电力系统潮流计算
第7章电力系统的潮流计算

7.2.1电力线路的电压降落及电压损耗
(1) 电压降落:电力线路的首末端、或电力网任意两节点间电压的向量差。
电压降落 的纵分量
dU 2 U 1 U 2 (S2/U 2 )2 Z
P2 jQ2 U 2
P2R Q2 U 2
(R jX)
X电 j压横P2降 分XU落量2Q的2R
U jU
U1 (U2 U)2 (U2 )2
Sb2
i1
l
i1 l
i1 l
电力系统分析 7.4.2两端供电网络的最终潮流分布计算
第7章 电力系统的潮流计算
(1)功率分点 求出了功率分布之后,有的负荷功率是由两个方向流入的,如图7.4.2中的C 点,这样的点叫功率分点,并用 △标出。
(2)两端供电网络的最终潮流分布计算
如果已知功率分点电压,由功率分点将电网解开为两个开式网络。从功率 分点分别由两侧逐段向电源端推算电压降落和功率损耗。。
4如果已知末端电压和负荷,从末端开始逐段交替计算电压降落和功率损耗。向 电源端推算功率分布和各节点电压。如果有变压器,还应进行电压归算。
电力系统分析
第7章 电力系统的潮流计算
7.4 简单闭式网络的潮流计算
A
A1
b
c
A2
b
c
Sb (a)环式网络
Sc 图 简单的闭式网络
Sb
Sc
(b)两端供电网络
电力系统分析 7.4.1两端供电网络的初步功率分布计算
*
*
*
*
Sb2
Za1 S1 (Za1 Z12 )S2
*
*
*
(Ua Ub)UN
*
*
*
Sb2,LD Scir
Za2 Z12 Zb2
电力系统潮流计算机算法

电力系统潮流计算机算法电力系统潮流计算是电力系统分析中最基本的一项计算,其目的是确定电力系统中各母线电压的幅值和相角、各元件中的功率以及整个系统的功率损耗等。
随着计算机技术的发展,电力系统潮流计算算法也在不断更新和完善。
以下是电力系统潮流计算的一些常用算法:1. 牛顿-拉夫逊法(Newton-Raphson Method):这是一种求解非线性方程组的方法,应用于电力系统潮流计算中。
该方法在多数情况下没有发散的危险,且收敛性较强,可以大大节约计算时间,因此得到了广泛的应用。
2. 快速迪科法(Fast Decoupled Method):这是一种高效的电力系统潮流计算方法,将电力系统分为几个子系统进行计算,从而提高了计算速度。
3. 最小二乘法(Least Squares Method):这是一种用于求解线性方程组的方法,通过最小化误差平方和来获得最优解。
在电力系统潮流计算中,可用于优化电压幅值和相角。
4. 遗传算法(Genetic Algorithm):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以解决一些复杂和非线性问题。
5. 粒子群优化算法(Particle Swarm Optimization):这是一种启发式优化算法,通过模拟鸟群觅食行为来寻找最优解。
在电力系统潮流计算中,可用于优化网络参数和运行条件。
6. 模拟退火算法(Simulated Annealing):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以在较大范围内寻找最优解。
7. 人工神经网络(Artificial Neural Network):这是一种模拟人脑神经网络的计算模型,可用于电力系统潮流计算。
通过训练神经网络,可以实现对电力系统中复杂非线性关系的建模和预测。
以上所述算法在电力系统潮流计算中起着重要作用,为电力系统运行、设计和优化提供了有力支持。
同时,随着计算机技术的不断发展,未来还将出现更多高效、精确的电力系统潮流计算算法。
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行分析中的重要环节。
它通过对电力系统中各节点的电压、相角以及功率等参数进行计算和分析,从而得出电力系统的稳态运行状态。
本文将从潮流计算的基本原理、计算方法、应用及其发展等方面进行阐述。
一、潮流计算的基本原理电力系统潮流计算的基本原理是基于潮流方程建立的。
潮流方程是一组非线性的方程,描述了电力系统中各节点的电压、相角以及功率之间的关系。
潮流计算的目的就是求解这组非线性方程,以确定电力系统的电压幅值、相角及有功、无功功率的分布情况。
二、潮流计算的基本方法潮流计算的基本方法主要有直接法、迭代法以及牛顿-拉夫逊法。
直接法是通过直接求解潮流方程得到电力系统的潮流状况,但对于大规模复杂的电力系统来说,直接法计算复杂度高。
迭代法是通过对电力系统的节点逐个进行迭代计算,直到满足预设的收敛条件。
