1.3 边 城 Word版含解析

合集下载

2020-2021学年数学北师大版选修2-3学案:1.3 组合 Word版含解析

2020-2021学年数学北师大版选修2-3学案:1.3 组合 Word版含解析

§3组合知识点一组合的定义[填一填]一般地,从n个不同元素中,任取m(m≤n)个元素为一组,叫作从n 个不同元素中取出m个元素的一个组合,我们把有关求组合的个数的问题叫作组合问题.[答一答]1.如何区分一个问题是排列问题还是组合问题?提示:一个问题究竟是组合问题还是排列问题,不能想当然地判断,必须要结合具体的问题,依照题目的要求,寻找处理的过程中是否与顺序有关,如果与顺序有关,就是排列问题,否则就是组合问题.知识点二 组合[填一填]我们把从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫作从n 个不同元素中取出m 个元素的组合数,用符号C m n 表示.[答一答]2.如何理解记忆组合数公式?提示:在记住排列数公式的基础上,分母再除以m !就得组合数公式. 知识点三 组合数的性质[填一填]性质1:C m n =C n -m n. 性质2:C m n +1=C m n +C m -1n. [答一答]3.如何理解和记忆组合数的性质.提示:从n 个元素中取m 个元素,剩余(n -m )个元素,故C m n =C n -m n .从n +1个元素中取m 个元素记作C m n +1,可认为分作两类:第一类为含有某元素a 的取法为C m -1n,第二类不含有此元素a ,则为C m n ,根据分类加法计数原理得C m n +1=C m n +C m -1n.1.组合的定义(1)给出的n 个元素是互不相同的,且从n 个元素中抽取m 个元素是没有重复抽取情况的,因而这m 个元素也是互不相同的,这就决定了m ≤n .(2)组合的定义中包含两个基本内容:一是“取出元素”,二是“并成一组”,“并成一组”即表示与顺序无关.(3)由定义可知,两个组合相同,只需这两个组合的元素相同即可.2.组合数我们可以从集合的角度来理解,从n 个不同元素中取出m 个元素并成一组是一个组合,任取m 个元素组成的组合的全体构成一个集合,例如:从3个不同元素a ,b ,c 中任取2个的所有组合构成的集合为:A ={ab ,ac ,bc }.所谓组合数就是求这个集合的元素的个数.从集合中可以清楚地了解组合之间的互异性.3.组合数公式(1)组合数公式的推导应注意以下两点:①遵循从特殊到一般的原则,重点研究了从3个不同元素中取出2个元素的组合数.推导过程中采用了穷举法.②遵循以退为进的原则,先建立了组合与排列之间的对应关系,依据分步计数原理,把求从n 个不同元素中取出m 个元素的排列数的过程分为两步完成:求组合数;求全排列数.从而利用这种对应关系和已知的排列数公式得到组合数公式.我们应理解和掌握这种分步解决问题的思路,它在解决排列组合应用题时非常重要.(2)组合数公式的应用对于组合数公式我们强调:第一个公式体现了组合数与相应排列数的关系,当n 确定而m 变化时,组合数与m 的一种函数关系.第二个公式C m n =n !m !(n -m )!的主要作用有: ①当m ,n 较大时,可借助计算器,利用这个公式计算组合数比较方便.②对含有字母的组合数的式子进行变形和论证时,常用此式.4.组合数的两个性质(1)性质1:C m n =C n -m n①从n 个元素中取出m 个元素,相当于从这n 个元素中留下n -m 个元素,所以C m n =C n -m n.这体现了“取法”与“剩法”是“一一对应”的思想.②性质表达式的特点:等号两边组合数的下标相同,上标之和等于下标.③性质的作用:(Ⅰ)当m >n 2时,计算C m n 可转化为计算C n -m n,简化运算;(Ⅱ)C x n =C y n ⇒x =y 或x +y =n .(2)性质2:C m n+1=C m n+C m-1n,①从含有a的n+1个不同的元素中取出m个元素的组合数是C m n+1这些组合可以分为两类:第一类:取出的m个元素中含有元素a,相当于个.第二类:从不含a的n个不同的元素中取出m-1个元素,共有C m-1n取出的m个元素中不含元素a,相当于从不含a的n个不同的元素中取出.这体现了“含m个元素,共有C m n个.根据加法原理,得到C m n+1=C m n+C m-1n与不含某元素”的分类思想.②性质表达式的特点:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与较大的相同的一个组合数.③性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的具体应用.题型一组合的概念[例1](1)从甲、乙、丙、丁四位老师中选出两位去参加学习交流会,试判断该问题是组合问题还是排列问题,并写出所有的可能情况;(2)从甲、乙、丙、丁四位老师中选出两位分别到A,B两个班级当班主任,试判断该问题是组合问题还是排列问题,并写出所有的可能情况.[思路探究](1)两位老师参加学习交流会没有顺序要求,是组合问题;(2)由于班级不一样,若选出两位老师后,安排班级不同时,结果不一样,所以是排列问题.[解](1)该问题为组合问题,所有情况为:甲、乙,甲、丙,甲、丁,乙、丙,乙、丁,丙、丁,共6种情况.(2)该问题为排列问题,班级A,B的班主任的所有情况为:(甲,乙),(乙,甲),(甲,丙),(丙,甲),(甲,丁),(丁,甲),(乙,丙),(丙,乙),(乙,丁),(丁,乙),(丙,丁),(丁,丙),共12种情况.规律方法用组合的知识解简单的应用题时,首先要判断它是不是组合问题,组合问题与排列问题的根本区别在于:排列问题与顺序有关,而组合问题与顺序无关.若顺序对结果无影响,则是组合问题,若顺序对结果有影响,则是排列问题.判断下列问题是组合问题还是排列问题.(1)设集合A ={a ,b ,c ,d ,e },则集合A 的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多分得1本,有几种分配方法?解:(1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站的车票与乙站到甲站的车票是不同的,故是排列问题;但票价与顺序无关,甲站到乙站与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中选出3种,按一定顺序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.题型二 有关组合数的计算或证明[例2] (1)已知C 5n -1+C 3n -3C 3n -3=345,求n . (2)证明:①C n m =m m -n C n m -1, ②C k n ·C m -k n -k =C m n C k m .[思路探究] 充分利用组合数公式及性质解题,并注意有关限制条件.[解] (1)原方程可变形为C 5n -1C 3n -3+1=195,即C 5n -1=145C 3n -3,即(n -1)(n -2)(n -3)(n -4)(n -5)5!=145·(n -3)(n -4)(n -5)3!, 化简整理得n 2-3n -54=0.解此二次方程得n =9或n =-6(不合题意,舍去).∴n =9. (2)证明:①m m -n C n m -1=m m -n ·(m -1)!n !(m -1-n )!=m !n !(m -n )!=C n m . ②∵C k n ·C m -k n -k =n !k !(n -k )!·(n -k )!(m -k )!(n -m )!=n !k !(m -k )!(n -m )!. C m n ·C k m =n !m !(n -m )!·m !k !(m -k )!=n !k !(n -m )!(m -k )!, ∴C k n ·C m -k n -k =C m n ·C k m .规律方法 解和组合数有关的方程、不等式、求值、证明等问题时,要注意组合数公式及性质,同时注意其成立的条件.计算:(1)C 58+C 98100·C 77; (2)C 05+C 15+C 25+C 35+C 45+C 55;(3)C n n +1·C n -1n . 解:(1)原式=C 38+C 2100×1=8×7×63×2×1+100×992×1=56+4 950=5 006. (2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2(6+5×42×1)=32. (3)方法一:原式=C n n +1·C 1n =(n +1)!n !·n =(n +1)·n !n !·n =(n +1)n =n 2+n . 方法二:原式=(C n n +C n -1n )·C n -1n =(1+C 1n )·C 1n =(1+n )·n =n 2+n . 题型三 无约束条件的组合问题[例3] 一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法?(3)从口袋内取出3个球,使其中不含黑球,有多少种取法?[思路探究] 先判断是不是组合问题,再用组合数公式写出结果,最后求值.[解] (1)从口袋内的8个球中取出3个球,取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 11C 27=7×62×1=21. (3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35. 规律方法 解简单的组合应用题,要首先判断它是不是组合问题,即取出的元素是“合成一组”还是“排成一列”其次要看这件事是分类完成还是分步完成.现有10名教师,其中男教师6名,女教师4名.(1)现要从中选2名去参加会议,有多少种不同的选法?(2)现要从中选出男、女教师各2名去参加会议,有多少种不同的选法?解:(1)从10名教师中选2名去参加会议的选法有C 210=45种.(2)从6名男教师中选2名有C 26种选法,从4名女教师中选2名有C 24种选法.根据分步乘法计数原理,共有选法C 26C 24=90种.题型四 有约束条件的组合问题[例4] 要从12人中选出5人去参加一项活动,按下列要求,有多少种不同选法?(1)A ,B ,C 三人必须入选;(2)A ,B ,C 三人都不能入选;(3)A ,B ,C 三人只有一人入选;(4)A ,B ,C 三人至少一人入选;(5)A ,B ,C 三人至多两人入选.[思路探究] 判断是否与顺序有关,确定是否为组合问题.[解](1)只需再从A,B,C之外的9人中选择2人,所以有方法C29=36(种).(2)由于A,B,C三人都不能入选,所以只能从余下的人中选择5人,即有选法C59=126(种).(3)可分两步:先从A,B,C三人中选出一人,有C13种选法;再从其余的9人中选择4人,有C49种选法.所以共有选法C13C49=378(种).(4)(直接法)可分三类:①A,B,C三人只选一人,则还需从其余9人中选择4人,有选法C13C49=378(种);②A,B,C三人中选择两人,则还需从其余9人中选择3人,有选法C23C39=252(种);③A,B,C三人都入选,则只需从余下的9人中选择2人,有选法C33C29=36(种).由分类加法计数原理,共有选法378+252+36=666(种).(间接法)先从12人中任选5人,再减去A,B,C三人都不入选的情况,共有选法C512-C59=666(种).(5)(直接法)可分三类:①A,B,C三人均不入选,有C59种选法;②A,B,C三人中选一人,有C13C49种选法;③A,B,C三人中选两人,有C23C39种选法.由分类加法计数原理,共有选法C59+C13C49+C23C39=756种.(间接法)先从12人中任选5人,再减去A,B,C三人均入选的情况,即共有选法C512-C29=756种.规律方法解答有限制条件的组合问题的基本方法是“直接法”和“间接法(排除法)”.其中用直接法求解时,则应坚持“特殊元素优先选取”的原则,优先安排特殊元素的选取,再安排其他元素的选取.而选择间接法的原则是“正难则反”,也就是若正面问题分类较多、较复杂或计算量较大,不妨从反面问题入手,试一试看是否简捷些,特别是涉及“至多”、“至少”等组合问题时更是如此.此时正确理解“都不是”“不都是”“至多”“至少”等词语的确切含义是解决这些组合问题的关键.(1)四面体的一个顶点为A ,从其他顶点和各棱中点中取3个点,使它们和点A 在同一平面上,有多少种不同的取法?