江苏省2020年中考数学模拟试题(含答案)

合集下载

2020年江苏省常州市中考数学模拟考试试卷附解析

2020年江苏省常州市中考数学模拟考试试卷附解析

2020年江苏省常州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠ 2. 在数①-32;②5. 8;③3178;④-0. 31;⑤0;⑥ 48;⑦2;⑧35-中,负分数的个数有( )A .0 个B .1 个C .2 个D .3 个3.在数轴上,表示数①-3;②2. 6;③35-;④0;⑤143;⑥223-;⑦- 1 的点中. 在原点右边的点有( )A .2 个B .3 个C .4 个D .5 个4.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,经过t 小时两车相距50千米,则t 的值是( )A .2或2.5B .2或10C .10或12.5D .2或12.55.在NBA 的篮球队员中,有两位出色的中国球员,他们是姚明和易建联. 经调查,七(3)班44位学生中,喜欢姚明的有25人,喜欢易建联的有20人,两个都不喜欢的有8人,那么两个都喜欢的有( )人A . 9B . 11C . 13D . 8 6.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 7.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S 1、S 2、S 3、S 4分别表示四个扇形的面积,如果S 1:S 2:S 3:S 4=4:3:2:1,那么参加数学活动小组的同学有( )A .24人B .18人C .12人D .6人8.从一 副扑克牌(除去大小王)中任取一张,抽到的可能性较小的是( )A .红桃B .6C .黑桃8D .梅花6或8 9.抛物线223y x x =--的顶点坐标是( )A .(-1,-4)B .(3,0)C .(2,-3)D .(1,-4) 10.在□ABCD 中∠A=50°,则∠A 的邻角∠D 的度数为( ) A .40° B .50° C .130°D .不能确定 11.如图,0是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是 OA ,OC 的中点.下列结论:①ADE BOD S S ∆∆=;②四边形 BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO. 其中正确的结论有( )A .1个B .2个C .3个D . 4个12.如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长为1 cm ,则这个圆锥的底面半径为( )A .22cmB .2cmC .22cmD .21cm 13.如图中,属于相似形的是( )A .①和②,④和⑥B .②和③,⑧和⑨C .④和⑤,⑦和⑨D .①和③,⑧和⑨ 14.二次函数2y ax bx c =++的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A .0ab <B .0bc <C .240b ac ->D .0a b c ++< A O B15.下列各种现象中不属于中心投影现象是()A.民间艺人表演的皮影戏B.在日常教学过程中教师所采用投影仪的图象展示C.人们周末去电影院所欣赏的精彩电影D.在皎洁的月光下低头看到的树影16.下列长度的三条线段,能组成三角形的是()A.1cm,2 cm,3cm B.2cm,3 cm,6 cmC.4cm,6 cm,8cm D.5cm,6 cm,12cm二、填空题17.已知数据2,3,4,5,6,x的平均数是4,则x的值是.18.某种药品的说明书贴有如下标签,则一次服用这种药品的剂量范围是 mg~ mg.19.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 .20.如图,,已知OA=OB,OC=OD,D和BC相交于点E,则图中全等三角形有对.21.一个两位数,个位上的数字为a,十位上的数字比个位上的数字大2,用代数式表示这个两位数为 .三、解答题22.将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.(2)摸出的两个球上数字之和为多少时的概率最大?23.如图,在Rt △ABC 中,∠C= 90°,AC=5,BC=12,求B 的正弦、余弦和正切的值.24.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.25.如图,1l 反映了某个体服装老板的销售收入与销售量之间的关系,2l 反映了该老板的销售成本与销售量的关系,根据图象回答下列问题:(1)分别求出1l 、2l 对应的函数解析式(不要求写出自变量的取值范围);(2)当销售量为30件时,销售收入为 元,销售成本为 元;(3)当销售量为60件时,销售收入为 元,销售成本为 元;(4)当销售量为 件时,销售收入等于销售成本;(5)当销售量 件时,该老板赢利.当销售量 件时.该老板亏本.26.如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D 使 BD=BA ,延长 BC 至E 使 CE=CA. 连结 AD 、AE ,求△ADE 各内角的度数.27.星期六,小华同学到新华书店买了一套古典小说《水浒传》,共有上、中、下三册,回家后随手将三本书放在书架同一层上,问:(1)共有多少种不同的放法7 请画树状图分析;(2)求出按上、中、下顺序摆放的概率.28.A,B是平面上的两个固定点,它们之间的距离为5 cm,请你在平面上找一点C(1)要使点C到A,B两点的距离之和等于5 cm ,则C点在什么位置?(2)要使点C到A,B两点的距离之和大于5 cm ,则点C在什么位置?(3)能使点C到A,B两点的距离之和小于5 cm吗?为什么?29.2008年6月1日北京奥运圣火在宜昌传递,圣火传递路线分为两段,其中在市区的传递路程为700(a-1)米,三峡坝区的传递路程为(881a+2309)米.设圣火在宜昌的传递总路程为s米.(1)用含a的代数式表示s;(2)已知a=11,求s的值.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.A5.A6.C7.B8.C9.D10.C11.C12.C13.D14.D15.D16.C二、填空题17.418.15,2019.312312126x x -=+20. 421.1120a +三、解答题22.解:(1)图略,摸出的两个球上数字之和为5的概率为16. (2)摸出的两个球上数字之和为6时概率最大. 23.5sin 13AC B AB ==,1213BC sB AB ∞==,5tan 12AC B BC == 24.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)25.(1)1l :100t x =,2l :751000t x =+;(2)3000,3250;(3)6000,5500;(4)40;(5)大于40,小于4026.∠D=25°,∠E=35°,∠DAF=120°27.(1)共有 6种不同摆放顺序 (2)1 628.(1)点C在线段AB上;(2)点C在线段AB外;(3)不能,因为两点之间线段最短(为5 cm) 29.解:(1)s=700(a-1)+(881a+2309)=1581a+1609.(2)a=11时,s=1581a+1609=1 581×11 +1 609=19000.30.设此商品每一个售价为x元,每日利润S最大.当x>18时,S=[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S=[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大.。

