不同油水分离技术优缺点对比 2014-11-3
油水分离技术

油水分离技术油水分离技术引言:油水分离技术是一种相对常见的技术,广泛应用于油田开采、石油化工、环境保护以及海上事故应急处理等领域。
随着工业化程度的加深,石油及其衍生产物的使用和排放导致了严重的环境污染问题。
在这样的背景下,油水分离技术的研发和应用变得尤为重要。
本文将介绍油水分离技术的原理、分类以及最新的研究进展。
一、油水分离技术的原理油水分离技术是将混合的含油水体分离为油相和水相的过程。
其基本原理是利用油和水的密度差异以及油水界面张力的不同来实现油水分离。
当混合液中油滴的尺寸大于一定范围时,由于油滴自身的浮力作用,可以使油滴浮起并聚集在液面上,从而实现油水分离。
二、油水分离技术的分类根据油水分离过程中所利用的力学原理和分离设备的不同,油水分离技术可以分为以下几种类型:1. 重力分离法:利用油水密度差异和地球引力,通过设置分离器或沉淀器使油水分离。
重力分离法通常适用于油滴尺寸较大、油水含量较高的情况。
2. 离心分离法:通过高速旋转设备产生的离心力使油水分离。
离心分离法适用于油滴尺寸较小、油水含量较低的情况,其分离效率较高。
3. 膜分离法:利用具有特殊孔径和表面性质的薄膜,通过渗透和阻挡等作用实现油水的分离。
膜分离法具有分离效率高、设备体积小的特点,广泛应用于水处理领域。
4. 溶剂萃取法:通过适当的溶剂与混合液进行接触,使油相和水相分别通过溶剂相沉淀,从而实现油水分离。
溶剂萃取法对油滴尺寸和油水含量的要求较高,但分离效果较好。
5. 超声波分离法:利用超声波的机械能将混合液中的油滴震散并使其浮起,从而实现油水分离。
超声波分离法对于处理小尺寸油滴和高浓度油水混合液具有良好的分离效果。
三、油水分离技术的研究进展随着对环境保护和资源回收利用的要求不断提高,油水分离技术也在不断创新和改进。
以下列举了最新的研究进展:1. 纳米材料在油水分离中的应用:纳米材料具有良好的选择性吸附和阻挡作用,研究者们通过制备纳米材料膜或纳米复合材料,提高了油水分离的效率和稳定性。
油水分离

ρ,ρ。一水及油的密度,kg/m2
g一重力加速度,m/s2
A 一浮升面积,m2
μ一水的粘度,Pa〃s Q一污水处理量,m3/s
从该定律公式中可以看到,要提高液粒的浮升效率 ,只有通过凝聚使颗粒聚合增加粒径来实现,油滴 粒径越大,成平方的影响油滴脱除效率。所以要破 乳聚结使油滴粗粒化。水油的密度差越大,则脱油
4)材质:在破乳聚结的过程中要用细的亲油的纤维 。纤维过细没有支承力,过粗对小液滴起不到破乳
作用。
亲油纤维材料可以把刚切开乳泡的油滴粘附聚结。
在分离的步骤中用超亲水性纤维材料,超亲水性纤
维形成了牢固的水膜当细微油粒随水流来到时,由
于牢固的水膜阻止了油滴的通过,起到了分离的效
果。副作用是增加了系统的阻力。
油在水中的形式可划分为五种物理形态:
游离态油(浮油):油的粒度≥100μm,,以连续
相的油膜漂浮在水面上,静置后能较快上浮。约占
污水中油类的60% 。
分散态油:油的粒度10—100μm的细微油滴,在水
中稳定性不高,静置一段时间后相互结合形成浮油
。
乳化态油:油的粒度小于10μm大部分是1—2μm。
这种水包油的乳化状态是很稳定的。 溶解态油:油的粒度比乳化态油滴还小,油在水中 的溶解度是很低的一般只有5-10 mg/L。是真正溶解 于水的油。
固体上的附着油:它是以固体为核而形成的,也就
是说水中包着固体颗粒上的油。
油水分离的重力理论基础:
油滴的浮升分离,对一定粒径的油滴来说,根据 Stokes(斯托克斯)定理,其脱除效率由下列公式 (适用于游离态油)表示: ηi=(ρ-ρ。)g di2 A/18 μ Q ηi一粒径为di的油滴脱除效率 di一油滴粒径,m
油水分离