解:(直接法)如题图,含顶点A 的四面体的3个面上,除点A 外都有5个点,从中取出3点必与点A 共面,共有3C 35种取法;含顶点A 的三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法.根据分类加法计数原理,与顶点A 共面三点的取法有3C 35+3=33(种).(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( C )A .232B .252C .472D .484解析:本题考查了利用组合知识来解决实际问题. 方法一:C 316-4C 34-C 24C 112=16×15×146-16-72=560-88=472. 方法二:C 04C 312-3C 34+C 14C 212=12×11×106-12+4×12×112=220+264-12=472.解题时要注意直接求解与反面求解相结合,做到不漏不重.题型五 分配问题[例5] 有6本不同的书,按照以下要求处理,各有几种分法?(1)平均分给甲、乙、丙三人;(2)甲得1本,乙得2本,丙得3本;(3)一人得1本,一人得2本,一人得3本;(4)平均分成三堆(组);(5)一堆1本,一堆2本,一堆3本.[思路探究](1)、(2)两题可设想甲、乙、丙三人依次如数取书;(3)则在(2)的基础上甲、乙、丙三人全排列分配;由等概率思想,(4)为(1)的A33分之一;(5)为(3)的A33分之一.[解](1)每人得2本,可考虑甲先在6本书中任取2本,取法有C26种,再由乙在余下的书中取2本,取法有C24种,最后由丙取余下的2本书,有C22种取法,由分步计数原理.所以共有分法数:N=C26C24C22=90.所以一共有90种取法.(2)选取方法同(1),所以共有分法数N=C16C25C33=60.所以一共有60种取法.(3)在(2)中甲得1本,乙得2本,丙得3本的基础上,考虑到甲、乙、丙三人的机会相等,让甲、乙、丙三人全排列调换位置,所以共有分法数:N=C16C23C33·A33=360.所以一共有360种选法.(4)由于三堆的位置并无差别,可在(1)的情况下,得共有分法数为:N=C26·C24C22A33=15.所以一共有15种分法.(5)类似(4)与(1),考虑本题与(3)的差别,所以共有分法数:N=C16C25C33=60(种).所以一共有60种分法.规律方法本题利用计数原理和组合知识,解决了分配问题.解决此类问题关键是实现合理的转化,最基本最简单的情形是分到具体的人,并且各人分的数目确定,其他的都要向这种情形转化.现有5名学生要进入某工厂的四个车间去实习,每个车间至多去2人,有多少种不同的方法?解:本例要求5个人去四个车间,每个车间至多去2人,但是并没有强调每个车间必须去几人,因此,本例可分为如下两类:有一个车间去2人,其余三个车间各去1人,或者,有两个车间各去2人,一个车间去1人,一个车间不去人.依题意,至少有一个车间去2人,至多有两个车间各去2人,因此,实习方案可分为两类:第一类:有一个车间去2人,其余三个车间各去1人,所以,先在5个人中任选2人去一个车间,有C25种方法;将此2人看做1个元素,连同其余3个人,共4个元素分别到四个车间,有A44种方法,∴共有C25·A44=240(种).第二类:有两个车间各去2个人,一个车间去1个人,一个车间不去人,因此,先在5个人中确定1个人去一个车间,并在四个车间中选一个车间插入此人,有C15·C14种方法;然后在其余4个人中选2人到一个车间,另2人则自然到另一车间,并在剩下的三个车间中选两个车间来安排他们,有C24·C22·C23(种)方法,∴共有C15·C14·C24·C22·C23=360(种)方法.由分类加法计数原理可知,所求方法共有240+360=600(种).题型六排列、组合的综合应用[例6]有4个不同的球,四个不同的盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒内不放球,有多少种放法?[思路探究](1)可直接用分步计数原理.(2)问题转化为:“4个球,三个盒子,每个盒子都要放球,共有几种放法?”(3)该问题事实上与问题(2)是同一个问题.(4)问题转化为:“4个球,两个盒,每个盒必须放入球,有几种放法?”[解](1)一个球一个球地放到盒子里去,每个球都可有4种独立的放法,由分步乘法计数原理知,放法共有44=256(种).(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1的三组,有C24种分法;然后再从三个盒子中选一个放两个球,其余两个球,两个盒子,全排列即可.由分步计数原理知,共有放法:C14·C24·C13·A22=144(种).(3)“恰有一个盒内放2个球”,即另外的三个盒子放2个球,而每个盒子至多放1个球,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒子放2个球”与“恰有1个盒子不放球”是一回事,故也有144种放法.(4)先从四个盒子中任意拿走两个有C24种拿法,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定的一个盒子中即可,有C34·C12种放法;第二类:有C24种放法.因此共有C34·C12+C24=14(种).由分步乘法计数原理得“恰有两个盒子不放球”的放法有:C24·14=84(种).规律方法该例的分析过程比较重要,当问题从某个方面入手较困难时,可从另外一个角度去思考.该例是用直接法求解.有几个小题也可用间接法.请同学们试试.(1)我省高中学校自实施素质教育以来,学生社团得到迅猛发展.某校高一新生中的五名同学打算参加“春晖文学社”“舞者轮滑俱乐部”“篮球之家”“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为(C)A.72 B.108C.180 D.216解析:甲需从另外3个选一个,有C13种方法,其余可分两类,第一类:除同学甲外的另四名同学分别参加四个社团,共有A44种,第二类:其余四名同学只参加三个社团,共有C24A33种,所以一共有C13(A44+C24A33)=180(种).(2)从1到9的九个数中取三个偶数和四个奇数,试问: ①能组成多少个没有重复数字的七位数? ②上述七位数中三个偶数排在一起有几个?③在①中的七位数中,偶数排在一起,奇数也排在一起的有几个? ④在①中任意两个偶数都不相邻的七位数有几个?解:①分步完成:第一步在4个偶数中取3个,可有C 34种情况;第二步在5个奇数中取4个,可有C 45种情况;第三步3个偶数,4个奇数进行排列,可有A 77种情况,所以符合题意的七位数有C 34·C 45·A 77=100 800(个). ②上述七位数中,三个偶数排在一起的有C 34·C 45·A 55·A 33=14 400(个).③上述七位数中,3个偶数排在一起,4个奇数也排在一起的有C 34·C 45·A 33·A 44·A 22=5 760(个).④上述七位数中,偶数都不相邻,可先把4个奇数排好,再将3个偶数分别插入5个空当,共有C 34·C 45·A 44·A 35=28 800(个).——误区警示系列——1.组合数公式用错致误[例6] 已知1C m 5-1C m 6=710C m 7,求m .[错解] 由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,即60-10(6-m )=(7-m )(6-m ),整理,得m 2-23m +42=0,解得m =21或m =2. [正解] 依题意知m 的取值范围是{m |0≤m ≤5,m ∈N }. 由已知得m !(5-m )!5!-m !(6-m )!6!=7(7-m )!m !10×7!,整理,得m 2-23m +42=0,解得m =21或m =2. ∵m ∈[0,5],∴m =2.[辨析] 这是一个关于m 的含组合数的方程.错解中,转化为关于m 的一元二次方程后,忽略了m 的允许值的范围导致出错.解这类题时,要将C m n 中m ,n 的范围与方程的解综合考虑,切忌盲目求解.2.概念混淆致误[例7] 有甲、乙、丙3项任务,任务甲需要2人承担,任务乙、丙各需要1人承担,从10人中选派4人承担这3项任务,不同的选法共有________种(用数字作答).[错解一] 分3步完成:第一步:从10人中选出4人,有C 410种方法. 第二步:从这4人中选出2人承担任务甲,有A 24种方法. 第三步:剩下的2人分别承担任务乙、丙,有A 22种方法. 根据乘法原理,不同的选法共有C 410A 24A 22=5 040种. [错解二] 分3步完成,不同的选法共有C 410C 24C 22=1 260种.[正解一] 先从10人中选出2人承担任务甲 ;再从余下8人中选出1人承担任务乙;最后从剩下的7人中选出1人去承担任务丙.根据乘法原理,不同的选法共有C 210C 18C 17=2 520(种).[正解二] 先从10人中选出2人承担任务甲;再从余下8人中选出2人分别承担任务乙、丙.根据乘法原理,不同的选法共有C 210A 28=2 520(种).[辨析] 错解一的错因是:“排列”“组合”概念混淆不清.承担任务甲的两人与顺序无关,此处应是组合问题,即A 24应为C 24.错解二的错因是:剩下的2人去承担任务乙、丙,这与顺序有关,此处应是排列问题,即C 22应为A 22.1.解不等式C m -18>3C m 8.解:由8!(m -1)!(9-m )!>3×8!m !(8-m )!,整理得19-m >3m ,所以m >27-3m .所以m >274=7-14.又因为0≤m -1≤8,且0≤m ≤8,m ∈N ,所以7≤m≤8,所以m=7或8.2.上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为16.解析:若3人中有一人来自甲企业,则共有C12C24种情况;若3人中没有甲企业的,则共有C34种情况.由分类加法原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).1.以下四个命题,属于组合问题的是(C)A.从3个不同的小球中,取出2个排成一列B.老师在排座次时将甲、乙两位同学安排为同桌C.在电视节目中,主持人从100位幸运观众中选出2名幸运之星D.从13位司机中任选出两位开两辆车从甲地到乙地解析:A,B,D与顺序有关,是排列问题,只有C与顺序无关,是组合问题.2.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有(A) A.30种B.35种C.42种D.48种解析:方法一:可分为以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C13C24种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C23C14种不同的选法.故不同的选法共有C13C24+C23C14=18+12=30(种).方法二:∵事件“两类课程中各至少选一门”的对立事件是“全部选修A或全部选修B”∴两类课程中各至少选一门的选法有:C37-C33-C34=30(种).3.甲、乙、丙三地之间有直达的火车,相互之间距离均不相等且无通票,则车票票价的种数是(C)A.1 B.2C.3 D.6解析:从甲、乙、丙三地中任取两个地点则对应着一个票价,故票价应为C 23=3(种).4.计算:C 11+C 12+C 13+C 14+…+C 110=55.解析:原式=1+2+3+4+…+10=10×(1+10)2=55. 5.若C 23+C 24+C 25+…+C 2n =363,则正整数n =13. 解析:由C 23+C 24+C 25+…+C 2n =363, 得1+C 23+C 24+C 25+…+C 2n =364, 即C 33+C 23+C 24+C 25+…+C 2n =364.又由C m n +C m -1n =C m n +1,则C 33+C 23+C 24+C 25+…+C 2n =C 34+C 24+C 25+…+C 2n =C 35+C 25+C 26+…+C 2n =C 3n +1,所以C 3n +1=364,即(n +1)n (n -1)3×2×1=364,又由n 是正整数,解得n =13.6.求证:A 8100=100A 77·C 799. 证明:∵100·A 77·C 799=100×7!×99!7!(99-7)!=100×99!92!=100!(100-8)!=A 8100,∴原等式成立.感谢您的下载!快乐分享,知识无限!。