2020年江苏省中考数学全优模拟试卷附解析

2020年江苏省中考数学全优模拟试卷附解析

2020年江苏省中考数学全优模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有一个 1 万人的小镇,随机调查 3000 人,其中 450 人看中央电视台的晚间新闻. 在该镇随便问一个,他(她)看中央电视台晚间新闻的概率是( )A.A .13000B .320C .0D .12. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( )A .45B .89C .910D .1920 3.一个多边形的内角和与外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 4.“a ≥b ”的反面是( ) A .a<b B .a ≠b C .a ≤b D .a=b 或a<b5.下列计算正确的是( ) A .164=±B .32221-=C .2464÷=D .2632=⋅ 6.若关于x 的方程652m x =-的根为 1,则m 等于( ) A . 1B . 8C .18D . 42 7.下列从左到右的变形,属于因式分解的是( ) A .2(3)(2)6x x x x +-=+-B .1()1ax ay a x y --=--C .2323824a b a b =⋅D .24(2)(2)x x x -=+-8.下列图案,能通过某基本图形旋转得到,但不能通过平移得到的是 ( )9.单项式223a b -的系数和次数分别是( ) A .23,2 B .23,3 C .23-,2 D .23-,3 10. 在 0.25,14-,13-,0,3,+4,-3 这几个数中,互为相反数的有( )A.0 对B.1 对C.2 对D. 3 对二、填空题11.在半径等于 15 cm 的⊙O中,有两条长分别为 18 cm和 24 cm 的平行弦,这两条弦之间的距离是 cm.12.两个相似三角形周长的比为2:3,则其对应的面积比为___________.13.如图,∠DCE是平行四边形ABCD的一个外角,且∠DCE=500,则∠A的度数是.14.如图,AC、BC被AB所截的同旁内角是.15.如图所示,将两块相同的直角三角板的直角顶点重合放在一起,若∠AOD=110°,则∠BOC= .请你用符号表示图中的全等三角形:.16.轴对称图形和轴对称的区别在于前者是对个图形而言的,而后者是对个图形而言的.17.某校共有教师100名,现按职称(高级、一级、其它职称)制成统计图,则其它职称的教师占%.三、解答题18.如图所示,甲站在墙前,乙在墙后,为了不破甲看到,请你在图中画出乙的活动区域. 19.如图,为3种不同的树木,在阳光下檠天树留下了它的影子.(1)请你画出同一时刻红果树和白杨树的影子.(用线段表示树影)(2)若要白杨树的影子落在檠天树的影子内,则檠天树至少有多高?(用线段表示檠天树的高度)20.试判断下列各命题的真假,对于真命题给出证明,对于假命题举反例说明.命题l:一组对边平行,另一组对边相等的四边形是平行四边形;命题2:一组对边平行,一组对角相等的四边形是平行四边形.21.解下列不等式组,并把臃在轴上表示出来.(1)122(1)1x xx x-≤⎧⎨++>⎩(2)132(2) 2165()75xxx x +⎧->-⎪⎪⎨⎪--≥-⎪⎩22.已知3(21)23x x b-=-的解不大于2,求b的取值范围.53b≥-23.把下列各式分解因式:(1)22a b ab -;(2)23296x y z xyz -; (3)24499a a -+; (4)2()669x y x y +--+;(5)224(2)25()x y x y +--;(6)2221xy x y --+ .24.若n 为整数,则22(21)(21)n n +--能被8整除吗?请说明理由.25.运用简便方法进行计算: (1)139910044⨯;(2)220039-;(3)2219.910.09-;(4)22007200820061-⨯+26.已知223x y +=,2()4x y +=,求xy 的值.1227.用代入法解下列方程组:(1) 65232x y x y -=⎧⎨=⎩;(2)0.30.440.20.92m n m n +=⎧⎨-=-⎩;28.将一张正方形的纸片对折,在这张重叠的纸上画上如图所示的图案,然后打开,猜想会是怎么样的图案.动手试试看.29.先化简,再求值:3332233211223223ab a b a b ab a b a b ab -+----+,其中 a=2,b=3.30.(1)被除数是334-,除数比被除数大112,商是多少?(2)被除数是113-的倒数,除数是23-,商是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.A5.D6.C7.D8.A9.D10.C二、填空题11.21 或312.4:913.130°14.∠A 和∠415.70°,△AOB ≌△COD 16.1,217.65三、解答题18.如图中斜线区.19.(1)黑实线表示;(2)红实线表示. 20.略 21.(1)1x ≥-,在数轴上表示略 (2)712x -≤<,在数轴上表示略 22.5b ≥-23. (1)()ab a b -;(2)23(32)xy xyz -;红果树 白杨树擎天树AB(3)22(3)3a -;(4)2(3)x y +-;(5)3(3)(7)x y x y ---;(6)(1)(1)x y x y +--+ 24.能被8整除 25. (1)799996;(2)4012000;(3)396.4 (4)2 26. 1227. (1)432x y ⎧=-⎪⎨⎪=-⎩;84m n =⎧⎨=⎩ 28. 略29. 3221122a b ab a b --,-12 30. (1)53 (2)98。

2020年江苏省南通市最新中考数学模拟试卷(含答案)

2020年江苏省南通市最新中考数学模拟试卷(含答案)

江苏省南通市2020年中考数学模拟试卷注意事项:1. 本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在试卷上无效.2. 答选择题必须用2B 铅笔,把答题卡上对应题号的选项字母涂满、涂黑.如需修改,要用绘图橡皮轻擦干净再选涂其他选项.答非选择题使用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其它位置答题一律无效.3. 作图必须使用2B 铅笔作答,并请加黑加粗,描写清楚. 一、选择题:(本题有8小题,每小题3分,共24分) 1.-3的绝对值是( )A .-3B .3C .31D .31 2.计算 (m 3)2的正确结果为( )A .5mB .9mC .6mD .9m 3.如图所示,若数轴上的两点A 、B 表示的数分别为a 、b ,则下列结论正确的是( )A .021>-a b B .0>-b a C .02>+b a D .0>+b a4.如图,线段AC 与BD 相交于点O ,且OA =OC ,请添加一个条件,使△OAB ≌△OCD ,这个条件可以是( )A .∠A =∠DB .OB =ODC .∠B =∠CD .AB =DC 5.下列事件中,是确定事件的有( )①打开电视,正在播放广告;②三角形三个内角的和是180°;③两个负数的和是正数④某名牌产品一定是合格产品A .①②③④B .②③C .②④D .②6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是( )A .01d <<B .5d >C .01d <<或5d >D .01d <≤或5d > 7.如右图,△ABC 中,∠ABC =90°,AB =BC ,三角形的 顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间 的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .73 8.如图,在同一直角坐标系中,一次函数y =ax +c 和二次函数 y =ax 2+bx +c 的图象大致为( )ll 2 l 3ACBxy OA xyOBxyOC xyOD二、填空题:(本题有10小题,每小题3分,共30分)9.截止目前,某市总人口数约373万,此人口数用科学记数法可表示为 . 10.在实数范围内分解因式9y 4-4= . 11.如果1-x x有意义,那么x 的取值范围是 . 12.已知数据:2,1-,3,5,6,5,则这组数据的众数与极差的和是 . 13.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 .14.据《新华日报》2012年1月22日报道:“家电下乡”农民得实惠.村民小郑购买一台双门冰箱,在扣除13%的政府财政补贴后,再减去商场赠送的“家电下乡”消费券100元,实际只花了1 726.13元钱,那么他购买这台冰箱节省了 元钱.15.我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11,按此方式,将二进制数11010换算成十进制数为 .16.已知点A 是反比例函数3y x=-图象上的一点.若AB 垂直于y 轴,垂足为B ,则AOB △的面积= .17.在平面直角坐标系中,ABC △顶点A 的坐标为(23),,若以原点O 为位似中心,画AEC △的位似图形A B C '''△,使ABC △与A B C '''△的相似比等于12,则点A '的坐标为 .18.如右图,在△ABC 中,∠ACB =90︒,AC =2,BC =1,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴运动时,点C 随之在y 轴上运动, 在运动过程中,点B 到原点O 的最大距离为 .三、解答题:(本大题共有10小题,共96分)19.(本题满分8分)(1)计算:12011|32|5(2009π)2-⎛⎫-++-⨯- ⎪⎝⎭.(1)班87654309(2)班(1)班76543309(1)班 AB(2) 解不等式组205121123x x x ->⎧⎪+-⎨+⎪⎩,≥,20.(本题满分8分)先化简,再求值)252(4239--+÷--a a a a , 其中a 满足062=--a a .21.(本题满分10分)如图,线段AB 的端点在边长为1的小正方形网格的格点上,现将线段AB 绕点A 按逆时针方向旋转90°得到线段AC .⑴请你在所给的网格中画出线段AC 及点B 经过的路径;⑵若将此网格放在一平面直角坐标系中,已知点A 的坐标为 (1,3),点B 的坐标为(-2, -1),则点C 的坐标为 ; ⑶线段AB 在旋转到线段AC 的过程中,线段AB 扫过的区域的面积为 ;⑷若有一张与⑶中所说的区域形状相同的纸片, 将它围成一个几何体的侧面,则该几何体底面圆 的半径长为 .22. (本题满分10分) 王老师为了了解学生在数学学习中常见错误的纠正情况,收集整理了学生在作业和考试中的常见错误,编制了10道选择题,每题3分,对他所教的初三(1)班和(2)班进行了检测.如图表示从两班各随机抽取的10名学生的得分情况: (1)利用图中提供的信息,补全下表:(2)若把24分以上(含24分)记为”优秀”,两班各40名学生,请估计两班各有多少名学生成绩优秀;(3)观察图中数据分布情况,你认为哪个班的学生纠错的得分情况比较整齐一些,并 说明原因.23. (本题满分10分) 如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 的坐标为(4,0),顶点G 的坐标为(0,2),将矩形OEFG 绕点O 逆时针旋转,使点F 落在y 轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求图象经过点A 的反比例函数的解析式; (3)设(2)中的反比例函数图象交EF 于点B , 求直线AB 的解析式.24.(本题满分10分)甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表). 甲超市:乙超市:(1)用树状图表示得到一次摸奖机会时摸出彩球的所有情况; (2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.25.(本题满分10分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度12i :且O,A,B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)26.(本题满分10分) (1)如图1,OA、OB是⊙O的半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连结AD交DC于点E.则CD=CE吗?如成立,试说明理由。