油水分离装置一、简介:我公司根据多年来的技术经验研制开发了油水分离处理装置,该装置功能齐全,气浮、旋流为一体,把污水中原油分离出来,减少污水中含油量。
单台机组安装,工期短、调试简便、运行操作简单、运行费用低。
由于占地面积小,处理量在30m3/h以下的可以设计为移动撬装式以适应不同需求。
二、油水分离装置工作原理油水分离技术是通过高效旋流技术使油水快速分离,在含油污水从井内出来进入到油水分离设备经过气浮箱收油,使水中含油量减少。
污水经过污水泵进入到高效旋流罐利用旋流的原理把油分离出来。
达到油与污水的分离,收集的原油外输,污水进入设备进行处理。
此时的污水含油率在2%-5%左右。
1、设备组成⑴、污水提升系统⑵、旋流分离系统⑶、气浮系统⑷、自动控制系统2、工作原理⑴、污水提升收油系统包括:旋流罐、升压泵、流量计等。
工作原理:污水泵将污油池中的污水升压后进入旋流罐,通过高效旋流完成处理的全过程。
⑵、旋流分离系统:旋流罐。
工作原理:旋流器是靠两种不同液体的密度差,利用液体在旋流罐内高速旋转产生离心力将油滴从水中心分离出来,实现油水分离。
旋流除油器主要由分离锥、尾管和溢流口等部分组成。
含油污水在一定压力作用下从进水口延切线方向进入旋流器的内部进行高速旋转,经分离锥后因流道的截面的改变,使液流增速并形成螺旋流态,当液体进入尾锥后因流道截面的进一步缩小,旋流速度继续增加,在分离器内部形成一个稳定的离心力场,小油滴在锥管的中心区聚结成油芯,从溢流口排出,从而实现油水分离。
⑶、气浮系统:包括气浮箱、气浮泵。
工作原理:通过气浮泵向水中通入空气,产生微小的汽泡,使水中的细小悬浮物黏附在气泡上,随气泡一起上浮到水面,形成浮渣达到去除水中悬浮物的目的。
⑷、自动控制系统:全自动操作方式。
三、选用范围:1、采油厂污水池,解决污水中含油的问题。
2、压裂液、水井,把液体中的油分离出来进行下一步处理。
四、装置型号规格及主要技术参数1、基本参数进水压力:≤0.2MPa电压:380V使用温度:20~80摄氏度使用湿度;35%~85%处理量:15m3/h原水水质:悬浮物:0---10000mg/l含油:0---10000mg/l处理后水质:悬浮物:≤20mg/l ≤50mg/l ≤100mg/l含油:≤20mg/l ≤50mg/l ≤100mg/l(可以根据用户要求设计)基本形式:移动撬装式撬装外形尺寸: m× m× m设备重量:吨运行重量:吨2、用电功率油水分离装置用电功率3、运行功率: 15.4Kw五、工艺流程见附图六、油水分离装置的特点一是处理速度快可以直接进入设备内快速的处理收油,使油快速的从水中的脱离瞬间发生的,几乎不耗时间,因此,整个收油的处理时间就大大缩短。
【技术】多种餐厨垃圾油水分离技术、优缺点与展望

【技术】多种餐厨垃圾油水分离技术、优缺点与展望在餐厨垃圾中的含油污水(以下简称“餐饮废水”)中,油脂的成分和存在形式复杂,一般以悬浮油、分散油、乳化油、溶解油和含油固体废弃物等主要形式存在,其中最难处理的是高浓度呈乳化状的油脂。
目前除油技术可以归纳为4大类:物理分离(如重力分离技术、过滤分离技术、粗粒化分离技术、膜分离技术等)、化学分离(如絮凝沉淀分离技术、电解分离技术、酸化分离技术等)、物理化学分离(如浮选分离技术、吸附分离技术、磁吸附分离技术等)和生物化学分离(如活性污泥分离技术、生物膜分离技术等)。
1、物理分离1.1重力分离技术重力分离技术,作为物理除油技术中最简单且运用最广泛的一种方法,是利用油脂与水的密度差及互不相溶性来实现油珠、悬浮物与水的分层与分离。
重力分离技术常用的设备是隔油池,包括平流隔油池(API)、斜板隔油池(PPI)、波纹斜板隔油池(CPI)等类型。
离心分离技术是利用两相的密度差,通过高速旋转产生不同的离心力,使轻组分油和重组分水分布在旋转器壁面和中心,最终实现较为彻底的油水分离。
该技术所需的停留时间较短,也不需要过大的设备体积;但同时存在着阻力较大、能耗过高、维护不易等缺点。
离心分离技术常用的工作设备是水力旋流器。
物理分离技术的主要发展趋势是继续改进油水分离技术,并研制出新的分离设备。
张霖霖等采用重力分离技术对餐饮废水进行油水分离。
在先后经过除杂、破乳和吸附等一系列程序后,位于水面上层的油由滤油槽收集,底部的清水则通过下方的出口排放。
采用液位器与重力分离技术相结合的途径来进行油水分离。
此方法改善了分离后液位监测的自动化程度,并且降低了制造成本。
不足之处是只能除掉餐饮废水中的部分悬浮油和分散油,油水分离效果不明显,只能作为餐饮废水除油的前期处理手段。
采用斜板聚结和连通器原理来改进餐饮废水的重力分离技术。
装置中为了达到充分聚结、减小集油面积以及收集不同液位油层的目的,分别采用了斜板填充容器、倾斜箱盖和旋转式空心圆筒型集油器等改进技术,并最终通过实验证明了该装置分离效果的可行性。
16种油水分离技术简要对比