人教版生物选修3(课后习题)1.3 基因工程的应用 Word版含答案

人教版生物选修3(课后习题)1.3 基因工程的应用 Word版含答案

1.3基因工程的应用基础巩固1转基因动物是指( )A.提供基因的动物B.基因组成中转入了外源基因的动物C.能产生白蛋白的动物D.能表达基因遗传信息的动物2若利用基因工程技术培育能固氮的水稻新品种,其在环境保护上的重要意义是( )A.减少氮肥使用量,降低生产成本B.减少氮肥生产量,节约能源C.避免因施用氮肥过多引起的环境污染D.改良土壤的群落结构、海华水”,化引起淡水“赤洋,污染环境。

利用现象”“潮基因工程技术培育能固氮的水稻新品种,可减少氮肥施用量,避免水体富营养化,保护环境。

3下列哪项不是植物基因工程技术的主要应用?( )A.提高农作物的抗逆性B.生产某些天然药物C.改良农作物的品质D.作器官移植的供体项为动物基因工程技术的重要应用。

4基因治疗是指( )A.把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的B.对有基因缺陷的细胞进行修复,从而使其恢复正常,达到治疗疾病的目的C.运用人工诱变的方法,使有基因缺陷的细胞发生基因突变后恢复正常D.运用基因工程技术,把有缺陷的基因切除,达到治疗疾病的目的疗,其基本方法都是把相应的正常基因导入有基因缺陷的相关细胞中,从而使病人恢复正常。

5科学家运用转基因技术,将苏云金芽孢杆菌的抗虫基因转到大白菜细胞中,培育出抗虫效果很好的优质大白菜,减少了农药的使用量,保护了环境。

下列说法正确的是( )A.抗虫基因中含有终止密码子B.抗虫基因能在大白菜细胞中正常表达C.转基因技术所用的工具酶是限制酶、连接酶和载体D.限制酶识别的序列一定是GAATTC于终止密码子存在,子mRN不同的限制酶识别的序A,上。

载体不是酶。

限制酶有多种列大都不相同。

6以下关于抗病转基因植物成功表达抗病毒基因后的说法,正确的是( )A.可以抵抗所有病毒B.对病毒的抗性具有局限性或特异性C.可以抵抗害虫D.可以稳定遗传,不会变异,毒并不是所有病,也不可以抗虫。

抗病毒基因也会发生变异。

毒7下列不属于利用基因工程技术制取药物的是( )A.从大肠杆菌体内获取白细胞介素B.从酵母菌体内获得干扰素C.利用青霉菌获取青霉素D.从大肠杆菌体内获得胰岛素等如大肠杆菌、酵母菌(胞)中并使,该基因得到高效表达以产生药物,然后通过培养微生物来获得药物的一种技术。

度北师大版版数学七年级上册同步练习: 1.3 截一个几何体(word解析版)

度北师大版版数学七年级上册同步练习: 1.3 截一个几何体(word解析版)