2020年江苏省中考数学摸底测试试卷附解析

2020年江苏省中考数学摸底测试试卷附解析

2020年江苏省中考数学摸底测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的黑色小正方形分别由四位同学补画,其中正确的是( )A .B .C .D .2.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40 个,除颜色外其它都完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在 20和 40,则 口袋中白色球的个数很可能是( ) A .6 个 B . 16 个 C . 18 个 D . 24 个 3.如图,点 A .B 、C 是⊙O 上的点,∠BOC=120°,则∠A=( )A .120°B .80°C . 60D . 50°4. 实数a ,b 在数轴上的位置如图所示,则下列代数式中,无意义的是( )A a b +B a b -C b a -D 2()b a -5.下列事件中,不可能发生的是( ) A .异号两数相加和为正数B .从 1、3、5、7、.9中任取一个数是偶数C .任意抛掷一只纸杯,杯口朝上D .任意投掷一枚正方体骰子,朝上一面的数字小于76.下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ) A . B . C . D .7.如图所示,已知∠A=∠D ,∠l=∠2,那么,要得到△ABC ≌△DEF ,还应给出的条件是 ( )A .∠E=∠B B .ED=BC C .AB=EFD .AF=CD8.31254--可以读作( )A .35减负2减负14B .正35,正 2 与正14的和C .正35,负 2与负14的差D .35减 2减149.下列生活现象中,属于相似变换的是( ) A .抽屉的拉开 B .汽车刮雨器的运动C .荡秋千D .投影片的文字经投影变换到屏幕10.抛物线2(3)(1)y x x =+-的对称轴是( ) A . 直线x=1B .直线x=-1C . 直线12x =D . 直线12x =-二、填空题11.已知圆的两弦 AB 、CD 的长是方程 x 2-42x+432=0的两根,且AB ∥CD ,又知两弦之间的距离为3,则半径长为 .12.ky x=的图象的一部分如图所示,其中点A 是图象上的点,AB ⊥x 轴,△AQB 的面积2,则k 为 .13.如图,在三角形纸片ABC 中,∠A =65°,∠B =75°,将纸片的一角折叠,使点C 落在△ABC 内,若∠1=20°,则∠2的度数为________.14.若分式13a -无意义,242b b --的值为 0,则ab = .15.如果分式211x x -+的值为0,则x= . 16.6x 2÷(-2x )= .17.把12()a -写成同底数幂的乘积的形式(写出一种即可): 如:12()a -= × = × × .18.计算:(1)(5)(2)-⨯-= ; (2)136()3÷-= .19.若-59600000用科学记数法表示为a ×10n ,则a= ,n= .三、解答题20.如图,根据要求完成下列作图:(1)在图①中用线段表示出小明行至 B 处时,他在路灯A 下的影子. (2)在图②中根据小明在路灯A 下的影子,判断其身高并用线段表示.(3)在图③中,若路灯、小明及影子、木棍及影子的关系如图,请判断这是白天还是夜晚,为什么?21.已知三角形三边 a 、b 、c 满足01115a b b c c al +++==,求:a : b : c .22.AB 是半圆0的直径,C 、D 是半圆的三等分点,半圆的半径为R. (1)CD 与 AB 平行吗?为什么? (2)求阴影部分的面积.23.已知弧 AB ,如图所示,用直尺和圆规求作这条弦的四等分点.24.写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.25.阅读理解题:(1)如图,在△ABC中,AD是BC边上的中线,且AD=12 BC.求证:∠BAC=90°.(2)此题实际上是直角三角形的另一个判定定理,请你用文字语言叙述出来.26.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.27.如图,用恰当的方法比较长方形ABCD中AB、AC、AD的长,然后用“<”号连结这三条线段.28.找出下列解方程过程中的错误之处,并予以纠正.解方程:1.2031030.2x x-⋅=+⋅解:101231032x x-=+…第一步2010369x x=+-…第二步2091036x x-=+…第三步1146x=…第四步1146x=…第五步29.2007年4月,国民体质监测中心等机构开展了青少年形体测评,专家组随机抽查了某市若干名初中学生的坐姿、站姿、走姿情况. 专家将测评数据做了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并根据统计结果绘制了如下两幅不完整的统计图. 请你根据,图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)在这次形体测评中,一共抽查了名学生,如果全市有 10万名初中生,那么全市初中生中,三姿良好的学生约有名;(3)根据统计结果,请你简单谈谈自己的看法.30.计算: (用简便方法) (1) (+1.3) +(-0.8)+2.7+(-0. 6);(2)13( 2.25)(3)(3)(0.125)84-+-+-++(3)4( 6.74)(1)( 1.74)( 1.8)5++++-+-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.B6.A7.D8.D9.D10.B二、填空题1512.一413.60°14.-615.116.-3x17.不唯一,如:2()a -,10()a -;4()a -,6()a -,2()a -18.10,-10819.-5. 96,7三、解答题 20.(1)BC 为小明在路灯A 下的影子. (2)BD 为小明的身高.(3)因为光线互相平行,所以是白天.21.设01115a b b c c ak l +++===,则101115a b k b c k c a k +=⎧⎪+=⎨⎪+=⎩,738a k b k c k =⎧⎪=⎨⎪=⎩∴a :b :c=7k :3k :8k=7:3;8.(1)由题意知⌒AC =⌒CD =⌒DB ,∴∠CDA=∠DAS, ∴CD ∥AB. (2)由题意知⌒AC 的度数为 60°,∴∠AOC=∠COD=∠DOB=60°,223,64ADCOCD R S s R π∆==扇形,∴22233()6464R S R R ππ=+=+阴影 23.如图所示.24.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题25.(1)略;(2)若三角形一边上的中线等于这边的一半,则这个三角形是直角三角形26.解:(1)用列表法或树状图表示所有可能结果如下: ① 列表法 ②树状图(2)P (恰好选中医生甲和护士A )=1627.AD<AB<AC28.共有四步错误,第一步中10应为l ;第二步漏乘了不含分母的项10;第三步移项没有变号;第五步中除数和被除数关系颠倒.正确解为4229x =29.(1)扇形图中填:三姿良好12%. 条形统计图如图所示:A B 甲 (甲,A) (甲,B) 乙 (乙,A) (乙,B) 丙(丙,A)(丙,B)护 士医 生(2) 500, 12000;(3)答案不唯一,如:中学生应该坚持锻炼身体,努力纠正坐、立、走中的不良习惯,促进身心健康发育30.(1)2.6 (2)-9 (3)5。

