经济数学建模 (1)

合集下载

数学建模案例(下)

数学建模案例(下)

经济数学 模型一:血管分支模型 模型一: 5.模型求解 5.模型求解


∂E 2 −5 α −1 ∂r = −4kq r + αbr = 0 ∂E α −1 2 −5 = −kq r1 + αbr1 = 0 ∂r1

r =4 r1
1 α +4
第十二章
数学建模案例(下 数学建模案例 下)
x =0
n
+
此时问题可以转 化为什么数学问 题?
x = n +1
∑ (a − b)nf ( x)
a , b, c
f (x )
G (n)

?
n
第十二章
数学建模案例(下 数学建模案例 下)
经济数学 模型二:报童策略模型 模型二: 3.模型建立 3.模型建立
需求量 都相当大, x 的取值和购进量 n 都相当大,将 x
(1)假设报童每天购进量为 (2)假设每天的需求量为
n
份报纸
x 份报纸的概率为
f ( x )( x = 0,1,2, L)
(3)报童每天购进
n 份报纸时平均收入为 G (n)
第十二章 数学建模案例(下 数学建模案例 下)
经济数学 模型二:报童策略模型 模型二: 3.模型建立 3.模型建立
G (n) = ∑ [(a − b) x − (b − c)(n − x)] f ( x)
r cos θ = 2 r 1
−4
=2
α −4 α +4
第十二章
数学建模案例(下 数学建模案例 下)
经济数学 模型一:血管分支模型 模型一: 6.模型应用 6.模型应用