牛顿-拉夫逊法是一种较为高效的迭代法,它通过近似潮流方程的雅可比矩阵,实现了计算的高效和稳定。
三、潮流计算的应用潮流计算在电力系统运行与规划中起着重要作用。
首先,潮流计算可以用于电力系统的稳态分析,确定电力系统在各种工况下的电压、相角等参数,以判断电力系统是否存在潮流拥挤、电压失调等问题。
其次,潮流计算还可以用于电力系统的优化调度,通过调整电力系统的发电机出力、负荷组织等参数,以改善电力系统的经济性和可靠性。
此外,潮流计算还可以用于电力系统规划,通过对电力系统进行潮流计算,可以为新建电源、输电线路以及变电站等设备的规划和选择提供科学依据。
四、潮流计算的发展随着电力系统的规模不断扩大和复杂度的提高,潮流计算技术也得到了迅速的发展。
传统的潮流计算方法在计算效率和计算精度上存在一定的局限性。
因此,近年来研究者提出了基于改进的迭代方法、高精度的求解算法以及并行计算等技术,以提高潮流计算的速度和准确性。
此外,随着可再生能源的不断融入电力系统,潮流计算还需要考虑多种能源的互联互通问题,这对潮流计算提出了新的挑战,需要进一步的研究和改进。
电力系统潮流计算

(k ) f ( x ) (k ) x f ( x ( k ) )
迭代过程的收敛判据为 f ( x ( k ) ) 1
x ( k ) 2
或
牛顿—拉夫逊法实质上就是切线法,是一种逐步线性化的 方法。牛顿法不仅用于求解单变量方程,它也是求解多变 量非线性方程的有效方法。
有
(0) (0) (0) (0) f1 ( x1(0) x1(0) , x2 x2 , , xn xn )0 (0) (0) (0) (0) f 2 ( x1(0) x1(0) , x2 x2 , , xn xn )0
(0) (0) (0) (0) f n ( x1(0) x1(0) , x2 x2 , , xn xn )0
牛顿-拉夫逊法潮流计算
一、牛顿—拉夫逊法的基本原理 单变量非线性方程: x=x(0)+ Δx(0) 即 f(x=x(0)+ Δx(0) ) = 0 f(x)=0 (11—29) 解的近似值x(0),它与真解的误差为Δx(0)
展成泰勒级数
f (x
(0)
x ) f ( x ) f ( x )x
f1 (0) xn )0 xn 0 f (0) 2 xn )0 xn 0
(0) f n ( x1(0) , x2 ,
写成矩阵形式:
f n f (0) x1(0) n x2 x1 0 x2 0 f1 x1 0 (0) (0) (0) f1 ( x1 , x2 , , xn ) f 2 (0) (0) (0) f 2 ( x1 , x2 , , xn ) x 1 0 (0) (0) (0) f ( x , x , , x n 1 2 n ) f n x1 0
电力系统的潮流计算

所需知识
(1)根据系统状况得到已知元件:网络、负荷、发电机 (2)电路理论:节点电流平衡方程 (3)非线性方程组的列写和求解
I YU
*
、U , 线性方程 待求量 I
2/104
,U S ,待求量S , 非线性方程 YU * U
潮流计算目的
确定运行方式、检查是否过压或过载、继电保护 整定依据、稳定计算初值、规划和经济运行分析基础
5/104
如图所示的简单电力系统
将电势源和阻抗的串联变换成电流源和 导纳的并联,得到的等值网络:
略去变压器的励磁功率和 线路电容,负荷用阻抗
y E I 1 10 1
y E I 4 40 4
以零电位为参考点,根据基尔霍夫电流 定律,得到 4个独立节点的电流平衡方 程:
y12 (V2 V1 ) y20 V2 y23 (V2 V3 ) y24 (V2 V4 ) 0 y23 (V3 V2 ) y24 (V3 V4 ) 0 y24 (V4 V2 ) y34 (V4 V3 ) y40 V4 I 4 y10 V1 y12 (V1 V2 ) I 1
第三章 电力系统的潮流计算
重点: 1、节点导纳矩阵的形成与修改; 2、节点的分类和功率方程; 3、修正方程的形成及雅克比矩阵的计算; 4、牛顿-拉夫逊法计算潮流分布的步骤。 5、P-Q分解法求解潮流
1/104
潮流计算 定义
根据给定的运行条件求取给定运行条件下的节点 电压和功率分布
意义
电力系统分析计算中最基本的一种:规划、Y22 y20 y23 y24 y12 ; Y33 y23 y34 ;Y44 y40 y24 y34 ; Y44 y40 y24 y34 ;Y12 Y21 y12 ; Y23 Y32 y23 ;Y24 Y42 y24 ; Y34 Y43 y34
电力系统潮流计算