2020年江苏省苏州市中考数学全真模拟试卷附解析_1

2020年江苏省苏州市中考数学全真模拟试卷附解析_1

2020年江苏省苏州市中考数学全真模拟试卷 _1 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,ABCD 为正方形,边长为a ,以点B 为圆心,以BA 为半径画弧,则阴影部分的面积是( )A . (1-л)a 2B . l-лC .244a π-D .44π- 2.如图,半圆 0 的直径AB 与半圆围成一个区域,要使一只蚂蚁 (看成点 C )在这个区域内,则∠ACB 应该是( )A .小于90B .大于 90°C . 等于120°D . 大于120°3.如图,已知点A 是一次函数y=x 的图象与反比例函数2y x=的图象在第一象限内的交点,点B 在x 轴的负半轴上,且 OA= OB ,那么△AOB 的面积为( )A .2B 2C 2D .224.方程216x =的解是( )A .4x =B . 4x =-C . 14x =,24x =-D . 11x =,216x =5.已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A .90D =∠B .AB CD =C .AD BC = D .BC CD = 6.要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需要知道相应样本的( )A .平均数B .最大值C .众数D .频率分布 7.如图所示,下列条件中,不能判定AB ∥CD 的是( ) A .∠PEB=∠EFD B .∠AEG=∠DFH C .∠BEF+∠EFD=180° D .∠AEF=∠EFD8. 已知两条线段的长分别为 3,4,那么能与它们组成直角三角形的第三条线段的长为( )A . 5B .7C .5D .5或79.一个几何体的三视图如下图所示,则这个几何体应该是 ( )A .B .C .D .10.已知a +b =2,则224a b b -+的值是( )A .2B .3C .4D .611.温度上升了3-℃后,又下降2℃,这一过程的温度变化是( ) A .上升1℃ B .上升5℃ C .下降1℃ D .下降5℃12.以x=-3为解的方程是 ( )A .3x-7=2B .5x-2=-xC .6x+8=-26D .x+7=4x+16 13.已知样本数据:21,23,25,27,28,25,24,30,29,24,22,24,26,26,29,26,28,25,27,23.在列频率分布表时,若取组距为2,则落在24.5~26.5这组的频率是 ( )A .O .3B .0.4C .0.5D .0.6二、填空题14.晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为 米.15. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .16.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.17.如图,∠3=∠ 时,AF ∥BE ,理由是 .∠2=∠ 时,FC ∥DE ,理由是 .18.将一图形沿着正北方向平移5cm后,再沿着正西方向平移5cm,这时图形在原来位置的向上.19.从 1,2,3,4,5 中任选两个数,这两个数的和恰好等于7 有种可能.20.a、b、c三个数在数轴上的位置如图所示,化简||||++++-= .a cb ac a21.将两块直角三角板的直角顶点重合(如图),若∠AOD = 110°,则∠COB= .三、解答题22.如图,画出下列立体图形的俯视图.23.春秋旅行社为吸引市民组团去某风景区旅游,推出了如下收费标准:某单位组织员工去该风景区旅游, 共支付给春秋旅行社旅游费用27000元:,请问该单位这次共有多少员工去该风景区旅游?24.如图,在四边形ABCD中,AB∥CD,且∠A=∠C,求证:四边形ABCD是平行四边形.(用两种方法证明)25.下面几个立体图形,请将它们加以分类.26.如图4,AB∥EF,AB∥CD. 若∠EFB =l20°,∠C =70°,求∠FBC的度数.27.如图,直线OA,OB表示两条相互交叉的公路.点M,N表示两个蔬菜基地.现要建立一个蔬菜批发市场,要求它到两个基地的距离相等,并且到公路OA,OB的距离相等,请你作图说明此批发市场应建在什么地方?AMONB28.如图所示的轴对称图形的对称轴都不止一条,请把它们都画出来.29.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.30.公司推销某种产品,付给推销员每月的工资有两种方案:方案一:不论推销多少都有 500 元的底薪,每推销一件产品加付推销费 2 元.方案二:不付底薪,每推销一件产品,付给推销费 5元.若小王一个月推销产品 200 件,则小王会选择哪一种工资方案?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.C5.D6.D7.B8.D9.D10.C11.D12.D13.A二、填空题14.6.615.516.64017.F;内错角相等,两直线平行;D;同位角相等,两直线平行18.西北19.220.+-21.2a b c70°三、解答题22.23.30人24.略25.棱锥:①③,直棱柱:②④,圆柱体:⑤26.∵AB∥EF,∠EFB=120°,∴∠ABF=180°-120°=60°∵AB∥CD.∠C=70°,∴∠A8C=∠C=70°.∴∠FBC∠ABC-∠ABF=70°-60°=10°27.的平分线OC和线段MN的垂直平分线DE,则射线OC与直线DE的交分别作AOB点P即为批发市场应建的地方.28.略29.如图所示:CB30.小王应选择方案二。

【2020年】江苏省中考数学模拟试卷(含答案)

【2020年】江苏省中考数学模拟试卷(含答案)