数学建模在经济领域中的应用

数学建模在经济领域中的应用

数学建模在经济领域中的应用随着时代的发展,经济事务的处理已经变得更加复杂,需要运用更加高级的工具和方法来解决。

数学建模作为一种综合性较强的方法,已被广泛应用于经济领域。

本文将介绍数学建模在经济领域中的应用,并探讨数学建模的意义和局限性。

一、财务规划要达到财务规划的目的,必须了解不同的财务项目之间的相互影响,例如贷款、退休、投资等。

使用数学建模来研究这些问题,可以极大地提高决策者的能力。

例如,使用数学建模可以对储蓄帐户的规划进行预测,并在未来多个时间点考虑到各种费用。

二、市场分析市场分析需要分析消费和销售数据,以确定目标客户的需求。

数学建模可以将市场数据与其他因素(如时间和地理位置)结合起来,以便更好地理解市场趋势和消费者需求。

这样可以根据这些数据更好地预测客户需求,并针对性地提供产品和服务。

三、经济预测经济预测是指根据过去的趋势和预测未来的趋势,预测经济增长和衰退的发展趋势。

数学建模可以帮助预测并评估不同变量之间的关联性,进而预测未来的情况。

这种技术也可以用来帮助投资者制定投资策略和做出决策。

四、投资与分散化在投资和分散化中,数学建模可以为投资者提供更具挑战性的定量方法。

例如,使用统计方法建立资产组合模型,可以帮助投资者确定最佳投资策略,以实现最大的回报。

另外,数学建模还可以帮助投资者了解他们的投资组合在不同市场条件下的表现。

五、决策支持系统决策支持系统为企业提供了处理和分析数据的工具,以便做出更明智的决策。

数学建模是其中的关键因素之一,因为它可以提供预测模型、模拟和优化方法。

这些工具可以帮助企业管理者制定更好的商业计划和决策过程。

六、对数学建模的意义和局限性的探讨尽管数学建模被广泛应用于经济领域,但是它并非没有缺点。

数学模型的正确性取决于数据的准确性,而有时候数据可能不准确或偏差较大。

此外,建模本身也需要大量的时间和资源,以便精准而可靠地预测未来的变化。

总之,数学建模在今天的经济领域中扮演着重要的角色。

数学建模在经济学中的应用研究

数学建模在经济学中的应用研究

数学建模在经济学中的应用研究数学建模是一种将数学理论和方法应用于实际问题的过程。

在经济学领域,数学建模被广泛应用于研究经济现象、预测经济趋势和制定经济政策等方面。

本文将介绍数学建模在经济学中的应用,并探讨其对经济学研究的影响和意义。

首先,数学建模在经济学中的应用可以帮助我们理解经济现象的本质。

经济学是研究资源配置和分配的科学,而经济现象往往涉及各种变量之间的关系。

通过建立经济模型,可以将这些变量及其之间的关系用数学方程来表示,从而更好地理解经济现象的本质。

例如,通过对供需关系的建模,我们可以推导出价格的变化对市场供求的影响,进而预测市场的波动和调整过程。

其次,数学建模在经济学中的应用可以帮助我们预测经济趋势。

经济的波动和变化往往是由多种因素所引起的,如消费者信心、金融政策、市场需求等。

通过建立经济模型并进行数据分析,可以将这些因素考虑在内,从而准确地预测经济的发展趋势。

例如,通过对GDP、物价指数等经济指标进行建模和分析,我们可以预测未来的经济增长速度、通货膨胀水平等关键经济变量的走势,从而指导政府和企业的决策。

另外,数学建模在经济学中的应用还可以帮助我们制定经济政策。

经济政策的制定需要考虑多种因素,并进行有效的评估和模拟。

通过建立适当的经济模型,政策制定者可以对各种政策进行测试和分析,从而找出最优的政策方案。

例如,在制定财政政策时,可以建立宏观经济模型,考虑不同政策措施对经济增长、就业和通货膨胀等的影响,从而做出科学合理的政策决策。

数学建模在经济学中的应用还可以促进不同学科之间的交叉研究。

经济学本身是一门复杂的学科,涉及到众多的变量和关系。

通过将数学建模与经济学相结合,可以为经济学的研究提供更严谨和精确的方法。

而数学建模的应用,则需要从经济学的角度对数学问题进行修正和解读,促进了数学与经济学之间的交流与合作。

例如,运用微分方程对经济动力系统进行建模,可以更好地揭示经济系统的运行机制和演化过程,为经济理论的研究和发展提供新的视角和新的方法。

经济数学模型

经济数学模型

1998年全国大学生数学建模竞赛题目
A题 投资的收益和风险
市场上有 n 种资产(如股票、债券、…)Si ( i=1,…,n)供投资者选择,某公司有数额为 M 的一笔 相当大的资金可用作一个时期的投资,公司财务分析人员对 这 n 种资产进行了评估,估算出在这一时期内购买Si的平 均收益率为ri,并预测出购买Si的风险损失率为qi。考虑到 投资越分散,总的风险越小,公司确定,当用这笔资金购买 若干种资产时,总体风险可用所投资的Si中最大的一个风险 来度量。
y
2
1
x
0
2
4
6
8
-1
-2
这样一来,每一条与水平直线Y=-1相遇的折线唯一地确定
一条这种从(0,0)到(m+n , n-m -2)的新折线。
设向上的线段条数为U,向下的线段条数为D,则对于新折线有
U+D=m+n
1*U+(-1)D=-(m-n)-2
两式相加即得
2U=2n-2 可见向上的线段条数为
U=n-1 向下的线段条数为
1.5
2
198
S3 23
5.5
4.5 52
S4 25
2.6
6.5 40
试给该公司设计一种投资组合方案,即用给定的资
金M,有选择地购买若干种资产或存银行生息,使 净收益尽可能大,而总体风险尽可能小。
2)试就一般情况对以上问题进行讨论,并利用以下数据 进行计算。
Si
Ri(%) Qi(%) Pi(%) Ui(元)
(2) 若记存款为1,并用向上的线段来表示, 取款为-1 ,并用向下的线段来表示,
则这一天内2m个储户随意地来存取款的可能 排列分别对应一条从(0,b)到(2m,b)的折线,而无款可 取的情况当且仅当存取款余额出现负值时发生,此时其对应 的折线将穿过X而与水平直线Y=-1相遇。从而