2019-2019学年度北师大版版数学七年级上册同步练习1.3 截一个几何体(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥2.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A.B.C.D.3.下列几何体的截面形状不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱4.用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.5.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11 B.7,11 C.7,12 D.6,126.经过圆锥顶点的截面的形状可能是()A.B. C.D.7.用一个平面分别去截下列几何体,截面不能得到圆的是()A.B.C.D.8.一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A.球体B.圆柱C.圆锥D.球体或圆锥9.用一平面去截下列几何体,其截面可能是长方形的有()A.4个 B.3个 C.2个 D.1个10.用一个平面去截如图的长方体,截面不可能为()A.B.C.D.11.用一个平面按照如图所示的位置与正方体相截,则截面图形是()A.B.C.D.12.用平面去截如图所示的三棱柱,截面形状不可能是()A.三角形B.四边形C.五边形D.六边形二.填空题(共10小题)13.如图是一个三棱柱,用一个平面去截这个三棱柱,形状可能的截面的序号是.14.用平面截一个几何体,若截面是圆,则几何体是(写出两种)15.如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.16.在正方体的截面中,最多可以截出边形.17.用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是.18.要锻造一件长100mm,宽60mm,高25mm的长方体毛坯刚需要横截面积为50×50mm2的方钢长度为mm.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.21.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.22.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为cm2.三.解答题(共3小题)23.如图所示,长方形ABCD的长AB为10cm,宽AD为6cm,把长方形ABCD 绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.24.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.25.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?2019-2019学年度北师大版版数学七年级上册同步练习:1.3 截一个几何体(word解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】根据正方体、棱柱、圆锥、圆柱的特点判断即可.【解答】解;A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、用垂直于地面的一个平面截圆柱截面为矩形,不符合题意;D、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.2.【分析】根据球的主视图只有圆,即可得出答案.【解答】解:∵球的主视图只有圆,∴如果截面是三角形,那么这个几何体不可能是球.故选:B.3.【分析】根据圆柱、圆锥、球、棱柱的形状特点判断即可.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选D.4.【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.5.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.6.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.7.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截圆锥或圆柱,截面可能是圆,用一个平面去截球,截面是圆,但用一个平面去截棱柱,截面不可能是圆.故选:C.8.【分析】通过观察可以发现:在正方体内部的圆自下而上由大圆逐渐变成小圆、点.【解答】解:这个长方体的内部构造为:长方体中间有一圆锥状空洞或一个球体,故选:D.9.【分析】根据圆柱、长方体、圆锥、四棱柱、圆台的形状判断即可,可用排除法.【解答】解:圆锥、圆台不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、长方体、四棱柱,一共有3个.故选:B.10.【分析】长方体的每个面都是平面,交线不可能垂直,故此截面不可能是直角.【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得斜三角形,故此截面可以是斜三角形、梯形,矩形,平行四边形,故A、B、C正确;故D错误.故选:D.11.【分析】用平面去截正方体时与三个面相交得三角形.【解答】解:用一个平面按如图所示方法去截一个正方体,则截面是三角形,故选:A.12.【分析】根据截面经过几个面,得到的多边形就是几边形判断即可.【解答】解:用平面去截如图所示的三棱柱,截面形状可能是三角形、四边形、五边形,不可能是六边形.故选:D.二.填空题(共10小题)13.【分析】用平面取截三棱柱,当横截时,截面为①三角形,竖着截时截面为②长方形或③梯形.【解答】解:用平面取截三棱柱,当横截时,截面为①三角形;竖着截时截面为②长方形或③梯形;因此选择①②③.故答案为:①②③14.【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【解答】解:用平面去截一个几何体,若截面是圆,则几何体是球或圆柱.故答案为:球或圆柱(答案不唯一).15.【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.16.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【解答】解:用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.故答案为:六.【分析】分别根据正方体、长方体、圆柱、圆锥的特殊性得出即可.【解答】解:用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是圆锥.故答案为:圆锥.18.【分析】等量关系为:长方体毛坯的体积=截面积为50×50mm2的方钢的体积,把相关数值代入即可求解.【解答】解:设需要截面50×50mm2的方钢xmm,由题意得:100×60×25=50×50x,解之得:x=60,答:需要截面50×50mm2的方钢60mm.故答案是:60.19.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.20.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【分析】新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.【解答】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.22.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.三.解答题(共3小题)23.【分析】长方形ABCD绕直线AB旋转一周得到一个圆柱体,沿线段AB的方向截所得的几何体其中轴截面最大.【解答】解:由题可得,把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为6cm,高为10cm,∴截面的最大面积为6×2×10=120(cm2).24.【分析】(1)根据平移的性质可得出S1与S的大小关系;(2)利用立方体的性质得出得出棱长之间的关系;(3)利用立方体的侧面展开图的性质得出即可.【解答】解:(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是相等;故选:B;(2)设大正方体棱长为1,小正方体棱长为x,那么l1﹣l=6x.只有当x=时,才有6x=3,所以小明的话是不对的;(3)如图所示:25.【分析】根据长方体的切割特点可知,切割成三段后,表面积是增加了4个长方体的侧面的面积,由此利用增加的表面积即可求出这根木料的侧面积,再利用长方体的体积公式即可解答问题.【解答】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3).。

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2020-2020学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2020-2020学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

外研版必修二英语同步解析1.3

外研版必修二英语同步解析1.3

Section ⅢIntegrating Skills & Cultural CornerⅠ.重点单词1.核心单词①insurance n. 保险②overweight adj. 超重的③symptom n. 症状2.拓展单词①breathe v i.呼吸→breath n.呼吸②awful adj.可怕的;吓人的→awfully ad v.可怕的3.阅读单词①lung n. 肺②throat n. 喉咙;咽喉;嗓子③pneumonia n. 肺炎④prescription n. 处方⑤questionnaire n. 问卷;问卷调查;调查表over-词语小结①overcoat n.大衣②overcome v t. 克服③overcrowded adj. 过度拥挤的④overnight ad v. 一夜之间⑤overjoyed adj. 欣喜若狂“可怕的”adj.集合①terrible 可怕的②terrifying 令人恐惧的③frightening 吓人的④awful 吓人的⑤scary 恐怖的Ⅱ.重点短语1.have a temperature 发烧2.pick up (用车)接某人3.be off work 休班4.begin with 以……开始5.pay for 支付6.be free_for 对……免费7.put... into... 将……投入……8.as a result 因此,所以9.become ill 生病“v.+up”短语集合①pick up拾起②eat up 吃光③bring up 抚养大④burn up 烧尽⑤hold up 举起;阻挡⑥stay up 熬夜⑦use up 用完Ⅲ.经典句式1.Go_to_bed_now_or you'll be really tired tomorrow.现在上床睡觉吧,否则明天你会很累的。