2020年江苏省中考数学模拟试卷含答案一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣22.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a23.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>34.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.57.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πc m29.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为.12.(3分)分解因式:a3﹣2a2b+ab2=.13.(3分)已知正n边形的每一个内角为135°,则n=.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.20.(8分)解不等式组,并写出x的所有整数解.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“了解”部分所对应扇形的圆心角为度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.(1)抛物线经过定点坐标是,顶点M的坐标(用m的代数式表示)是;(2)若抛物线y=x2+mx﹣2m﹣4(m为常数)与正方形ABCD的边有交点,求m 的取值范围;(3)若∠ABM=45°时,求m的值.28.(14分)如图,⊙O的直径AB=26,P是AB上(不与点A、B重合)的任一点,点C、D为⊙O上的两点,若∠APD=∠BPC,则称∠CPD为直径AB的“回旋角”.(1)若∠BPC=∠DPC=60°,则∠CPD是直径AB的“回旋角”吗?并说明理由;(2)若的长为π,求“回旋角”∠CPD的度数;(3)若直径AB的“回旋角”为120°,且△PCD的周长为24+13,直接写出AP 的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)的值是()A.4 B.2 C.±2 D.﹣2【分析】根据算术平方根解答即可.【解答】解:=2,故选:B.【点评】此题考查算术平方根问题,关键是根据4的算术平方根是2解答.2.(3分)下列计算中,正确的是()A.a2•a3=a5 B.(a2)3=a8C.a3+a2=a5 D.a8÷a4=a2【分析】根据同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法逐一计算可得.【解答】解:A、a2•a3=a5,此选项正确;B、(a2)3=a6,此选项错误;C、a3、a2不能合并,此选项错误;D、a8÷a4=a4,此选项错误;故选:A.【点评】本题主要考查整式的运算,解题的关键是掌握同底数幂的乘法、幂的乘方、合并同类项法则及同底数幂的除法.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x≥3 B.x<3 C.x≤3 D.x>3【分析】根据二次根式有意义的条件;列出关于x的不等式,求出x的取值范围即可.【解答】解:∵在实数范围内有意义,∴x﹣3≥0,解得x≥3.故选:A.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.4.(3分)函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据题目中的函数解析式可以求得这两个函数的交点坐标,从而可以解答本题.【解答】解:,解得,,∴函数y=﹣x的图象与函数y=x+1的图象的交点是(,),故函数y=﹣x的图象与函数y=x+1的图象的交点在第二象限,故选:B.【点评】本题考查两条直线相交或平行问题,解答本题的关键是明确题意,求出两个函数的交点坐标,利用函数的思想解答.5.(3分)下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式C.一组数据8,8,7,10,6,8,9的众数是8D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小【分析】根据概率的意义可判断出A的正误;根据抽样调查与全面调查意义可判断出B的正误;根据众数和中位数的定义可判断出C的正误;根据方差的意义可判断出D的正误.【解答】解:A、一个游戏中奖的概率是,做10次这样的游戏也不一定会中奖,故此选项错误;B、为了了解一批炮弹的杀伤半径,应采用抽样调查的方式,故此选项错误;C、一组数据8,8,7,10,6,8,9的众数和中位数都是8,故此选项正确;D、若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动大;故选:C.【点评】此题主要考查了概率、抽样调查与全面调查、众数和中位数、方差,关键是注意再找中位数时要把数据从小到大排列再找出位置处于中间的数.6.(3分)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.5【分析】设该队获胜x场,则负了(6﹣x)场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.故选:B.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.7.(3分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A.30°B.35°C.70°D.45°【分析】直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB∥CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB∥CD,∴∠CMA=∠MAB=35°.故选:B.【点评】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM 是解题关键.8.(3分)一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A.πcm2B.3πcm2C.πcm2D.5πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积、底面积后即可求得其表面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为1×π×2=2π,底面积为π×(1)2=π.表面积为2π+π=3π;故选:B.【点评】此题考查由三视图判定几何体,本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.9.(3分)如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cosA=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y=(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cosA=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=x cm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.10.(3分)正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.﹣1 C.D.【分析】首先过F作FH⊥AD于H,交ED于O,于是得到FH=AB=2,根据勾股定理求得AF,根据平行线分线段成比例定理求得OH,由相似三角形的性质求得AM与AF的长,根据相似三角形的性质,求得AN的长,即可得到结论.【解答】解:过F作FH⊥AD于H,交ED于O,则FH=AB=2,∵BF=FC,BC=AD=2,∴BF=AH=1,FC=HD=1,∴AF===,∵OH∥AE,∴==,∴OH=AE=,∴OF=FH﹣OH=2﹣=,∵AE∥FO,∴△AME∽FMO,∴==,∴AM=AF=,∵AD∥BF,∴△AND∽△FNB,∴==2,∴AN=2AF=,∴MN=AN﹣AM=﹣=.故选:C.【点评】本题考查了相似三角形的判定与性质,矩形的性质,勾股定理,比例的性质,准确作出辅助线,求出AN与AM的长是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11.(3分)“辽宁舰“最大排水量为67500吨,将67500用科学记数法表示为 6.75×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:67500=6.75×104,故答案为:6.75×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)分解因式:a3﹣2a2b+ab2=a(a﹣b)2.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:a3﹣2a2b+ab2,=a(a2﹣2ab+b2),=a(a﹣b)2.【点评】本题考查提公因式法分解因式和完全平方公式分解因式,熟记公式结构是解题的关键,分解因式一定要彻底.13.(3分)已知正n边形的每一个内角为135°,则n=8.【分析】根据多边形的内角就可求得外角,根据多边形的外角和是360°,即可求得外角和中外角的个数,即多边形的边数.【解答】解:多边形的外角是:180﹣135=45°,∴n==8.【点评】任何任何多边形的外角和是360°,不随边数的变化而变化.根据这个性质把多边形的角的计算转化为外角的计算,可以使计算简化.14.(3分)某厂一月份生产某机器100台,计划三月份生产160台.设二、三月份每月的平均增长率为x,根据题意列出的方程是100(1+x)2=160.【分析】设二,三月份每月平均增长率为x,根据一月份生产机器100台,三月份生产机器160台,可列出方程.【解答】解:设二,三月份每月平均增长率为x,100(1+x)2=160.故答案为:100(1+x)2=160.【点评】本题考查理解题意的能力,本题是个增长率问题,发生了两次变化,先找出一月份的产量和三月份的产量,从而可列出方程.15.(3分)如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=3,AB=5,OD⊥BC于点D,则OD的长为2.【分析】先利用圆周角定理得到∠ACB=90°,则可根据勾股定理计算出AC=4,再根据垂径定理得到BD=CD,则可判断OD为△ABC的中位线,然后根据三角形中位线性质求解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AC==4,∵OD⊥BC,∴BD=CD,而OB=OA,∴OD为△ABC的中位线,∴OD=AC=×4=2.故答案为2.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.(3分)下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【分析】连接OD、CD.只要证明△ODC是等边三角形即可解决问题;【解答】解:连接OD、CD.由作图可知:OD=OC=CD,∴△ODC是等边三角形,∴∠DCO=60°,∵AC是⊙O直径,∴∠ADC=90°,∴∠DAB=90°﹣60°=30°.∴作图的依据是:直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等,故答案为直径所对的圆周角的直角,等边三角形的时故内角为60°,直角三角形两锐角互余等.【点评】本题考查作图﹣复杂作图,圆的有关性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.(3分)如图,在△ABC中,∠C=90°,AC=3,BC=4,点O是BC中点,将△ABC绕点O旋转得△A′B'C,则在旋转过程中点A、C′两点间的最大距离是2+.【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出OA=,接着利用旋转的性质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【解答】解:连接OA,AC′,如图,∵点O是BC中点,∴OC=BC=2,在Rt△AOC中,OA==,∵△ABC绕点O旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),∴AC′的最大值为2+,即在旋转过程中点A、C′两点间的最大距离是2+.故答案为2+.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.18.(3分)在平面直角坐标系xOy中,过点A(3,0)作垂直于x轴的直线AB,直线y=﹣x+b与双曲线y=交于点P(x1,y1),Q(x2,y2),与直线AB交于点R (x3,y3),若y1>y2>y3时,则b的取值范围是2<b<.【分析】根据y2大于y3,说明x=3时,﹣x+b<,再根据y1大于y2,说明直线l和抛物线有两个交点,即可得出结论.【解答】解:如图,当x=3时,y2=,y3=﹣3+b,∵y3<y2,∴﹣3+b<,∴b<,∵y1>y2,∴直线l:y=﹣x+b①与双曲线y=②有两个交点,联立①②化简得,x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b<﹣2(舍)或b>2,∴2<b<,故答案为:2<b<.【点评】此题主要考查了反比例函数和一次函数的交点问题,一元二次方程根的判别式,熟练掌握一次函数和双曲线的性质是解本题的关键.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:|﹣2|+20130﹣(﹣)﹣1+3tan30°;(2)解方程:=﹣3.【分析】(1)原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2﹣+1+3+=6;(2)去分母得:1=x﹣1﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)解不等式组,并写出x的所有整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≥﹣,解不等式②,得:x<3,则不等式组的解集为﹣≤x<3,∴不等式组的整数解为:﹣1、0、1、2.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计;(3)若该中学共有学生1200人,估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数.【分析】(1)由基本了解的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)由(1)可求得了解很少的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【解答】解:(1)接受问卷调查的学生共有30÷50%=60人,扇形统计图中“了解”部分所对应扇形的圆心角为360°×=90°,故答案为:60、90.(2)“了解很少”的人数为60﹣(15+30+5)=10人,补全图形如下:(3)估计该中学学生对校园安全知识达到“了解”和“基本了解”程度的总人数为1200×=900人.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.关键是根据列表法或树状图法求概率以及条形统计图与扇形统计图.22.(8分)四张扑克牌的点数分别是2,3,4,8,除点数不同外,其余都相同,将它们洗匀后背面朝上放在桌上.(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)随机抽取一张牌不放回,接着再抽取一张牌,求这两张牌的点数都是偶数的概率.【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率;(2)列表得出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率.【解答】解:(1)因为共有4张牌,其中点数是偶数的有3张,所以这张牌的点数是偶数的概率是;(2)列表如下:23482(2,3)(2,4)(2,8)3(3,2)(3,4)(3,8)4(4,2)(4,3)(4,8)8(8,2)(8,3)(8,4)从上面的表格可以看出,总共有12种结果,每种结果出现的可能性相同,其中恰好两张牌的点数都是偶数有6种,所以这两张牌的点数都是偶数的概率为=.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶12千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.(结果保留根号)【分析】作BH⊥AC于H,根据正弦的定义求出BH,根据余弦的定义计算即可.【解答】解:作BH⊥AC于H,由题意得,∠CBH=45°,∠BAH=60°,在Rt△BAH中,BH=AB×sin∠BAH=6,在Rt△BCH中,∠CBH=45°,∴BC==6(千米),答:B,C两地的距离为6千米.【点评】本题考查的是解直角三角形的应用﹣方向角问题,掌握锐角三角函数的定义、正确标出方向角是解题的关键.24.(8分)如图,▱ABCD中,点E是BC的中点,连接AE并延长交DC延长线于点F.(1)求证:CF=AB;(2)连接BD、BF,当∠BCD=90°时,求证:BD=BF.【分析】(1)欲证明AB=CF,只要证明△AEB≌△FEC即可;(2)想办法证明AC=BD,BF=AC即可解决问题;【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠CFE∵AE=EF,∠AEB=∠CEF,∴△AEB≌△FEC,∴AB=CF.(2)连接AC.∵四边形ABCD是平行四边形,∠BCD=90°,∴四边形ABCD是矩形,∴BD=AC,∵AB=CF,AB∥CF,∴四边形ACFB是平行四边形,∴BF=AC,∴BD=BF.【点评】本题考查平行四边形的判定和性质、矩形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为80km/h,快车的速度为120km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.【分析】(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9﹣3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【解答】解:(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1 h或6.25 h,两车之间的距离为500km.【点评】本题考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.26.(12分)如图,△ABC中,AB=6cm,AC=4cm,BC=2cm,点P以1cm/s 的速度从点B出发沿边BA→AC运动到点C停止,运动时间为t s,点Q是线段BP的中点.(1)若CP⊥AB时,求t的值;(2)若△BCQ是直角三角形时,求t的值;(3)设△CPQ的面积为S,求S与t的关系式,并写出t的取值范围.【分析】(1)如图1中,作CH⊥AB于H.设BH=x,利用勾股定理构建方程求出x,当点P与H重合时,CP⊥AB,此时t=2;(2)分两种情形求解即可解决问题;(3)分两种情形:①如图4中,当0<t≤6时,S=×PQ×CH;②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.求出QM即可解决问题;【解答】解:(1)如图1中,作CH⊥AB于H.设BH=x,∵CH⊥AB,∴∠CHB=∠CHB=90°,∴AC2﹣AH2=BC2﹣BH2,∴(4)2﹣(6﹣x)2=(2)2﹣x2,解得x=2,∴当点P与H重合时,CP⊥AB,此时t=2.(2)如图2中,当点Q与H重合时,BP=2BQ=4,此时t=4.如图3中,当CP=CB=2时,CQ⊥PB,此时t=6+(4﹣2)=6+4﹣2.(3)①如图4中,当0<t≤6时,S=×PQ×CH=×t×4=t.②如图5中,当6<t<6+4时,作BG⊥AC于G,QM⊥AC于M.易知BG=AG=3,CG=.MQ=BG=.∴S=×PC×QM=••(6+4﹣t)=+6﹣t.综上所述,s=.【点评】本题考查三角形综合题、勾股定理、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(12分)已知,正方形ABCD,A(0,﹣4),B(l,﹣4),C(1,﹣5),D(0,﹣5),抛物线y=x2+mx﹣2m﹣4(m为常数),顶点为M.。