数学建模简介1

数学建模简介1

数学建模的方法和步骤
模型假设
在明确建模目的,掌握必要资料的基础上, 通过对资料的分析,根据对象的特征和建 模目的,找出起主要作用的因素,对问题 进行必要的、合理的简化,用精确的语言 提出若干符合客观实际的合理假设。
数学建模的方法和步骤
模型假设
作出合理假设,是建模至关重要的一步。 如果对问题的所有因素一概考虑,无疑是 一种有勇气但方法欠佳的行为,所以高超 的建模者能充分发挥想象力、洞察力和判 断力 ,善于辨别主次,而且为了使处理方 法简单,应尽量使问题线性化、均匀化。
看谁答得快
1、某甲早8时从山下旅店出发沿一路径上山,下 午5时到达山顶并留宿。次日早8时沿同一路径下 山,下午5时回到旅店。某乙说,甲必在两天中 的同一时刻经过路径中的同一地点,为什么?
2、两兄妹分别在离家2千米和1千米且方向相反 的两所学校上学,每天同时放学后分别以4千米/ 小时和2千米/小时的速度步行回家,一小狗以6千 米/小时的速度从哥哥处奔向妹妹,又从妹妹处奔 向哥哥,如此往返直至回家中,问小狗奔波了多 少路程?
四、模型的特点:
逼真性和可行性 渐进性 强健性 可移植性 非预测性 条理性 技艺性 局限性
五、建模能力的培养:
具有广博的知识(包括数学和各种实际知 识)、丰富的经验、各方面的能力、注意 掌握分寸。

具有丰富的想象力和敏锐的洞察力
类比法和理想化方法
直觉和灵感
实例研究法
学 习 、 分 析 别 人 的 模 型 亲 手 去 做
模型集中反映了原型中人们需要的那一部分特征
什么是数学建模
什么是数学模型?
简单地说:数学模型就是对实际问题的一种 数学表述。
具体一点说:数学模型是以部分现实世界为某 种研究目的的一个抽象的、简化的数学结构。 这种数学结构可以是数学公式、算法、表格、 图示等。

经济数学建模(西安交通大学,戴雪峰)

经济数学建模(西安交通大学,戴雪峰)

C3r (T
T1)2
取每日平均费用作目标函数,记为C(T )
C(T ) C1 C2Q2 C3 (rT Q)2
T 2rT
2rT
(Q
T1
Q r
)

C(T ) 0, C(T ) 0
T
Q

T 2C1 C2 C3 , Q 2C1r C3
rC2 C3
C2 C2 C3
比较两种情况下的结果,可以看到: 在不允许缺货的情况下(即C3 ),后者公式变 为前者。 在允许缺货的情况下,订货周期应增大,而订货 批量应减小。 (相对于不允许缺货时的批量和周期而言)
数学建模
西安交通大学理学院 戴雪峰
E-mail: daixuefeng@
微分学模型(静态优化模型)、 经济学模型
一、存储模型
存储过多会占用资金多,仓储费高。 但存储量少会增加订货费,缺货还会 造成经营的损失。现只考虑订货费及 存储费,如何使总费用最少?
其中订货费指每订一批货需付出的 费用,它与订货量的多少无关;存 储费与货物量、存储时间成正比。
dB
dt 随 t 的增加而增加;开始救火以后,即t1 t t2 , 如果消防队员救火能力足够强,火势会越来越小,
dB
即 dt 随 t 的增加而减小;且当
t
t2
dB
时, dt
0

模型假设:
(1)火灾损失与森林被烧面积 B(t2 ) 成正比,比例系 数 C1,即烧毁单位面积的损失费。
(2)从失火到开始救火这段时间(0 t t1 )内,火
问题分析:
(1)火灾损失通常正比于与森林被烧面积,而被 烧面积又与从起火到火灭的时间有关,而这时间又 与消防队员人数有关。

经济数学建模作业及答案

经济数学建模作业及答案

2、如果连续复利时,以什么利率才能使本金在8年内变成3倍?1、在每半年复利一次的情况下,以8%的利率,需要经过多长时间才能使现值增到2.5倍?3、连续收益流量每年按80万元持续5年,若以年利率5%贴现,其现值应是多少?T=11.68年r=13.73%55%00S 80353.92t e dt -==⎰8003S S re =4、某汽车使用寿命为10年,若购买此车需35000元,若租用此车每年租金为7200元,若资金的年利率为14%,按连续复利计算,问买车与租车哪一种方式合算。