电力系统潮流计算电力系统潮流计算是电力系统运行和安排分析的基础,也是现代电力系统科学研究的重要内容之一。
潮流计算主要是根据电力系统终端负荷和电力系统节点的运行状态,计算和分析不同状态下电力系统的各种相关物理量。
电力系统潮流计算的核心目的是为了确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,以此来达到系统的安全、稳定、可靠和经济的运行。
电力系统潮流计算是通过对电力系统运行特征和物理约束的有效分析,来检测b系统安全性、稳定性和经济性,以及发电、负荷、输电线路和变压器等设备状态的检测,从而有效帮助电力系统的运行和控制。
潮流计算可以用来分析电力系统拓扑结构、根据拓扑结构对系统故障进行性检查、以及分析电力系统的安全稳定性等。
电力系统潮流计算的计算方法主要有基于线性代数的潮流计算法、参数拟合法,基于全局优化的潮流计算法,基于负载拟合的潮流计算法等方法。
基于线性代数的潮流计算法主要是根据电力系统的线性约束和Kirchhoff定律来建立电力系统的各种物理参数的数学模型,以此来计算出电力系统的潮流和电压。
参数拟合法是根据电力系统各节点的历史数据来建立负荷模型,然后根据这些模型来拟合出电力系统的潮流和电压。
基于全局优化的潮流计算法则是利用模拟退火和遗传算法等全局优化算法,求解出电力系统的潮流和电压。
潮流计算结果主要应用在电力系统规划设计、电力网络安全分析、发电满足率分析、电网终端负荷预测、电力系统容量及负荷平衡等方面。
电力系统规划设计时,可以利用潮流计算结果,选择合适的设备、制定负荷安排方案,确定电力系统的最佳运行模式,以保证系统的安全可靠。
电力网安全分析中,可以利用潮流计算的结果,检测出电力系统的故障点,以及设备的运行情况,从而有效预防和应对电力系统的安全威胁。
综上所述,电力系统潮流计算是电力系统及其科学研究的重要内容,通过对电力系统的物理参数有效分析,可以帮助电力系统安全、可靠的运行。
潮流计算的核心目的是确定电力系统状态的最佳运行模式,及其电压、电流和功率的合理分配,并且利用潮流计算结果,可以在电力系统规划、安全分析、发电满足率分析、电网终端负荷预测等方面发挥作用。
电力系统分析潮流计算

电力系统分析潮流计算电力系统分析是对电力系统运行状态进行研究、分析和评估的一项重要工作。
其中,潮流计算是电力系统分析的一种重要方法,用于计算电力系统中各节点的电压、功率和电流等参数。
本文将详细介绍电力系统潮流计算的原理、方法和应用。
一、电力系统潮流计算的原理电力系统潮流计算是基于潮流方程的求解,潮流方程是描述电力系统各节点电压和相角之间的关系的一组非线性方程。
潮流方程的基本原理是基于电力系统的等效导纳矩阵和节点电压相位差的关系,通过潮流计算可以得到电力系统各节点的电压和功率等参数。
电力系统潮流方程的一般形式如下:\begin{align*}P_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\cos(\theta_i-\theta_j)+B_{ij}\sin(\theta_i-\theta_j))) \\Q_i &= \sum_{j=1}^{n}(V_iV_j(G_{ij}\sin(\theta_i-\theta_j)-B_{ij}\cos(\theta_i-\theta_j)))\end{align*}其中,$n$为节点数,$P_i$和$Q_i$表示第i个节点的有功功率和无功功率。
$V_i$和$\theta_i$表示第i个节点的电压和相角。
$G_{ij}$和$B_{ij}$表示节点i和节点j之间的等效导纳。
二、电力系统潮流计算的方法电力系统潮流计算的方法主要包括直接法、迭代法和牛顿-拉夫逊法等。
1.直接法:直接法是一种适用于小规模电力系统的潮流计算方法,它通过直接求解潮流方程来计算电力系统的潮流。
直接法的计算速度快,但对系统规模有一定的限制。
2.迭代法:迭代法是一种常用的潮流计算方法,通常使用高尔顿法或牛顿法。
迭代法通过迭代求解潮流方程来计算电力系统的潮流。
迭代法相对于直接法来说,可以适用于大规模电力系统,但计算时间较长。
3.牛顿-拉夫逊法:牛顿-拉夫逊法是一种高效的潮流计算方法,它通过求解潮流方程的雅可比矩阵来进行迭代计算,可以有效地提高计算速度。
电力系统的潮流计算

V1
有效值:
V1、V2间的相位角
2019/4/26
V2= (V1-V1)2 (V1)2
arctg
V1
6
V1-V1
电力系统分析 第十一章 电力系统的潮流计算
注意:
P '' R Q '' X V2 V2 P'' X Q '' R V2 V2
≠
V1