<10
适应性强,运行费用低
基建费用较高
氧化塘
溶解油
<10
投资少,效果好,管理方便
占地面积大
电解
乳化油>ຫໍສະໝຸດ 0除油率高,可连续操作耗电量大,装置复杂,消耗大量铝材,难大型化,电解过程有H2产生,易爆。
电解氧化
乳化油、溶解油
<10
效果好,适应性广,占地面积小。
耗电大,导电材料要求高
内电解
乳化油
<60
占地面积大,产生浮渣,浮油难处理
吸附
溶解油
<10
出水水质好,占地面积小
投资高,吸附剂再生困难
粗粒化
分散油、乳化油
>10
设备小型化,操作简单
滤料易堵
化学凝聚
乳化油
>10
效果较好,操作简单,工艺成熟
占地面积大,药剂用量多,污泥难处理
活性污泥
溶解油
<10
出水水质好,基建费用较低
进水要求高,操作费用高
生物膜
除油率高,装置占地面积小。
耗电量大,磁种要求高,造价高,工艺未成熟。
浓缩焚烧
乳化油、溶解油
<1
净化效率高
能耗大,处理成本高。
加热法
分散油、乳化油
>10
操作简便,适用于高浓度油中少量水分的去除。
能耗大
含油废水处理方法比较
方法名称
适用范围
去除粒径/μm
主要优点
主要缺点
重力分离
浮油、分散油
>60
处理量大,效果稳定,
运行费用低,管理方便
占地面积大
过滤
分散油、乳化油
油水分离

实验表明,制备出 的棉纤维对油水混合物 中油的的分离效率高达 97.8 %,且至少可以重 复使用30次。
在高温、高湿 度、强酸、强碱、 强腐蚀环境以及高 强度的机械力下仍 然保持稳定的超疏 水性和优良的油水 分离效率。
Xiong Li等对静电纺丝腈纶进行氨基化,然后用化学 电镀法在其表面镀一层银的纳米团簇进行固化,再对其表 面用十六硫醇进行改性,最终得到性能优异的油水分离材 料。
所得海绵对各种溶 剂及油都具有良好的吸 收性能,可以吸收其自 身重量163倍的油。
经过 1000 次 循环使用后,其 对油吸收率依然 保持在 90 %以上。
Jinlong Song等将不锈钢网用 氯化亚铜及盐酸的水溶液处理,去 离子水冲洗后得疏水 / 亲油的红色 网状物,将金属网状物浸渍在硬脂 酸的乙醇溶液中20分钟后,得到表 面改性的超疏水/超亲油金属网。
研究发现,这种材料对油有特别的选择性及很高的摄取 能力。可以吸收其质量20倍以上的油污,在简单的压榨、洗 涤后,海绵又会回到原来的形貌,再次用于油水分离。
Viet等将三聚氰胺海绵浸渍在十八烷基三氯硅烷的甲苯溶液 中制备出油的接触角为151º的超疏水/超亲油海绵。
Viet Hung Pham,James H. [J] .ACS Appl. Mater. Interfaces,2014, 6, 14181−14188
超疏水 / 超亲油材料 在油水分离中应用
随着石油工业和海上 油运的发展 , 海洋的石油 污染已经充分引起了公众 的重视,石油作为全球性 污染物正以大大超过其它 污染物的量进入海洋。 由此形成的大面积油 膜将阻隔正常的海气交换 过程,使气候发生异常, 也影响食物链的循环,从 而破坏海洋生态平衡,并 造成海洋及滩涂的严重污 染。
油水分离技术