2.That couldn't_be_better.那再好不过了。

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.3习题课 Word版含解析

高中数学(人教版A版必修一)配套课时作业:第一章 集合与函数的概念 1.3习题课 Word版含解析

§1.3 习题课课时目标 1.加深对函数的基本性质的理解.2.培养综合运用函数的基本性质解题的能力.1.若函数y =(2k +1)x +b 在R 上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-122.定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有f (a )-f (b )a -b >0成立,则必有( ) A .函数f (x )先增后减 B .函数f (x )先减后增 C .f (x )在R 上是增函数 D .f (x )在R 上是减函数3.已知函数f (x )在(-∞,+∞)上是增函数,a ,b ∈R ,且a +b >0,则有( ) A .f (a )+f (b )>-f (a )-f (b ) B .f (a )+f (b )<-f (a )-f (b ) C .f (a )+f (b )>f (-a )+f (-b ) D .f (a )+f (b )<f (-a )+f (-b )4.函数f (x )的图象如图所示,则最大、最小值分别为( )A .f (32),f (-32)B .f (0),f (32)C .f (0),f (-32) D .f (0),f (3)5.已知f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.6.已知f (x )=⎩⎪⎨⎪⎧12x -1, x ≥0,1x ,x <0,若f (a )>a ,则实数a 的取值范围是______________.一、选择题1.设f (x )是定义在R 上的偶函数,且在(-∞,0)上是增函数,已知x 1>0,x 2<0,且f (x 1)<f (x 2),那么一定有( ) A .x 1+x 2<0B .x 1+x 2>0C .f (-x 1)>f (-x 2)D .f (-x 1)·f (-x 2)<0 2.下列判断:①如果一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R 的任何奇函数f (x )都有f (x )·f (-x )≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为( ) A .②③④B .①③C .②D .④3.定义两种运算:a ⊕b =ab ,a ⊗b =a 2+b 2,则函数f (x )=2⊕x(x ⊗2)-2为( )A .奇函数B .偶函数C .既不是奇函数也不是偶函数D .既是奇函数也是偶函数4.用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-12对称,则t的值为()A.-2B.2C.-1D.15.如果奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是()A.增函数且最小值为3B.增函数且最大值为3C.减函数且最小值为-3D.减函数且最大值为-36.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是()A.(-1,0) B.(-∞,0)∪(1,2)C.(1,2) D.(0,2)二、填空题7.若函数f(x)=-x+abx+1为区间[-1,1]上的奇函数,则它在这一区间上的最大值为____.8.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x-3,则f(-2)+f(0)=________.9.函数f(x)=x2+2x+a,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________.三、解答题10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0.(1)求证:函数f(x)在(-∞,0)上是增函数;(2)解关于x的不等式f(x)<0.11.已知f(x)=x2+ax+bx,x∈(0,+∞).(1)若b≥1,求证:函数f(x)在(0,1)上是减函数;(2)是否存在实数a,b,使f(x)同时满足下列两个条件:①在(0,1)上是减函数,(1,+∞)上是增函数;②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由.能力提升12.设函数f(x)=1-1x+1,x∈[0,+∞)(1)用单调性的定义证明f(x)在定义域上是增函数;(2)设g(x)=f(1+x)-f(x),判断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢?13.如图,有一块半径为2的半圆形纸片,计划剪裁成等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD 的周长为y.(1)求出y关于x的函数f(x)的解析式;(2)求y的最大值,并指出相应的x值.1.函数单调性的判定方法 (1)定义法.(2)直接法:运用已知的结论,直接判断函数的单调性,如一次函数,二次函数,反比例函数;还可以根据f (x ),g (x )的单调性判断-f (x ),1f (x ),f (x )+g (x )的单调性等.(3)图象法:根据函数的图象判断函数的单调性. 2.二次函数在闭区间上的最值对于二次函数f (x )=a (x -h )2+k (a >0)在区间[m ,n ]上最值问题,有以下结论: (1)若h ∈[m ,n ],则y min =f (h )=k ,y max =max{f (m ),f (n )}; (2)若h ∉[m ,n ],则y min =min{f (m ),f (n )}, y max =max{f (m ),f (n )}(a <0时可仿此讨论). 3.函数奇偶性与单调性的差异.函数的奇偶性是相对于函数的定义域来说的,这一点与研究函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只是对函数定义域内的每一个值x ,都有f (-x )=-f (x )[或f (-x )=f (x )],才能说f (x )是奇函数(或偶函数).§1.3 习题课双基演练1.D [由已知,令2k +1<0,解得k <-12.] 2.C [由f (a )-f (b )a -b >0,知f (a )-f (b )与a -b 同号,由增函数的定义知选C.]3.C [∵a +b >0,∴a >-b ,b >-a .由函数的单调性可知,f (a )>f (-b ),f (b )>f (-a ). 两式相加得C 正确.]4.C[由图象可知,当x=0时,f(x)取得最大值;当x=-32时,f(x)取得最小值.故选C.]5.130解析偶函数定义域关于原点对称,∴a-1+2a=0.∴a=1 3.∴f(x)=13x2+bx+1+b.又∵f(x)是偶函数,∴b=0. 6.(-∞,-1)解析若a≥0,则12a-1>a,解得a<-2,∴a∈∅;若a<0,则1a>a,解得a<-1或a>1,∴a<-1.综上,a∈(-∞,-1).作业设计1.B[由已知得f(x1)=f(-x1),且-x1<0,x2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x1)<f(x2),则f(-x1)<f(x2)得-x1<x2,x1+x2>0.故选B.]2.C[判断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误.判断②正确,由函数是奇函数,知f(-x)=-f(x),特别地当x=0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0.判断③,如f(x)=x2,x∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1 [0,1];又如f(x)=x2+x,x∈[-1,1],有f(x)≠f(-x).故③错误.判断④,由于f(x)=0,x∈[-a,a],根据确定一个函数的两要素知,a取不同的实数时,得到不同的函数.故④错误.综上可知,选C.]3.A[f(x)=2xx2+2,f(-x)=-f(x),选A.] 4.D[当t>0时f(x)的图象如图所示(实线)对称轴为x=-t2,则t2=12,∴t=1.]5.D[当-5≤x≤-1时1≤-x≤5,∴f(-x)≥3,即-f(x)≥3.从而f(x)≤-3,又奇函数在原点两侧的对称区间上单调性相同,故f(x)在[-5,-1]上是减函数.故选D.]6.D[依题意,因为f(x)是偶函数,所以f(x-1)<0化为f(|x-1|)<0,又x∈[0,+∞)时,f(x)=x-1,所以|x-1|-1<0,即|x-1|<1,解得0<x<2,故选D.]7.1解析f(x)为[-1,1]上的奇函数,且在x=0处有定义,所以f(0)=0,故a=0.又f(-1)=-f(1),所以--1-b+1=1b+1,故b=0,于是f(x)=-x.函数f(x)=-x在区间[-1,1]上为减函数,当x取区间左端点的值时,函数取得最大值1. 8.-1解析∵f(-0)=-f(0),∴f(0)=0,且f(2)=22-3=1.∴f(-2)=-f(2)=-1,∴f(-2)+f(0)=-1.9.a>-3解析∵f(x)=x2+2x+a=(x+1)2+a-1,∴[1,+∞)为f(x)的增区间,要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0,即3+a>0,∴a>-3.10.(1)证明设x1<x2<0,则-x1>-x2>0.∵f(x)在(0,+∞)上是增函数,∴f(-x1)>f(-x2).∵f(x)是奇函数,∴f(-x1)=-f(x1),f(-x2)=-f(x2),∴-f(x1)>-f(x2),即f(x1)<f(x2).∴函数f(x)在(-∞,0)上是增函数.(2)解若x>0,则f(x)<f(1),∴x<1,∴0<x<1;若x<0,则f(x)<f(-1),∴x<-1.∴关于x的不等式f(x)<0的解集为(-∞,-1)∪(0,1).11.(1)证明设0<x1<x2<1,则x1x2>0,x1-x2<0.又b>1,且0<x1<x2<1,∴x1x2-b<0.∵f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2>0,∴f(x1)>f(x2),所以函数f(x)在(0,1)上是减函数.(2)解设0<x1<x2<1,则f(x1)-f(x2)=(x1-x2)(x1x2-b)x1x2由函数f(x)在(0,1)上是减函数,知x1x2-b<0恒成立,则b≥1. 设1<x1<x2,同理可得b≤1,故b=1.x∈(0,+∞)时,通过图象可知f(x)min=f(1)=a+2=3.故a=1.12.(1)证明设x1>x2≥0,f(x1)-f(x2)=(1-1x1+1)-(1-1x2+1)=x1-x2(x1+1)(x2+1).由x1>x2≥0⇒x1-x2>0,(x1+1)(x2+1)>0,得f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在定义域上是增函数.(2)解g(x)=f(x+1)-f(x)=1(x+1)(x+2),g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢.13.解(1)作OH,DN分别垂直DC,AB交于H,N,连结OD.由圆的性质,H是中点,设OH=h,h=OD2-DH2=4-x2.又在直角△AND中,AD=AN2+DN2=(2-x)2+(4-x2)=8-4x=22-x,所以y=f(x)=AB+2AD+DC=4+2x+42-x,其定义域是(0,2).(2)令t=2-x,则t∈(0,2),且x=2-t2,所以y=4+2·(2-t2)+4t=-2(t-1)2+10,当t=1,即x=1时,y的最大值是10.。