江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题一、单选题1.截至今年一季度末,江苏省企业养老保险参保人数达850万,则参保人数用科学记数法表示为 A .8.50×106 B .8.50×105 C .0.850×106 D .8.50×1072.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A .83,74x y x y =+⎧⎨=-⎩ B .83,74x y x y =-⎧⎨=+⎩ C .84,73x y x y =+⎧⎨=-⎩ D .84,73x y x y =-⎧⎨=+⎩3.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若AD =4,则DC 的值为( )A .1B .1.5C .2D .34.已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )A .B .C .D .5.如图,某同学用圆规BOA 画一个半径为4cm 的圆,测得此时90O ∠=︒,为了画一个半径更大的同心圆,固定A 端不动,将B 端向左移至B '处,此时测得120O '∠=︒,则BB '的长为( )A .4B 2-C .D .26.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2的图象上,则a 的值为( )A .23-B .3-C .2-D .12- 7.如图,已知A 为反比例函数k y x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )A .2B .-2C .4D .-48.将等边三角形ABC 放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C 按顺时针方向旋转90°,则旋转后点A 的对应点A’的坐标为( )A .(1+,1)B .(﹣1,1-)C .(﹣1,-1)D .(2,)9.如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD =D .AG 平分CAD ∠ 10.若整数a 既使关于x 的分式方程13x x --﹣2(3)a x x --=1的解为非负数,又使不等式组3024385x a x x+⎧+>⎪⎨⎪-+>⎩有解,且至多有5个整数解,则满足条件的a 的和为( ) A .﹣5 B .﹣3 C .3 D .211.若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .1412.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为( )A .(0,1)B .(1,0)C .(0,1)或(0,-1)D .(1,0)或(-1,0)二、填空题13.若3x =+3y =,则222x xy y ++=___. 14.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.15.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.16.如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.17.如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.三、解答题18.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台?(2)补全条形统计图.(3)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?19.如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.20.某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?21.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].22.已知:2(1)3a b a x y -+=是关于y x 、二元一次方程,点A 在坐标平面内的坐标为a b (,) 点B (3,2)将线段AB 平移至A’B’的位置,点B 的对应点'B (-1,3).求点A’的坐标23.先化简,再求值:,其中.24.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AD 平分∠BAC ,BD=CD(1)求证:BE=CF ;(2)已知AC=10,DE=4,BE=2,求△AEC 的面积25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标. 26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),联结PC .当PCB ACB ∠=∠时,求点P 的坐标; (3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD DQ ⊥时,求抛物线平移的距离.参考答案1.A解:850万=8500000=8.5×106,故选A .2.A根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.3.C由线段垂直平分线的性质定理可知4BD AD ==,30ABD A ︒∠=∠=,易知30CBD ︒∠=,根据直角三角形中30︒角所对的直角边是斜边的一半可得122DC BD ==. 解:在Rt △ABC 中,∠A =30° 60ABC ︒∴∠=DE 垂直平分AB ,点D 在AB 上4BD AD ∴==,30ABD A ︒∠=∠=30CBD ABC ABD ︒∴∠=∠-∠=122DC BD ∴== 故选:C本题考查了线段垂直平分线的性质定理,同时涉及到了直角三角形30︒角这一性质,灵活利用这两个性质求线段长是解题的关键.4.C根据绝对值的性质可得a ≤0, b ≥0,由a b >可得a 到原点的距离大于b 到原点的距离,进而可得答案. 解:,a a b b =-=,∴a ≤0, b ≥0∴B, D 错误;a b >∴a到原点的距离大于b到原点的距离.C是正确的, A是错误的,故选C本题主要考查数轴上的点与绝对值.5.A△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D 中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.解:在等腰直角△OAB中,AB=4,则OA=cm,AO'=,∠AO'D=12×120°=60°,过O'作O'D⊥AB于点D.则AD=AO'•sin60°=22×3=6.则AB'=2AD=26,故BB'=AB'-AB=26-4.故选:A.本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.6.B连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得12BD OB=,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.如图,连接OB,∵四边形OABC 是边长为1的正方形,∴451BOC OB ∠===, 过点B 作BD ⊥x 轴于D ,∵OC 与x 轴正半轴的夹角为15,∴451530BOD ∠=-=,∴122BD OB ==OD ==∴点B 的坐标为⎝⎭,∵点B 在抛物线y =ax 2(a <0)的图象上,∴2a =⎝⎭解得a =3-故选B.考查正方形的性质,勾股定理,二次函数图象上点的坐标特征等,求出点B 的坐标是解题的关键. 7.D设A 点坐标为(m ,n),则有AB=-m ,OB=n ,继而根据三角形的面积公式以及反比例函数图象上点的坐标特征即可求得答案. 设A 点坐标为(m ,n),则有AB=-m ,OB=n ,。

