,‚除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。
‛‚学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。
高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。
由此可见,数学思想、方法作为数学学科的‚一般原理‛,在数学学习中是至关重要的。
第三,学习基本原理有利于‚原理和态度的迁移‛。
布鲁纳认为,‚这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。
‛曹才翰教授也认为,‚如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,‛‚只有概括的、巩固的和清晰的知识才能实现迁
移。
‛美国心理学家贾德通过实验证明,‚学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。
‛学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
第四,强调结构和原理的学习,‚能够缩挟‘高级’知识和‘初级’知识之间的间隙。
‛一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。
第十五中学
曲本麟。