(学案)1.3简单的逻辑联结词、全称量词与存在量词Word版含答案

第三节简单的逻辑联结词、全称量词与存在量词1.命题p∧q,p∨q,¬p的真假判断p q p∧q p∨q ¬p真真真真假真假假真假假真假真真假假假假真2.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃3.名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)否定∃x0∈M,¬p(x0)∀x∈M,¬p(x)1.一种关系逻辑联结词与集合的关系:“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.两类否定(1)¬(p∧q)⇔(¬p)∨(¬q).(2)¬(p∨q)⇔(¬p)∧(¬q).3.三句口诀p∧q全真为真,p∨q有真即真,¬p与p真假相反.1.(基础知识:复合命题真假)已知p :2是偶数,q :2是质数,则命题¬p ,¬q ,p ∨q ,p ∧q 中真命题的个数为( )A .1B .2C .3D .4答案:B2.(基础知识:特称命题的否定)设命题p :∃n 0∈N ,n 20 >,则¬p 为( ) A .∀n ∈N ,n 2>2n B .∃n 0∈N ,n 20 ≤C .∀n ∈N ,n 2≤2nD .∃n 0∈N ,n 20 =答案:C3.(基本方法:判断命题真假)已知命题p :对任意x ∈R ,总有4x >0;命题q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .(¬p )∧(¬q )C .(¬p )∧qD .p ∧(¬q )答案:D4.(基本能力:含有量词命题的真假)给出下列命题: ①∀x ∈N ,x 3>x 2;②所有可以被5整除的整数,末位数字都是0; ③∃x 0∈R ,x 20 -x 0+1≤0;④存在一个四边形,它的对角线互相垂直, 则以上命题的否定中,真命题的序号为________. 答案:①②③5.(基本应用:求参数)已知命题p :x 2-5x +4≤0,q :13-x <1.若(¬q )∧p 是真命题,则x 的取值范围是________.答案:[2,3]题型一 含有逻辑联结词的命题真假1.(2021·太原模拟)已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b ,则下列命题中为真命题的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧qD .(¬p )∧(¬q )解析:x 2-x +1=⎝⎛⎭⎫x -12 2+34 ≥34 >0,所以∃x 0∈R ,使x 20 -x 0+1≥0成立,故p 为真命题,¬p 为假命题.又易知命题q 为假命题,所以¬q 为真命题,可知p ∧(¬q )为真命题.答案:B2.若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x -1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .¬p 是真命题D .¬q 是真命题解析:因为函数y =x 2-2x 的单调递增区间是[1,+∞), 所以p 是真命题;因为函数y =x -1x 的单调递增区间是(-∞,0)和(0,+∞),所以q 是假命题,所以p ∧q 为假命题,p ∨q 为真命题,¬p 为假命题,¬q 为真命题. 答案:D3.设命题p :函数y =sin 2x 的最小正周期为π2 ;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是__________.(填序号)①p 为真命题;②¬q 为假命题; ③p ∧q 为假命题;④p ∨q 为真命题; ⑤(¬p )∧(¬q )为真命题;⑥¬(p ∨q )为真命题.解析:p 、q 均为假命题,故¬q 为真命题,p ∧q 为假命题,p ∨q 为假命题,(¬p )∧(¬q )为真命题,¬(p ∨q )为真命题.答案:③⑤⑥ 方法总结复合命题的真假判断方法解读适合题型直接 法(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假能够顺利分解为简单命题转化 法 根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性原命题的真假性不易判断题型二 全称命题、特称命题1.下列命题中的假命题是( ) A .∀x ∈R ,x 2≥0 B .∀x ∈R ,2x -1>0 C .∃x 0∈R ,lg x 0<1 D .∃x 0∈R ,sin x 0+cos x 0=2解析:因为sin x 0+cos x 0=2 sin ⎝ ⎛⎭⎪⎫x 0+π4 ≤2 <2,所以选项D 为假命题. 答案:D2.已知命题p :∃x ∈R ,x 2-x +1≥0;命题q :若a 2<b 2,则a <b .下列命题为真命题的是( )A .p ∧qB .p ∧(¬q )C .(¬p )∧qD .(¬p )∧(¬q )解析:∵方程x 2-x +1=0的根的判别式Δ=(-1)2-4=-3<0,又对于二次函数y =x 2-x +1,其图象开口向上,∴x 2-x +1>0恒成立,∴p 为真命题.对于命题q ,取a =2,b =-3,22<(-3)2,而2>-3,∴q 为假命题,¬q 为真命题.因此p ∧(¬q )为真命题.答案:B3.“∀x ∈R ,x 2-πx ≥0”的否定是( ) A .∀x ∈R ,x 2-πx <0 B .∀x ∈R ,x 2-πx ≤0C .∃x 0∈R ,x 20 -πx 0≤0D .∃x 0∈R ,x 20 -πx 0<0解析:全称命题的否定是特称命题,所以“∀x ∈R ,x 2-πx ≥0”的否定是“∃x 0∈R ,x 20 -πx 0<0”.答案:D4.命题“∃x 0∈N ,使得ln x 0(x 0+1)<1”的否定是( )A.∀x∈N,都有ln x(x+1)<1B.∀x∉N,都有ln x(x+1)≥1C.∃x0∈N,都有ln x0(x0+1)≥1D.∀x∈N,都有ln x(x+1)≥1解析:原命题是特称命题,其否定为全称命题,所以原命题的否定是“∀x∈N,ln x(x+1)≥1”.答案:D1.全称命题与特称命题真假的判断方法命题名称真假判断方法一判断方法二全称命题真所有对象使命题真否定为假假存在一个对象使命题假否定为真特称命题,真,存在一个对象使命题真,否定为假假,所有对象使命题假,否定为真2.全称命题与特称命题的否定(1)改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写.(2)否定结论:对原命题的结论进行否定.题型三命题中参数的取值范围[典例剖析]类型1复合命题中的参数问题[例1](2021·武汉模拟)已知命题p:关于x的方程x2-ax+4=0有实根;命题q:关于x 的函数y=2x2+ax+4在[3,+∞)上是增函数.若p∨q是真命题,则实数a的取值范围是________.解析:若命题p是真命题,则Δ=a2-16≥0,即a≤-4或a≥4;若命题q是真命题,则-a4≤3,即a ≥-12. 因为p ∨q 是真命题,所以a ∈R , 即a 的取值范围是(-∞,+∞). 答案:(-∞,+∞) 方法总结1.已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.如本题中,当p 为真时a 的范围与当q 为真时a 的范围的并集.2.含逻辑联结词命题真假的等价关系: (1)p ∨q 真⇔p ,q 至少一个真⇔(¬p )∧(¬q )假. (2)p ∨q 假⇔p ,q 均假⇔(¬p )∧(¬q )真. (3)p ∧q 真⇔p ,q 均真⇔(¬p )∨(¬q )假. (4)p ∧q 假⇔p ,q 至少一个假⇔(¬p )∨(¬q )真. (5)¬p 真⇔p 假;¬p 假⇔p 真. 类型 2 含有量词命题中的参数问题[例2] (1)(任意恒成立)已知函数f (x )=e xx -mx (e 为自然对数的底数),若f (x )>0在(0,+∞)上恒成立,则实数m 的取值范围是( )A .(-∞,2)B .(-∞,e)C .⎝⎛⎭⎫-∞,e24 D .⎝⎛⎭⎫e 24,+∞解析:∵f (x )=e xx -mx >0在(0,+∞)上恒成立,∴m <e xx 2 在(0,+∞)上恒成立,令g (x )=e xx2 ,x >0,∴g ′(x )=(x 2-2x )e x x 4 =(x -2)e xx 3 ,当0<x <2时,g ′(x )<0,g (x )单调递减; 当x >2时,g ′(x )>0,g (x )单调递增,则当x =2时,g (x )取得最小值,且最小值为g (2)=e 24,∴m <e 24,则实数m 的取值范围是⎝⎛⎭⎫-∞,e 24 . 答案:C(2)(存在成立)若命题“∃x 0∈R ,使得x 20 +(a -1)x 0+1<0”是真命题,则实数a 的取值范围是________.解析:由题意得Δ=(a -1)2-4>0,∴a >3或a <-1. 答案:(-∞,-1)∪(3,+∞) 方法总结1.∃x 0∈R ,使b ≤-x 20 -2x 0成立. 设y =-x 2-2x =-(x +1)2+1, ∴y max =1.只要b ≤y max 即可,∴b ≤1.2.单变量对“任意”恒成立,“存在”成立问题: (1)∀x ∈[m ,n ],a >f (x )恒成立⇔a >f (x )max , a <f (x )恒成立⇔a <f (x )min .(2)∃x 0∈[m ,n ],使a >f (x )成立⇔a >f (x )min , a <f (x )成立⇔a <f (x )max .[题组突破]1.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2]D .(-2,2)解析:当a =2时,有-4<0,对∀x ∈R 恒成立. 当a ≠2时,有⎩⎪⎨⎪⎧a -2<0,Δ=[-2(a -2)]2-4(a -2)·(-4)<0,解得⎩⎪⎨⎪⎧a <2,-2<a <2,∴-2<a <2.综上可得-2<a ≤2. 答案:C2.已知命题p :∀x ∈R ,log 2(x 2+x +a )>0恒成立,命题q :∃x 0∈[-2,2],2a ≤,若命题p ∧q 为真命题,则实数a 的取值范围为________.解析:由题知,命题p :∀x ∈R ,log 2(x 2+x +a )>0恒成立,即x 2+x +a -1>0恒成立,所以Δ=1-4(a -1)<0,解得a >54 ;命题q :∃x 0∈[-2,2],使得2a ≤,则a ≤2.当p ∧q为真命题时,须满足⎩⎪⎨⎪⎧a >54,a ≤2,故实数a 的取值范围为⎝⎛⎦⎤54,2 . 答案:⎝⎛⎦⎤54,23.若“∃x 0∈⎣⎡⎦⎤-π4,π3 ,m ≤tan x 0+2”为真命题,则实数m 的最大值为________.解析:当x ∈⎣⎢⎡⎦⎥⎤-π4,π3 时,1≤tan x +2≤2+3 .∃x 0∈⎣⎢⎡⎦⎥⎤-π4,π3 ,使m ≤tan x 0+2,则m ≤2+3 .答案:2+34.(母题变式)若例1中p ∧q 为真命题,求实数a 的取值范围. 解析:∵p ∧q 为真命题, ∴p 和q 均为真命题,∴⎩⎪⎨⎪⎧a ≤-4或a ≥4,a ≥-12.∴a 的取值范围为[-12,-4]∪[4,+∞).5.(母题变式)若例1中p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围. 解析:由p ∨q 为真命题,p ∧q 是假命题知,命题p 和q 一真一假.若p 真q 假,则a <-12;若p 假q 真,则-4<a <4.故a 的取值范围是(-∞,-12)∪(-4,4).再研高考创新思维1.(2019·高考全国卷Ⅲ)记不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0 表示的平面区域为D .命题p :∃(x ,y )∈D ,2x +y ≥9;命题q :∀(x ,y )∈D ,2x +y ≤12.下面给出了四个命题①p ∨q ;②¬p ∨q ;③p ∧¬q ;④¬p ∧¬q . 这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③D .③④解析:法一:画出可行域如图中阴影部分所示.目标函数z =2x +y 是一条平行移动的直线,且z 的几何意义是直线z =2x +y 的纵截距.显然,直线过点A (2,4)时,z min =2×2+4=8,即z =2x +y ≥8,∴2x +y ∈[8,+∞).由此得命题p :∃(x ,y )∈D ,2x +y ≥9正确; 命题q :∀(x ,y )∈D ,2x +y ≤12不正确,∴①③真,②④假.法二:取x =4,y =5,满足不等式组⎩⎪⎨⎪⎧x +y ≥6,2x -y ≥0, 且满足2x +y ≥9,不满足2x +y ≤12,故p 真,q 假,∴①③真,②④假. 答案:A2.(2019·高考浙江卷)已知a ∈R ,函数f (x )=ax 3-x .若存在t ∈R ,使得|f (t +2)-f (t )|≤23 ,则实数a 的最大值是________.解析:由题意,得f (t +2)-f (t ) =a (t +2)3-(t +2)-(at 3-t ) =a [(t +2)3-t 3]-2=a (t +2-t )[(t +2)2+(t +2)·t +t 2]-2 =2a (3t 2+6t +4)-2=2a [3(t +1)2+1]-2. 由|f (t +2)-f (t )|≤23 ,得|2a [3(t +1)2+1]-2|≤23 ,即-23 ≤2a [3(t +1)2+1]-2≤23 ,23 ≤a [3(t +1)2+1]≤43, ∴23 ·13(t +1)2+1 ≤a ≤43 ·13(t +1)2+1 . 设g (t )=43 ·13(t +1)2+1 ,则当t =-1时,g (t )max =43,∴当t =-1时,a 取得最大值43 ,满足题意.答案:43素养升华命题真假的判断已知命题p :∀x >2,2x >x 2;命题q :∃x 0∈R ,x 30 =1-x 20 ,则下列命题为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )解析:在平面直角坐标系中作出y =2x 与y =x 2的图象,如图①所示,结合图象可知当x ∈(2,4)时,2x <x 2,可知p 为假命题,所以¬p 为真命题.在平面直角坐标系中作出y =x 3与y =1-x 2的图象,如图②所示,结合图象可知y =x 3与y =1-x 2的图象有交点,可知q 为真命题,所以(¬p )∧q 为真命题.答案:B- 11 -。