计算租车资金流量总值的现值,然后与购买费相比。

租车租金流量总值的现值为所以买车比租车合算。

002.5S S +=2T0.08(1)2101014141172003875635000i i i i i S e e -%-%==≈>=∑∑5、一商家销售某种商品的价格满足关系x p 2.07-=(万元/吨),x 为销售量(单位:吨);商品的成本函数是C =3x +1(万元)。

(1) 若每销售一吨商品,政府要征税t (万元),求该商家获最大利润时商品的销售量;(2) t 为何值时,政府税收总额最大。

6、已知某企业生产的商品的需求弹性为1.2,如果该企业准备明年将价格降低15%,问这种商品的销量预期会增长多少?总收益会增长多少?2'5(2) 10 0 22T tx t t T t ==-=⇒=R18%,3%R Q Q∆∆==令2(70.2)31(4)0.21Px C Tx x x tx t x x --=----=---'''5()0,()0102L x L x x t=<⇒=-(1)利润L(x)=7、某消费者打算购买两种商品q 1和q 2,他的预算约束是240元,两种商品的单价分别是10元和2元,其效用函数为U=q 1q 2,消费者的最优商品组合是什么?一元钱的边际效用是多少?8、效用函数U (q 1,q 2) 应满足的条件是以下的A,B 之一:A. U (q 1,q 2) =c 所确定的函数q 2=q 2(q 1)单调减、下凸;0,0,0,0,0.B 21222221221>∂∂∂<∂∂<∂∂>∂∂>∂∂q q Uq U q U q U q U AB ⇒证明:对U (q ,q 2) =c 两端求q 1的一阶导和二阶导12102240q q +=1212MU MU P P =1212,60q q ==解建立方程组得解出一元钱边际效用为610、在确定性存贮模型中,在费用中增加购买货物本身的费用,确定不允许缺货的最优订货周期和订货批量。