P ''2 Q ''2 S = 2 ( R jX ) S T T V 2
S = S S T S 0
∝与负荷2
2019/4/26
与负荷无关,∝V2
13
电力系统分析 第十一章 电力系统的潮流计算
三 、实际计算 1. 已知末端功率与电压,求另一端功率和电压
S = P jQ S 2 2 2 LD
2019/4/26
电力系统分析 第十一章 电力系统的潮流计算
15
第十一章 电力系统潮流计算
定义 根据给定的运行条件求取给定运行条件下的节点 电压和功率分布 意义 电力系统分析计算中最基本的一种:规划、扩建、 运行方式安排
2019/4/26
电力系统分析 第十一章 电力系统的潮流计算
16
所需知识
V V V A G 1 2
当输电线路不长,首末两端的相角差不大时,近似有:
V1
δ O
B
AG≈AD
A
V2
D
G
V V 1 2 百分数表示: V% 100 V N
2019/4/26
电力系统分析 第十一章 电力系统的潮流计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
B
V
V 2 A
V2 jxI
V2
D
V1
V2 V2 V2
P Q V22
2 2 2 2
2
2
RI
a tan V2 V2 V2
S
V2 RI cos 2 XI sin 2 —纵分量
R jX
Sc S3 ;S2 S2 SL2 S1 Sb S2 ;S1 S1 SL1 S2
2 2 2 P32 Q3 2 P22 Q2 P Q S L3 ( R3 jX 3 ) SL2 ( R2 jX 2 ) SL1 1 2 1 ( R1 jX 1 ) 2 2 VN VN VN
V V j V V 1 2 2 2
P R Q2 X P X Q2 R V2 2 ; V2 2 V2 V2
应用(1):已知元件末端电压和 功率,求首端电压和功率
2
I
V 1
R jX
V 2
I
1
P 1 jQ1
P2 jQ2
RI V
网络元件的电压降落和功率损耗 配电网潮流算法:前推回代法
二、简单闭式网络的功率分布计算
环网功率分布:循环电势的概念 环网潮流控制
三、复杂电力系统潮流计算
潮流计算的数学模型 牛顿-拉夫逊法、 P-Q分解法、最小化潮流算法
四、潮流调整需要注意的问题
网络元件的电压降落和功率损耗
网络元件的电压降落
( k 1) 2
V 1
R jX
V 2
I
2 P jQ 2 2
1
P 1 jQ1
P22 Q22 S R jX 2 V2
回代
P 1 jQ1 P 2 jQ2 S
P 1 R Q1 X V1 P 1 X Q1 R V1
,
( k 1) 2
前推
V1
step4:如果 V2( k 1) V2( k ) ,或k kmax ,计算结束,否则 令k k 1,转step2
V1
V2( k 1)
V1 V1
2
V1
2
2( k 1) arctg V1 V1 V1
V j( k 1) ( k ) xij ( k 1) Pij( k ) rij Qij Vi ( k 1) V i ( k ) rij Pij( k ) xij Qij ( k 1) V i
1 2 Sc S LDc jQB2 jQB3 PLDc j QLDc B2 B3 VN Pc jQc 2 1 2 Sd SLDd jQB3 PLDd j QLDd B3VN Pd jQd 2
P 2 Q 2 ST R jX 2 V1 S0 V12 GT jBT P0 j I0 % SN 100
S1 S S0;S 2 S ST
开式网络的电压和功率分布计算
Review:网络元件的电压降落与功率损耗计算 应用(1):已知V2和 P2+jQ2,求V1和P1+jQ1;
开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤 Step1:制定一相等值电路; Step2:计算运算负荷Sb,Sc ,Sd ; Step3:回代计算:设定各节点电压初值(VN),从末端d节点开始,计算各支 路功率损耗和首末端功率,直到A点;
Sd;S3 S3 S L3 S3
max Vi ( k 1) Vi ( k ) ,i b, c, d
开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤 Step2:计算运算负荷Sb,Sc ,Sd ;近似假定各节点电压为VN,并联支路充电 功率计入相应节点的负荷,得到运算负荷
1 2 S b S LDb jQB1 jQB2 PLDb jQLDb B1 B2 VN Pb jQb 2
actan V1 V1 V1 S
S
R jX
R jX