课时作业:1.3 地球的运动 1.3.3 同步练习Word版含答案

洛阳(35°N,112°E)一学生对太阳能热水器进行了改造璃箱中,并将支架改造成活动方式。

据此回答2~3题。

日,为使热水器有最好的效果,调节支架使热水器吸热面与地面的夹角.下列地区中,使用太阳能热水器效果最好的是(据题意和图形分析当太阳光线与大玻璃箱垂直时效果最好,α+H=90°,则α=55°,故第能热水器效果最好的地区应是太阳辐射分布较强的地区,拉萨市年太阳辐射量最丰富,5.四地所处的纬度数值从高到低排序的是( )A.甲乙丙丁 B.甲乙丁丙C.丙丁乙甲 D.丁丙乙甲4~5.【解析】12月22日为北半球冬至日,全球昼夜状况为北半球昼长夜短,均小于12小时,越往北昼越短,南半球反之。

纬度数值相同的两条纬线,南纬的夜长等于北纬的昼长,丁地大于12小时故为南半球,其夜长为10小时4分,纬度应与北半球昼长为10小时4分的相同。

【答案】 4.D 5.B下图为某日120°E经线上日出时刻随纬度的变化关系示意图。

据此完成6~8题。

6.下列推断正确的是( )A.该日,可能在7月初B.该日,长春日出方向为东南C.该季节,正值尼罗河枯水期D.该季节,马达加斯加岛昼长于夜【解析】由图可知越往北日出时间越早,为北半球夏季。

该季节长春日出方向为东北。

【答案】 A7.甲地日落时刻为( )A.19时 B.17时C.18时 D.20时【解析】该日甲地日出为7时,上午时长5小时,据此可知日落时刻为12+5 =17时。

【答案】 B8.某地的昼长比甲地略短,且两地同时迎来日出,则该地位于甲地的( )A.东北方向 B.西南方向C.东南方向 D.西北方向【解析】此日越往北昼越长,日出时间越早,画出晨线即可得出答案。

【答案】 C9.二十四节气可以指导农业生产。

如在山东、河南一带种植冬小麦是“秋分早,霜降迟,寒露种麦正当时”,但向北到北京一带是“白露早,寒露迟,秋分种麦正当时”,那么向南到江苏、安徽等江淮地区“种麦正当时”是( )A.秋分 B.霜降C.寒露 D.白露【解析】二十四节气反映天气气候和物候变化、掌握农事季节的工具,按照时间顺序依次为立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种、夏至、小暑、大暑、立秋、处暑、白露、秋分、寒露、霜降、立冬、小雪、大雪、冬至、小寒、大寒。