论数学建模在经济学中的应用

论数学建模在经济学中的应用

数学建模在经济学中的应用摘要数学建模是一种将现实世界的问题转化为数学问题,然后通过数学方法进行求解的过程。

在经济学领域,数学建模被广泛应用于解决各种经济问题,包括经济增长、市场竞争、资源分配等。

本文将介绍数学建模在经济学中的应用,并讨论其重要性及未来发展方向。

1. 引言数学建模作为一种重要的工具,已经成为解决经济学问题中不可缺少的手段。

经济学研究的对象和方法都具有复杂性和抽象性,因此需要借助数学来进行形式化分析。

数学建模能够帮助经济学家更好地理解经济现象,并为政策制定者提供决策支持。

本文将介绍数学建模在经济学中的具体应用。

2. 经济增长模型经济增长是研究一个国家或地区经济总体产出和生产要素增长的过程。

通过数学建模,经济学家可以构建经济增长模型,分析经济增长的原因和影响因素。

常用的经济增长模型包括Solow模型、Romer模型等。

这些模型通过引入生产要素、技术进步等变量,揭示了经济增长的机制和规律。

3. 市场竞争模型市场竞争是一种经济现象,其中买方和卖方根据供求关系自由决定产品的价格和数量。

通过数学建模,经济学家可以研究市场竞争的均衡状态、价格变动和市场结构等问题。

常用的市场竞争模型包括供求模型、垄断模型、寡头垄断模型等。

这些模型通过建立供求关系和利润最大化条件,分析市场竞争的效果和结果。

4. 资源分配模型资源分配是指将有限的资源分配给不同的经济主体,以实现最大化的利益。

通过数学建模,经济学家可以分析资源分配的效率和公平性问题。

常用的资源分配模型包括最优化模型、博弈论模型等。

这些模型通过建立约束条件和目标函数,求解最优的资源分配方案。

5. 数学建模在经济学中的重要性数学建模在经济学中具有重要的作用和意义。

首先,数学建模能够帮助经济学家更好地理解经济现象,揭示经济规律和机制。

其次,数学建模能够为政策制定者提供决策支持,帮助他们制定有效的经济政策。

此外,数学建模还能够促进学科交叉和创新,为经济学与其他学科的融合提供契机。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)
若将C 看作变量 ,解出最优解
, x, y
(C), x x(C), y y(C)
z f ( x, y) 的最值 z 也可视为 C 的函数
z f ( x (C), y (C))
经济数学模型
z 对 C 求导
dz f dx f dy dC x dC y dC
比的极限
y x y lim f ( x). x0 x f ( x) x Ey 称为函数 y f ( x) 在点 x 处的弹性,记作 Ex , 即
Ey x f ( x) Ex f ( x)
经济数学模型
弹性意义为:当自变量变化1%时,函数变化的百
Ey %. 分数为 Ex
注意 弹性研究的是相对变化率.因此,弹性没有 量纲.
i 1
m
, xn ))
( 同样称 i i 1,2,
, m)为拉格朗日乘数
经济数学模型
拉格朗日乘数是函数 f ( x1, x2 ,
f * ( x*1, x*2 ,
, xn ) 的条件极值
, x*n ) 对约束常数 Ci 的一阶偏导数,即
f * i , i 1,2, Ci
,m
其经济意义随目标函数、约束条件的经济意义和度
经济数学模型
2.3
均衡价格
均衡价格 P e 是市场上供需量相等时的价格,这时的
供需量叫做均衡商品量。
P(t ) 的涨速 一般来说价格P 随时间t 波动 P P(t ),,
与过剩需求 Qd Qs 成正比,故有数学模型
dP k (Qd Qs ) dt
解这个模型就得到价格和时间的关系。
若 Qd , Qs 的表达式是线性的:
商品的最优价格问题. 收入函数和成本函数分别为
R Qd ( p) p
C Qs ( p) q r [Qs ( p) Qd ( p)]
总利润为
L( p ) R C Qd ( p ) p Qs ( p )q r[Qs ( p ) Qd ( p )] ( p) p (a bp )q r[(a ) (b ) p ] p 2 [ bq r (b )] p r ( a ) aq

经济数学模型
多变量多约束下拉格朗日乘子的经济意义
研究有m个等式约束:
i ( x1, x2 , , xn ) Ci
函数 f ( x1, x2 ,
i 1, 2,
,m
, xn ) 的极值问题
构造拉格朗日函数
L f ( x1 , x2 ,
, xn ) i (Ci i ( x1, x2 ,
将方程组(1)中前两式代入(2)式中
* * dz* dx dy * * * dC x dC y dC

(2)
(3)
对 ( x, y) C两边对C求导
dx dy 1 x dC y dC
经济数学模型
dz dC
经济数学模型
由于商品不脱销,所以 Qs Qd ,由此
a p pe b
最优价格问题转化为求函数L(p)在区间 [ pe , )上的 最大值问题。
L(p)的唯一驻点为
bq r (b ) p 2
0
不难证明p0是L(p)的最大值,所以当 p0 pe ,最优价格
它表示在价格为p的水平上,当价格改变1%时,需求量 Q变化的百分数. 根据需求弹性值的大小,需求价格弹性可以划分为
经济数学模型
(1)缺乏弹性: 0
1
(2)富有弹性: 1 (3)单位弹性: 1
(4)完全有弹性: (5)完全无弹性:

0
经济数学模型
3、需求弹性、总收入与价格之间的关系 总收入函数为 R PQ
量单位不同而有不同的解释。
2.7 古诺产量竞争模型
1、古诺双头模型
经济数学模型
古诺模型是最早的寡头模型,研究的是
在一个只有两家成本结构相同的企业生产完
全相同产品的市场中,企业如何确定自己的
产量使利润达到最大,使市场达到一个稳定
当边际收入等于边际成本且边际收入的变化率小于边 际成本的变化率时,利润最大。 条件:唯一驻点
经济数学模型
4.边际需求 需求函数 Qd ( p) (p为价格)的导数 ' ( p), 称
为价格为p单位时的边际需求.
边际需求 ' ( p) 表示当价格为p时,价格再上涨1 个单位,需求量将改变 ' ( p) 个单位. 5.边际供给
0 p 价格为
p* max pe , p 0
2.4、拉格朗日乘子的经济意义
经济数学模型
1、以二元函数为例说明拉格朗日乘子的经济意义
( x, y) C 是影响目标函数中两 设 z f ( x, y) 是目标函数, 个因素的约束条件,在此约束条件下,求目标函数 z f ( x, y) 的最值问题。
L' (700) 3.9 0.006 700 0.3.
经济意义:当产量为600时,再增加单位产量会使利 润增加0.3,当产量为700时,再增加单位产量会使利 润减少0.3 (3)令 L( x) 0, 得x 650. 这时,有
C(650) R(650) 1.1.
经济数学模型
经济数学模型
第二章
经济应用模型
经济数学模型
2.1
一、边际的概念
边际及弹性分析
在经济学中,如果一个经济指标 y是另一个经济指标 x 的函数y=f (x), 当自变量x在x0处有一个单位的改变量时 ,所对应的函数y的改变量称为该函数所表示的经济指标 在x0处的边际量。 例如:生产要素(自变量)增加一单位,产量(因变量)的 增量为2个单位,因变量改变的2个单位就是边际产量.
边际分析法就是分析自变量变动1单位时,因变量
会变动多少的方法.
经济数学模型
问题:怎样用数学方法来描述边际呢?
y 设函数f(x)可导. 根据导数的定义,有 f ( x) lim . x0 x
当 | x | 很小时,有 于是
y f ( x) . x
y f ( x x) f ( x) f ( x)x.
Qd ( p) p , Qs ( p) a bp
b 0, 0
经济数学模型
可得供求平衡时的价格为 则问题简化为
a pe b
dP P Pe dt
其通解为
从而
k ( b)>0
P(t ) cet Pe
lim P (t ) Pe

y / f ( x0 ) [ f ( x0 x) f ( x0 )] / f ( x0 ) x / x0 x / x0
为函数在区间 ( x0 , x x) 上的弧弹性。
经济数学模型
2.需求价格弹性 设需求函数为 Q Q( p)(p为价格),则需求价格弹性 为
EQ p = Q '( p). Ep Q( p)
拉格朗日函数为
L( x, y, ) f ( x, y) [C ( x, y)]
经济数学模型

L x 0 L 0 y L 0
f x x f y y ( x, y ) C 0
称为产量为 x 单位时的边际成本. 边际成本 C' ( x) 表示当产量为x时,再生产1个单 位产品时总成本将改变 C' ( x) 个单位. 2.边际收益 (x为产量)的导数 R' ( x), 总收益函数 R R( x) 称为产量为x单位时的边际收益.
边际收益 R' ( x) 表示当产量为x时,再生产1个单
拉格朗日乘子 是目标函数最值 z 对约束条件 之常数 C 的变化率或边际值。


随目标函数、约束条件的经济意义和度量 单位不同而有不同的经济解释。
为 ( x, y) C 若总成本限定为 C ,两种原料投入为x、y, 目标是使总产量 z f ( x, y) 最大,则 是在最优投 入水平时的边际产量。
t
这说明价格虽是波动的,但随着时间的推移,最后 趋于均衡价格。
经济数学模型
若需求是一个常数 Qd ,供给也是一个常数 Qs,且供不应
Qd Qs ,则 求:
dP k (Qd Qs ) k dt
其通解为 从而
Qd Qs
P(t ) k t +c
lim P (t )
dQd M EM dM Qd
若需求收入弹性 EM 0,则称这样的商品为正常商品,其中 若 EM 1 ,认为是缺乏弹性的,例如生活必需品;若 EM 1
,则为是富有弹性的,例如奢侈品或高档商品。若需求收入
弹性 EM 0 ,则认为该商品是低档或劣质产品,即吉芬( Giffen)商品。
t
此时即为通货膨胀。控制通货膨胀的关键是降低消费资 金的投放和增加商品的供应量。
经济数学模型
如果企业生产的产品不脱销,并认为商品需求量即为销售量 供给量即为生产量。故此时发生的商品库存量为 Qs ( p) Qd ( p)
设企业生产和库存单位商品的成本分别为q和r.若需求和供给
Qd ( p) p , Qs ( p) a bp ,下面讨论该 函数都为线性函数:
位产品,总收益将改变 R' ( x) 个单位.
经济数学模型
3.边际利润 总利润函数 L L( x) (x为产量)的导数 L' ( x), 称 为产量为x单位时的边际利润. 边际利润 L' ( x) 表示当产量为x时,再生产1个单位 产品,总利润将改变 L' ( x) 单位. 最大利润原理
相关文档
最新文档