开式网络的电压和功率分布计算
Review:网络元件的电压降落与功率损耗计算 应用(3):已知V1和P2+jQ2,求V2和P1+jQ1; 前推回代法
Step1:设定电压初值、迭代次数,V2(0) VN,kmax,k 0 Step2:令V2 V2( k ),已知V2 , P2 jQ2 , 计算S , S1 S2 S Step3:已知V1 , S1 P 1 jQ1 , 计算V1 , V1 , V
开式网络的电压和功率分布计算
复杂开式网络潮流的计算机算法 Step2:支路顺序编号(消去叶节点法,分层 方法,等) Step3:回代计算:按照支路编号顺序,计算 各支路功率损耗和首末端功率;
( k ) S (j k ) Sij S
(k ) ij mN j
c A 7 b 6 5 e 4 h
V VN 电压偏移(%) 100 VN
网络元件的电压降落和功率损耗
输电线路功率损耗 变压器功率损耗
P 2 Q 2 S L R jX 2 V1 P 2 Q2 S L R jX 2 V2 V12 B V22 B jQB1 j ;jQB 2 j 2 2
2
V2
V1
V1
V2
V2 V2 V2 actan V2 V2 V2
P Q V22
2 2 2 2
V1 V1
P Q V12
2 1 2 1
V1
2
一节点电压和功 率; 采用线电压(单 位kV)和三相功 率(单位MVA)
Huazhong University of Science and Technology
电力系统潮流计算
张步涵
E-mail:zhangbuhan@
Huazhong University of Science and Technology
一、开式网络的电压和功率分布计算
i
rij jxij Sj
p q
支路功率和电压计算
开式网络的电压和功率分布计算
复杂开式网络潮流计算的前推回代算法 Step2:支路顺序编号(消去叶节点法,分层 方法,等) Step3:回代计算:按照支路编号顺序,计算 各支路功率损耗和首末端功率; Step4:前推计算:从A节点开始,逆着支路 编号顺序,计算各支路电压降和节点电压;
Vb (VA VAb )2 ( VAb )2 Vc (Vb Vbc )2 ( Vbc ) 2 Vd (Vc Vcd )2 ( Vcd ) 2
Step5:利用Step4计算得到的节点电压Vb,Vc ,Vd ,重复Step3、Step4,直到精 度满足要求为止。
应用(2):已知元件首端电压和 功率,求末端电压和功率
V1
I jx
V1
V 2
V
V2
V1 V1
2
V1
2
1
arctg V1 V1 V1
2 2 P Q S 1 2 1 R jX V1
I
V1 RI cos 1 XI sin 1 —纵分量
V1V2 sin X V1V2 V22 Q2 cos X X P2
P 1 ?自行推导 Q1 ?自行推导
网络元件的电压降落和功率损耗
电压损耗
V 1 B
Байду номын сангаас
输电线路功率损耗
V 2 A
D V 2
G
V V1 V2 纵分量
电压偏移
P 2 Q 2 S L R jX 2 V1 P 2 Q2 S L R jX 2 V2 V12 B V22 B jQB1 j ;jQB 2 j 2 2
V2 XI cos 2 RI sin 2 —横分量
网络元件的电压降落和功率损耗
网络元件的电压降落
V V j V V 2 1 1 1 V 1
R jX
V 2
I
1
P 1 jQ1
P2 jQ2
RI
V 1
2
P R Q1 X P X Q1 R V1 1 ; V1 1 V1 V1
Step4:前推计算:从A节点开始,计算各各支路电压降落和节点电压; Step5:利用Step4计算得到的节点电压Vb,Vc ,Vd ,重复Step3、Step4,直到精 度满足要求为止。
开式网络的电压和功率分布计算
开式网络的电压和功率分布计算步骤 Step1:制定一相等值电路; Step2:计算运算负荷Sb,Sc ,Sd ; Step3:回代计算:设定各节点电压初值(VN),从末端d节点开始,计算各支 路功率损耗和首末端功率,直到A点; Step4:前推计算:从A节点开始,计算各各支路电压降落和节点电压;
V1 XI cos 1 RI sin 1 —横分量
网络元件的电压降落和功率损耗
电压降落的两种分解方法的区别
V 1
V 1
V 2
V1
P P X Q1 R 1 R Q1 X ; V1 1 V1 V1
V 1
V 2
V V 1 2
V 2
V2 P2 R Q2 X V2 P2 X Q2 R V2
2 2
应用(2):已知V1和 P1+jQ1,求V2和P2+jQ2