油水分离技术关键词:油水分离, 真溶液分离,液、液分离论文摘要:油与水都是液体,因此把两种液体的混合物分离称为液、液分离技术。
最新研究证明,采用破乳工艺法可将油包水颗粒破开,使≤0.4~0.7μm颗粒中的水分离出来聚结成大颗粒后,进行5μm颗粒的油水分离。
新型油水分离滤材,采用美国生产的PTFE高分子溶液,并加入亲油添加剂,混合后均匀的烧结在不锈钢网板上,使滤材表面具有憎水亲油,但不粘油的效果(表面张力18.5m N/m)。
当油与滤材接触后能将细微颗粒的油滴聚合成大颗粒,随着水流的运行,慢慢上升到液体表面形成油层。
过滤器的介质面积,外形尺寸大小,可根据实际使用情况进行设计安装,一般每小时处理500~1000吨含90%浮油的产品,一. 关于油水分离的论述油与水都是液体,因此把两种液体的混合物分离称为液、液分离技术。
两者混合后变成真溶液,由于油水比重的差异,从表面上看油是浮在水上面,但由于氧化作用,油水混合液中会生成一部分羧基(-COOH)的有机酸物质,与水中的羟(-OH)有亲和作用,呈球状,俗称油包水或水包油,形成稳定的乳状液。
油中的水颗粒直径≤0.4~0.7μm时呈透明状,也叫真溶液。
而将真溶液中的溶解水分离出来的难度较大,过去一般多采用静置沉淀法、真空法、离心机加工法、加温蒸馏法等,但均不能达到工况要求。
其主要原因是受油表面张力的阻碍影响,油包水即使加温到100~115℃也不会气化,很难将细微油水颗粒中的水分离出来。
最新研究证明,采用破乳工艺法可将油包水颗粒破开,使≤0.4~0.7μm颗粒中的水分离出来聚结成大颗粒后,进行5μm颗粒的油水分离。
二. 最新油水分离的方法采用美国生产的PTFE高分子溶液,并加入亲油添加剂,混合后均匀的烧结在不锈钢网板上,使滤材表面具有憎水亲油,但不粘油的效果(表面张力18.5m N/m)。
当油与滤材接触后能将细微颗粒的油滴聚合成大颗粒,随着水流的运行,慢慢上升到液体表面形成油层。
油水分离

油水分离一含油废水中油的存在形式含油废水的来源很多,但一般都是水包油(O/W)的分散体系。
其分散的状态与油、乳化剂、水的性质及其生成条件有关,一般认为主要是以漂浮油、分散油、乳化油、溶解油等4种状态存在。
(1)漂浮油进入水体的油通常大部分以飘浮油形式存在,这种油的粒径较大,一般大于100微米,占含油量的70%~80%,静置后能较快上浮,铺展在污水表面形成油膜或油层连续相,用一般重力分离设备即能去除。
(2)分散油分散油以小油滴形状悬浮分散在污水中,油滴粒径在25~100微米之间。
当油表面存在电荷或受到机械外力时,油滴较为稳定,反之分散相的油滴则不稳定,静置一段时间后就会聚并成较大的油珠上浮到水面,这一状态的油也较易除去。
(3)乳化油由于表面活性剂的存在,使得原本是非极性憎水型的油滴变成了带负电荷的胶核。
由于极性的影响和表面能的作用,带负电荷油滴胶核吸附水中带正电荷离子或极性水分子形成胶体双电层结构。
这些油珠外面包有弹性的、有一定厚的双电层,与彼此所带的同性电荷相互排斥,阻止了油滴间相互碰撞并大,使油滴能长期稳定地存在于水中,油滴粒径在0.1~25微米之间,在水中呈乳浊状或乳化状。
(4)溶解油粒径在几个纳米以下的超细油滴,以分子状态或化学状态分散于水相中,油和水形成均相体系,非常稳定,用一般的物理方法无法去除。
但由于油在水中的溶解度很小(5~15 mg/L),所以在水中的比例仅约为0.5%。
二含油废水的处理方法含油废水的处理技术及分离的难易程度取决于油分在水中的存在形式及处理要求。
油水分离的原理主要有四种:重力法、吸附法、过滤法、粗粒化法。
Ⅰ、重力原理分离技术(1)重力法重力法是利用斯托克斯原理,利用油和水的密度差及油和水的不相溶性,在静止或流动状态下实现油珠、悬浮物与水分离。
分散在水中的油珠在浮力作用下缓慢上浮、分层,油珠上浮速度取决于油珠颗粒的大小,油与水的密度差,流动状态及流体的粘度。
重力分离法的特点是:能接受任何浓度的含油废水,同时除去大量的污油和悬浮固体等杂质,但仅通过重力法处理出水往往达不到排放标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离效果
分离效率
油脂富集难易程度
物料选择性
设备投入成本
设备运行成本
重力分离技术
一般——低
一般——低
易
无
低
低
聚结分离技术
良好
良好
易
固含量不得太高
一般
一般
离心分离技术
好
高
易
无
高
高
膜分离技术
好
高
难
低油、低固含量物料
高
一般
超声分离技术
好
一般——高
易
无
高
高
电解分离技术
好
低
难
无
高
高
絮凝沉淀分离技术
好
低——一般
难
低油、低固含量物料
一般
高
气浮分离技术
好
一般
易
无
低低Leabharlann 吸附分离技术好一般
难
低油、低固含量物料
一般
一般