2020年江苏省九年级中考数学模拟试卷(九)含答案

2020年江苏省九年级中考数学模拟试卷(九)含答案

江苏省九年级中考数学模拟试卷(九)(满分:130分考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.计算(-2)×5的结果是( )A.10 B.5 C.-5 D.-102.下列运算正确的是( )A.x3·x2=16 B.(x2)3=x5C.2a-3a=-a D.(x-2)2=x2-43.设x=13,则x的值满足( )A.1<x<2 B.2<x<3 C.3<x<4 D.4<x<54.给出下列四个函数:①y=-x;②y=x;③y=1x;④y=x2.当x<0时,y随x的增大而减小的函数有( )A.①③B.②④C.①④D.①③④5.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是( )A.甲射击成绩比乙稳定B.乙射击成绩比甲稳定C.甲、乙射击成绩稳定性相同D.甲、乙射击成绩稳定性无法比较6.若-1≤y≤2,则代数式23x +y+1有( )A.最大值0 B.最大值3 C.最小值0 D.最小值17.圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥的母线长为( )A.3 cm B.6 cm C.9 cm D.12 cm8.如图,下列条件中不能判断直线l1∥l2的是( )A.∠1=∠3 B.∠2=∠3C.∠4=∠5 D.∠2+∠4=180°9.如图,⊙O的半径为5,若OP=3,则经过点P的弦长可能是( )A.3 B.6 C.9 D.1210.如图,⊙O是以原点为圆心、2为半径的圆,点P是直线y=-x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为( )A.3 B.4 C.6-2D.32-1二、填空题(本大题共8小题,每小题3分,共24分)11.我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知1毫米=1000微米,用科学记数法表示2.5微米是_______毫米.12.分解因式:x3-6x2+9x=_______.13.现有五张完全相同的卡片,上面分别写有“中国”、“美国”、“韩国”、“德国”、“英国”,把卡片背面朝上洗匀,从中随机抽取一张,抽到卡片对应的国家为亚洲国家的概率是_______.14.不等式组2063xx x->⎧⎨+>⎩的解集是_______.15.如图,点A在反比例函数y=6x(x>0)的图像上,且OA=4,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B.则△ABC的周长为_______.16.在四边形ABCD中,给出三个条件:①AD∥BC;②AB=DC;③AD=BC.以其中两个作为题设,余下一个作为结论,写出一个真命题:_______.(用“序号⇒序号”表示)17.已知一次函数y=23x+b与反比例函数y=3x中,x与y的对应值如下表:则不等式23x+b>3x的解集为_______.18.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=3,AO=2,那么AC的长等于_______.三、解答题(本大题共11小题,共76分)计算:()2012122cos30 3.142π-⎛⎫+--︒+- ⎪⎝⎭.20.(本题满分5分)解方程组:327239x y x y +=⎧⎨-=⎩21.(本题满分6分)先化简,再计算:22121x x x x x x --⎛⎫÷- ⎪+⎝⎭,其中x 是一元二次方程x 2-2x -2=0的正数根.22.(本题满分6分)某市举办中学生足球赛,初中男子组共有市区学校的A 、B 两队和县区学校的e 、f 、g 、h 四队报名参赛,六支球队分成甲、乙两组,甲组由A 、e 、f 三队组成,乙组由B 、g 、h 三队组成,现要从甲、乙两组中各随机抽取一支球队进行首场比赛.(1)在甲组中,首场比赛抽e 队的概率是_______;(2)请你用画树状图或列表的方法,求首场比赛出场的两个队都 是县区学校队的概率.23.(本题满分6分)“校园手机”现象越来越受到社会的关注°某校小记著随机调查了某地区若干名学生和家长对学生带手机现象的看法,统计整理并制作了如下统计图:(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)已知该地区共有6500名家长,估计其中反对中学生带手机的家长大约有多少名.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,现在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D 所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测的小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?25.(本题满分7分)某超市销售甲、乙两种商品,3月份该超市同时一次购进甲、乙两种商品共100件,购进甲种商品用去300元,购进乙种商品用去1200元.(1)若购进甲、乙两种商品的进价相同,求两种商品的数量分别是多少;(2)由于商品受到市民欢迎,超市4月份决定再次购进甲、乙两种商品共100件,但甲、乙两种商品进价在原基础上分别降20%、涨20%,甲种商品售价20元,乙种商品售价35元,若这次全部售出甲、乙两种商品后获得的总利润不少于1200元,该超市最多购进甲种商品多少件?如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF交对角线AC于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.27.(本题满分8分)如图,在△ABC中,D是AB边上一点,⊙O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是⊙O的切线;(2)如果∠ACB=75°,①若⊙O的半径为2,求BD的长;②试问CD:BC的值是否为定值?若是,直接写出这个比值;若不是,请说明理由.28.(本题满分10分)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以这两个交点和该抛物线的顶点、对称轴上一点为顶点的菱形称为这条抛物线的“抛物菱形”.(1)若抛物线y=ax2+bx-+c(a≠0)与x轴的两个交点为(-1,0)、(3,0),且这条抛物线的“抛物菱形”是正方形,求这条抛物线的函数解析式;(2)如图,四边形OABC是抛物线y=-x2+bx(b>0)的“抛物菱形”,且∠OAB=60°.①求“抛物菱形OABC”的面积;②将直角三角板中含有“60°角”的顶点与坐标原点O重合,两边所在直线与“抛物菱形OABC”的边AB、BC交于点E、F,△OEF的面积是否存在最小值?若存在,求出此时△OEF的面积;若不存在,说明理由.29.(本题满分10分)如图1,⊙O在直角坐标系中是一个以原点为圆心、半径为4的圆,AB是过圆心O的直径,点P从点B出发沿⊙O做匀速运动,过点P作PC垂直于直径AB,PC的长度随着点P的运动而变化.(各组数据已标出)(1)当点P的位置如图所示时,求∠OPC和∠POC的度数.(2)当点P的位置如图所示时,求PC的值.(3)探究:PC的长度随着∠BOP的变化而变化,设PC的值为y,∠BOP为x,并规定:①PC在x轴上方记为正,在x轴下方记为负;②逆时针旋转得到的角度记为正,顺时针旋转得到的角度记为负;③η=180°,12π=90°.请写出y关于x的函数关系式,以及x的取值范围.(直接写出答案)(4)试在图2中画出第(3)题中函数的图像.(5)求出该函数图像的对称轴.(直接写出答案,答案请用含有π的式子表示)参考答案1—10 DCCDB CBBCB 11.2.5 ×10-312.x(x -3)2 13.2514.2<x<3 15.27 16.①③⇒②(或②③⇒①) 17.x>1或-2<x<0 18.22+3 19.3+320.31x y =⎧⎨=-⎩21.11x - 3322.(1)13(2)4923.(1)280(人).(2)36°.(3)4550(名).24.解:由题意得,∠BAD=∠BCE , ∵∠ABD=∠CBE=90°, ∴△BAD ∽△BCE , ∴=, 即=,解得BD=13.6米.25.(1)购进甲种商品20件,乙种商品80件.(2)55件. 26.(1)略 (2)6. 27.(1)略 (2)3-1. 28.(1)y =-12x 2+x +32或y =12x 2-x -32(2)①6 ②存在. 29.(1)60°.(2)23 (3) y =4sinx .x 可取任意实数.(4)图像如下:(5)x =2π±k π(k 为整数).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省2020年中考数学模拟试题含答案注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题卡上指定的位置.3.答案必须按要求填涂、书写在答题卡上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位......置.上)1. 计算(-4)+6的结果为A.-2 B.2 C.-10 D.22.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为A.3.5×106B.3.5×107C.35×105D.0.35×1083.下列图形中,是中心对称图形的是A. B. C. D.4.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是A.点M B.点N C.点P D.点Q5.如图是某个几何体的三视图,该几何体是A.三棱柱B.三棱锥C.圆锥D.圆柱6.已知方程3x2-4x-4=0的两个实数根分别为x1,x2.则x1+x2的值为QP NM左视图主视图俯视图(第5题)A .4B .23C .43D .-437. 八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为x km/h ,则所列方程正确的是 A.1010202x x -=B.1010202x x -=C.1010123x x -=D.1010123x x -= 8. 若圆锥的母线长是12,侧面展开图的圆心角是120°,则它的底面圆的半径为A. 2B. 4C. 6D. 89. 如图,点A 为反比例函数y =8x (x ﹥0)图象上一点,点B 为反比例函数y =kx(x ﹤0)图象上一点,直线AB 过原点O ,且OA =2OB ,则k 的值为 A .2B .4C .-2D .-410.如图,在矩形ABCD 中,AB =4,BC =6,E 为BC 的中点.将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则△CDF 的面积为 A.3.6B. 4.32C. 5.4D. 5.76二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.9的算术平方根为 ▲ .12.如图,若AB ∥CD ,∠1=65°,则∠2的度数为 ▲ °. 13.分解因式:12a 2-3b 2= ▲ .14.如图,⊙O 的内接四边形ABCD 中,∠BOD =100°,则∠BCD = ▲ °. 15.如图,利用标杆BE 测量建筑物的高度.若标杆BE 的高为1.2m ,测得AB =1.6m ,BC =12.4m ,则楼高CD 为 ▲ m .ABF(第10题)O xyy =8xAB y =kx(第9题)16.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数 中位数 众数 方差 8.58.38.10.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 ▲ . 17.将正六边形ABCDEF 放入平面直角坐标系xOy 后,若点A ,B ,E 的坐标分别为(a ,b ),(-3,-1),(-a ,b ),则点D 的坐标为 ▲ . 18. 如图,平面直角坐标系xOy 中,点A 是直线y =33x +433上一动点,将点A 向右 平移1个单位得到点B ,点C (1,0),则OB +CB 的最小值为 ▲ .三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19. (本小题满分10分)(1)计算(x +y )2-y (2x +y ); (2)先化简,再求代数式的值:2221()244a a a a a a +----+÷4a a-,其中a =25.20.(本小题满分9分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”, 随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表: 组别观点频数(人数)A 大气气压低,空气不流动m(第18题)y xB OCADCEBA (第15题)ABDOC(第14题)DCB A 1(第12题)2C 10%B A20%DE调查结果扇形统计图B 地面灰尘大,空气湿度低40C 汽车尾气排放 nD 工厂造成的污染120 E其他60请根据图表中提供的信息解答下列问题:(1)填空:m = ▲ ,n = ▲ ,扇形统计图中E 组所占的百分比为 ▲ % ; (2)若该市人口约有400万人,请你计算其中持D 组“观点”的市民人数; (3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.21.(本小题满分8分)一个不透明的口袋中装有四个完全相同的小球,把它们分别标号为1,2,3,4.从袋中随机摸出一只小球,再从剩下的小球中随机摸出一只小球,请用列表法或画树形图的方法,求两次摸出的小球上所标数字之和大于4的概率.22.(本小题满分8分)如图,小明要测量河内小岛B 到河边公路AD 的距离,在点A 处测得∠BAD =37°,沿AD 方向前进150米到达点C ,测得∠BCD =45°. 求小岛B 到河边公路AD 的距离.(参考数据:sin37°≈ 0.60,cos37° ≈ 0.80,tan37° ≈0.75)23.(本小题满分8分)如图,⊙O 的直径AB =10,弦AC =6,∠BAC 的平分线交⊙O 于点D ,过点D 作⊙O 的切线交AC 的延长线于点E .求DE 的长.BCA (第22题)D24.(本小题满分9分)如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136xx x⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以是▲(写出一个即可);(2)若方程3-x=2x,3+x=2(x+12)都是关于x的不等式组22x x mx m<-⎧⎨-⎩,≤的关联方程,试求m的取值范围.25.(本小题满分8分)在△ABC中,AB=AC=2,∠BAC=45º.△AEF是由△ABC绕点A按逆时针方向旋转得到,连接BE,CF相交于点D.(1)求证:BE=CF;(2)当四边形ABDF是菱形时,求CD的长.26.(本小题满分10分)(第25题)FEDCBA请用学过的方法研究一类新函数ky x=(k 为常数,k ≠0)的图象和性质. (1)在给出的平面直角坐标系中画出函数6y x=的图象(可以不列表); (2)对于函数ky x=,当自变量x 的值增大时,函数值y 怎样变化? (3)函数k y x =的图象可以经过怎样的变化得到函数2ky x =+的图象?27.(本小题满分13分)如图,矩形ABCD 中,AB =4,AD =6,点P 在AB 上,点Q 在DC 的延长线上,连接DP ,QP ,且∠APD =∠QPD ,PQ 交BC 于点G .(1)求证:DQ =PQ ; (2)求AP ·DQ 的最大值; (3)若P 为AB 的中点,求PG 的长.(第26题)28.(本小题满分13分)已知二次函数y=ax2+bx+c(c≠4a),其图象L经过点A(-2,0).(1)求证:b2-4ac>0;(2)若点B(-c2a,b+3)在图象L上,求b的值;(3)在(2)的条件下,若图象L的对称轴为直线x=3,且经过点C(6,-8),点D(0,n)在y轴负半轴上,直线BD与OC相交于点E,当△ODE为等腰三角形时,求n的值.数学试题参考答案与评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分 标准的精神给分.一、选择题(本大题共10小题,每小题3分,共30分.)11. 312.6513.3(2a +b )(2a -b )14.13015.10.516.中位数17.(3,-1)18三、解答题(本大题共10小题,共96分.) 19.(本小题满分10分)(1)解:原式=x 2+2xy +y 2-2xy -y 2················· 4分 =x 2·························· 5分 (2)解:原式=221[](2)(2)4a a aa a a a g----- ··············· 6分 =2(2)(2)(1)(2)4a a a a aa a a g+----- ··················· 7分 =24(2)4a aa a a g --- ························ 8分 =21(2)a - ··························· 9分当a =2时,21(2)a -15= ············ 10分 20.(本小题满分9分)(1)80, 100,15; ························· 3分 (2)400×120400=120(万), 答:其中持D 组“观点”的市民人数约为120万人; ········· 6分 (3)根据所抽取样本中持C 、D 两种观点的人数占总人数的比例较大,所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车, 减少私家车出行的次数. ······················· 9分 21.(本小题满分8分)★保密材料阅卷使用1 2 3 4 1 (1,2) (1,3) (1,4) 2 (2,1) (2,3) (2,4) 3 (3,1) (3,2) (3,4) 4(4,1)(4,2)(4,3)·································· 5分 因为所有等可能的结果数共有12种,其中所标数字之和大于4的占8种,·································· 6分 所以 P (数字之和大于4)=812=23. ·················· 8分22.(本小题满分8分)解:过B 作BE ⊥CD 垂足为E ,设BE =x 米, ·············· 1分在Rt△ABE 中,tan A =BEAE, ········· 2分AE =BEtan A=BEtan37° =43x , ········ 3分在Rt△ABE 中,tan ∠BCD =BE CE, ······· 4分CE =BE tan∠BCD =xtan45°=x ,······· 5分∵AC =AE -CE ,∴43x -x =150解得x =450 ················ 7分答:小岛B 到河边公路AD 的距离为450米. ··············· 8分 23.(本小题满分8分)解:连接OD ,过点O 作OH ⊥AC ,垂足为H . ··············· 1分由垂径定理得AH =12AC =3.在Rt△AOH 中,OH =52-32=4. ········· 2分 ∵DE 切⊙O 于D ,∴OD ⊥DE ,∠ODE =90°. ············· 3分(第23题)A BC EOHEBCA(第22题)∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠BAD=∠ODA,∴∠CAD=∠ODA,∴OD∥AC.··········· 5分∴∠E=180°-90°=90°.又OH⊥AC,∴∠OHE=90°,∴四边形ODEH为矩形.·············· 7分∴DE=OH=4.·················· 8分24.(本小题满分9分)(1)x-2=0;(答案不唯一)····················· 3分(2)解方程3-x=2x得x=1,解方程3+x=2(x+12)得x=2,······ 5分解不等式组22x x mx m<-⎧⎨-⎩,≤得m<x≤m+2,·············· 7分∵1,2都是该不等式组的解,∴0≤m<1.··························· 9分25.(本小题满分8分)(1)由△ABC≌△ADE且AB=AC,得∴AE=AD=AC=AB,∠BAC=∠EAF,∴ ∠BAE=∠CAF.∴△ABE≌△ACF,························ 3分∴BE=CF.···························· 4分(2)∵四边形ABDF是菱形,∴AB∥DF,∴∠ACF=∠BAC=45°.····················· 5分∵AC=AF,∴∠CAF=90°,即△ACF是以CF为斜边的等腰直角三角形,∴CF=·························· 7分又∵DF=AB=2,∴CD=2.················· 8分26.(本小题满分10分)(1)图略;····························· 4分(2)若k>0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;················· 6分若k<0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;················· 8分(3)函数kyx=的图象向左平移2个单位长度得到函数2kyx=+的图象.··10分27.(本小题满分13分)(1)∵四边形ABDF 是矩形,∴AB ∥CD ,∴∠APD =∠QDP . ························ 1分 ∵∠APD =∠QPD ,∴∠QPD =∠QDP , ························ 2分 ∴DQ =PQ . ··························· 3分(2)过点Q 作QE ⊥DP ,垂足为E ,则DE =12D P . ············· 5分 ∵∠DEQ =∠PAD =90°,∠QDP =∠APD ,∴△QDE ∽△DPA ,∴DQ DP =DE AP , ··················· 6分∴AP ·DQ =DP ·DE =12DP 2. 在Rt△DAP 中,有DP 2=DA 2+AP 2=36+AP 2,∴AP ·DQ =12(36+AP 2). ····················· 7分 ∵点P 在AB 上,∴AP ≤4,∴AP ·DQ ≤26,即AP ·DQ 的最大值为26. ············· 8分(3)∵P 为AB 的中点,∴AP =BP =12AB =2, 由(2)得,DQ =14(36+22)=10. ················ 9分 ∴CQ =DQ -DC =6.设CG =x ,则BG =6-x ,由(1)得,DQ ∥AB ,∴CQ BP =CG BG, ·················· 11分 即62=x 6-x ,解得x =92, ····················· 12分 ∴BG =6-92=32, ∴PG =PB 2+BG 2=52. ······················ 13分 28.(本小题满分13分)(1)证明:由题意,得4a -2b +c =0,∴b =2a +12c . ·········· 1分 ∴b 2-4ac =(2a +12c )2-4ac =(2a -12c )2. ·············· 2分∵c ≠4a ,∴2a -12c ≠0,∴(2a -12c )2>0,即b 2-4ac >0. ······ 3分 (2)解:∵点B (-c2a ,b +3)在图象L 上, ∴22()342c c a b c b a a ⋅+⋅-+=+,整理,得(42)34c a b c b a-+=+. ···· 4分 ∵4a -2b +c =0,∴b +3=0,,解得b =-3. ············ 6分(3)解:由题意,得332a--=,且36a -18+c =-8,解得a =12,c =-8. ∴图象L 的解析式为y =12x 2-3x -8. ··············· 7分 设OC 与对称轴交于点Q ,图象L 与y 轴相交于点P ,则Q (3,-4),P (0,-8),OQ =PQ =5.分两种情况:①当OD =OE 时,如图1,过点Q 作直线MQ ∥DB ,交y 轴于点M ,交x 轴于点H , 则OM OQ OD OE=,∴OM =OQ =5. ∴点M 的坐标为(0,-5). 设直线MQ 的解析式为15y k x =-.∴1354k -=-,解得113k =. ∴MQ 的解析式为153y x =-.易得点H (15,0). 又∵MH ∥DB ,OD OB OM OH =. 即8515n -=,∴83n =-. ··················· 10分 ②当EO =ED 时,如图2,∵OQ =PQ ,∴∠1=∠2,又EO =ED ,∴∠1=∠3.∴∠2=∠3, ∴PQ ∥DB .设直线PQ 交于点N ,其函数表达式为28y k x =-∴2384k -=-,解得243k =. ∴PQ 的解析式为483y x =-. ∴点N 的坐标为(6,0). ∵PN ∥DB ,∴OD OB OP ON =,∴886n -=,解得323n =-. ······ 12分 综上所述,当△ODE 是等腰三角形时,n 的值为83-或323-. (13)。

相关文档
最新文档