高中数学人教B版必修四讲义:第一章 1.3 1.3.1 第二课时 正弦型函数y=Asin(ωx+φ) Word版含答案

1.3.1正弦函数的图象与性质第二课时正弦型函数y=A sin(ωx+φ)(1)函数y=A sin(ωx+φ)的初相、振幅、周期、频率分别为多少?(2)将y=sin(x+φ)(其中φ≠0)的图象怎样变换,能得到y=sin x的图象?(3)函数y =A sin x ,x ∈R(A >0且A ≠1)的图象,可由正弦曲线y =sin x ,x ∈R 怎样变换得到?(4)函数y =sin ωx ,x ∈R(ω>0且ω≠1)的图象,可由正弦曲线y =sin x ,x ∈R 怎样变换得到?[新知初探]1.函数y =A sin(ωx +φ),A >0,ω>0中参数的物理意义[点睛] 当A <0或φ<0时,应先用诱导公式将x 的系数或三角函数符号前的数化为正数,再确定初相φ.如函数y =-sin ⎝⎛⎭⎫2x -π4的初相不是φ=-π4. 2.φ,ω,A 对函数y =sin(x +φ)图象的影响 (1)φ对函数y =sin(x +φ),x ∈R 的图象的影响(2)ω(ω>0)对y =sin(ωx +φ)的图象的影响(3)A (A >0)对y =A sin(ωx +φ)的图象的影响[点睛] (1)A 越大,函数图象的最大值越大,最大值与A 是正比例关系.(2)ω越大,函数图象的周期越小,ω越小,周期越大,周期与ω为反比例关系. (3)φ大于0时,函数图象向左平移,φ小于0时,函数图象向右平移,即“加左减右”.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)函数y =A sin(ωx +φ),x ∈R 的最大值为A .( ) (2)函数y =3sin(2x -5)的初相为5.( )(3)由函数y =sin ⎝⎛⎭⎫x +π3的图象得到y =sin x 的图象,必须向左平移.( ) (4)把函数y =sin x 的图象上点的横坐标伸长到原来的3倍就得到函数y =sin 3x 的图象.( )答案:(1)× (2)× (3)× (4)×2.函数y =13sin ⎝⎛⎭⎫13x +π6的周期、振幅、初相分别是( ) A .3π,13,π6B .6π,13,π6C .3π,3,-π6D .6π,3,π6答案:B3.为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上所有的点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度 答案:A4.将函数y =sin x 的图象上所有点的横坐标缩短到原来的14倍(纵坐标不变)得________的图象.答案:y =sin 4x[典例] 说明y =-2sin ⎝⎛⎭⎫2x -π6+1的图象是由y =sin x 的图象经过怎样变换得到的. [解] [法一 先伸缩后平移]y =sin x 的图象――――――――――――――――――→各点的纵坐标伸长到原来的2倍且关于x 轴作对称变换y =-2sin x 的图象――――――――――→各点的横坐标缩短到原来的12y=-2sin 2x 的图象π−−−−−−−→12向右平移个单位长度y =-2sin ⎝⎛⎭⎫2x -π6的图象―――――――――→向上平移1个单位长度y =-2sin ⎝⎛⎭⎫2x -π6+1的图象. [法二 先平移后伸缩]y =sin x 的图象――――――――――――――――→各点的纵坐标伸长到原来的2倍且关于x 轴作对称变换y =-2sin x 的图象π−−−−−−−→6向右平移个单位长度y =-2sin x -π6的图象―――――――――――→各点的横坐标缩短到原来的12y =-2sin ⎝⎛⎭⎫2x -π6的图象―――――――――――→向上平移1个单位长度 y =-2sin ⎝⎛⎭⎫2x -π6+1的图象.由函数y =sin x 的图象通过变换得到函数y =A sin(ωx +φ)的图象的步骤[活学活用]1.将函数y =sin ⎝⎛⎭⎫2x -π6向左平移π6个单位,可得到函数图象是( ) A .y =sin 2x B .y =sin ⎝⎛⎭⎫2x -π6 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin ⎝⎛⎭⎫2x -π3 解析:选C y =sin ⎝⎛⎭⎫2x -π6的图象π−−−−−−→6向左平移个单位y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫2x +π6的图象.2.把函数y =f (x )的图象向左平移π4个单位长度,向下平移1个单位长度,然后再把所得图象上每个点的横坐标伸长到原来的2倍(纵坐标保持不变),得到函数y =sin x 的图象,则y =f (x )的解析式为( )A .y =sin ⎝⎛⎭⎫2x -π4+1 B .y =sin ⎝⎛⎭⎫2x -π2+1 C .y =sin ⎝⎛⎭⎫12x +π4-1 D .y =sin ⎝⎛⎭⎫12x +π2-1解析:选B 将函数y =sin x 的图象上每个点的横坐标缩短到原来的12(纵坐标保持不变),得到函数y =sin 2x 的图象,将所得图象向上平移1个单位长度,得到函数y =sin 2x +1的图象,再将所得图象向右平移π4个单位长度,得到函数y =sin 2⎝⎛⎭⎫x -π4+1=sin2x -π2+1的图象.故选B.[典例] 如图是函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象的一部分,求此函数的解析式.[解] [法一 逐一定参法] 由图象知A =3, T =5π6-⎝⎛⎭⎫-π6=π, ∴ω=2πT=2, ∴y =3sin(2x +φ).∵点⎝⎛⎭⎫-π6,0在函数图象上, ∴0=3sin ⎝⎛⎭⎫-π6×2+φ. ∴-π6×2+φ=k π,得φ=π3+k π(k ∈Z).∵|φ|<π2,∴φ=π3.∴y =3sin ⎝⎛⎭⎫2x +π3. [法二 待定系数法]由图象知A =3.∵图象过点⎝⎛⎭⎫π3,0和⎝⎛⎭⎫5π6,0,∴⎩⎨⎧πω3+φ=π,5πω6+φ=2π,解得⎩⎪⎨⎪⎧ω=2,φ=π3.∴y =3sin ⎝⎛⎭⎫2x +π3. [法三 图象变换法]由A =3,T =π,点⎝⎛⎭⎫-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单位长度而得,所以y =3sin 2⎝⎛⎭⎫x +π6,即y =3sin ⎝⎛⎭⎫2x +π3.给出y =A sin(ωx +φ)的图象的一部分,确定A ,ω,φ的方法(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.(2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.[活学活用]如图为函数y =A sin(ωx +φ)(A >0,ω>0) 的图象的一部分,试求该函数的解析式. 解:由图可得:A =3,T = 2|MN |=π.从而ω=2πT =2, 故y =3sin(2x +φ),又∵2×π3+φ=2 k π,k ∈Z ,∴φ=-2π3+2 k π,k ∈Z.∴y =3sin ⎝⎛⎭⎫2x -2π3. [典例] 在函数y =2sin ⎝⎭⎫4x +2π3的图象的对称中心中,离原点最近的一个中心的坐标是________.[解析] 设4x +2π3=k π(k ∈Z),得x =k π4-π6(k ∈Z)∴函数y =2sin ⎝⎛⎭⎫4x +2π3图象的对称中心坐标为⎝⎛⎭⎫k π4-π6,0(k ∈Z). 取k =1得⎝⎛⎭⎫π12,0满足条件. [答案] ⎝⎛⎭⎫π12,0正弦型函数对称轴、对称中心的求法[活学活用]将本例中对称中心改为对称轴,其他条件不变,则离y 轴最近的一条对称轴方程为________.解析:由4x +2π3=k π+π2,得x =k π4-π24, 取k =0时,x =-π24满足题意.答案:x =-π24[典例] 已知弹簧上挂着的小球做上下振动时,小球离开平衡位置的位移s (cm)随时间t (s)的变化规律为s =4sin ⎝⎛⎭⎫2t +π3,t ∈[0,+∞).用“五点法”作出这个函数的简图,并回答下列问题:(1)小球在开始振动(t =0)时的位移是多少?(2)小球上升到最高点和下降到最低点时的位移分别是多少? (3)经过多长时间小球往复振动一次? [解] 列表如下,描点、连线,图象如图所示.(1)将t =0代入s =4sin ⎝⎛⎭⎫2t +π3,得s =4sin π3=23, 所以小球开始振动时的位移是2 3 cm.(2)小球上升到最高点和下降到最低点时的位移分别是4 cm 和-4 cm. (3)因为振动的周期是π,所以小球往复振动一次所用的时间是π s.解三角函数应用问题的基本步骤[活学活用]通常情况下,同一地区一天的温度随时间变化的曲线接近函数y =A sin(ωx +φ)+b 的图象.2018年2月下旬某地区连续几天最高温度都出现在14时,最高温度为14 ℃;最低温度出现在凌晨2时,最低温度为零下2 ℃.(1)求出该地区该时段的温度函数y =A sin(ωx +φ)+b (A >0,ω>0,|φ|<π,x ∈[)0,24)的表达式;(2)29日上午9时某高中将举行期末考试,如果温度低于10 ℃,教室就要开空调,请问届时学校后勤应该开空调吗?解:(1)由题意知⎩⎪⎨⎪⎧ A +b =14,-A +b =-2,解得⎩⎪⎨⎪⎧A =8,b =6,易知T 2=14-2,所以T =24,所以ω=π12,易知8sin ⎝⎛⎭⎫π12×2+φ+6=-2, 即sin ⎝⎛⎭⎫π12×2+φ=-1, 故π12×2+φ=-π2+2k π,k ∈Z , 又|φ|<π,得φ=-2π3,所以y =8sin ⎝⎛⎭⎫π12x -2π3+6(x ∈[0,24)). (2)当x =9时,y =8sin ⎝⎛⎭⎫π12×9-2π3+6=8sin π12+6<8sin π6+6=10.所以届时学校后勤应该开空调.层级一 学业水平达标1.最大值为12,最小正周期为2π3,初相为π6的函数表达式是( )A .y =12sin ⎝⎛⎭⎫x 3+π6 B .y =12sin ⎝⎛⎭⎫x 3-π6 C .y =12sin ⎝⎛⎭⎫3x -π6 D .y =12sin ⎝⎛⎭⎫3x +π6 解析:选D 由最小正周期为2π3,排除A 、B ;由初相为π6,排除C.2.为了得到函数y =sin ⎝⎛⎭⎫x -π3的图象,只需把函数y =sin x 的图象( )A .向左平移π3个单位长度B .向右平移π3个单位长度C .向上平移π3个单位长度D .向下平移π3个单位长度解析:选B 将函数y =sin x 的图象向右平移π3个单位长度,所得图象对应的函数解析式为y =sin ⎝⎛⎭⎫x -π3. 3.已知简谐运动f (x )=2sin ⎝⎛⎭⎫π3x +φ⎝⎛⎭⎫|φ|<π2的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3解析:选A T =2πω=2ππ3=6,∵图象过(0,1)点,∴sin φ=12.∵-π2<φ<π2,∴φ=π6.4.将函数y =sin ⎝⎛⎭⎫x +π6的图象向左平移π个单位长度,则平移后的函数图象( ) A .关于直线x =π3对称B .关于直线x =π6对称C .关于点⎝⎛⎭⎫π3,0对称D .关于点⎝⎛⎭⎫π6,0对称 解析:选A 函数y =sin ⎝⎛⎭⎫x +π6的图象向左平移π个单位长度,得到y =sin ⎝⎛⎭⎫x +π6+π=-sin ⎝⎛⎭⎫x +π6的图象,其对称轴方程为x +π6=k π+π2,k ∈Z ,即x =k π+π3,k ∈Z ,令k =0,得x =π3,故选A.5.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )解析:选A 当x =0时,y =sin ⎝⎛⎭⎫-π3=-32<0, 故可排除B 、D ;当x =π6时,sin ⎝⎛⎭⎫2×π6-π3=sin 0=0,排除C. 6.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位长度后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=________.解析:因为φ∈[0,2π),所以把y =sin x 的图象向左平移φ个单位长度得到y =sin (x +φ)的图象,而sin ⎝⎛⎭⎫x +11π6=sin ⎝⎛⎭⎫x +11π6-2π=sin ⎝⎛⎭⎫x -π6,即φ=11π6. 答案:11π67.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________. 解析:由题意设函数周期为T , 则T 4=2π3-π3=π3,∴T =4π3. ∴ω=2πT =32.答案:328.将函数y =sin ⎝⎛⎭⎫x -π3图象上各点的纵坐标不变,横坐标伸长为原来的5倍,可得到函数__________________的图象.解析:y =sin ⎝⎛⎭⎫x -π3的图象――――――――――――→图象上各点的纵坐标不变横坐标伸长为原来的5倍y =sin ⎝⎛⎭⎫15x -π3的图象. 答案:y =sin ⎝⎛⎭⎫15x -π39.已知函数f (x )的图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移π2个单位长度,这样得到的图象与y =12sin x 的图象相同,求f (x )的解析式.解:反过来想,y =12sin x π−−−−−−−→2向右平移个单位长度y =12sin ⎝⎛⎭⎫x -π2−−−−−−−→1横坐标变为原来的倍2 y =12sin ⎝⎛⎭⎫2x -π2,即f (x )=12sin ⎝⎛⎭⎫2x -π2. 10.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的图象的一段如图所示,求它的解析式.(1)求函数f (x )的解析式;(2)求函数f (x )的最小正周期、频率、振幅、初相. 解:(1)由图象可知A =2,T 2=5π6-π6=2π3,∴T =4π3,ω=2πT =32.将N ⎝⎛⎭⎫π6,-2代入y =2sin ⎝⎛⎭⎫32x +φ得, 2sin ⎝⎛⎭⎫32×π6+φ=-2,∴π4+φ=2k π-π2,φ=2k π-3π4(k ∈Z). ∵|φ|<π,∴φ=-3π4.∴函数的解析式为y =2sin ⎝⎛⎭⎫32x -3π4. (2)由(1),知f (x )的最小正周期为4π3=8,频率为34π,振幅为2,初相为-3π4. 层级二 应试能力达标1.如图所示的是一个半径为3米的水轮,水轮的圆心O 距离水面2米,已知水轮每分钟旋转4圈,水轮上的点P 到水面的距离y (米)与时间t (秒)满足关系式y =A sin(ωt +φ)+2,则( )A .ω=152π,A =3 B .ω=2π15,A =3 C .ω=2π15,A =5 D .ω=152π,A =5 解析:选B 由题意知A =3,ω=2π×460=2π15.2.要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位解析:选B 由y =sin ⎝⎛⎭⎫4x -π3=sin 4⎝⎛⎭⎫x -π12得,只需将y =sin 4x 的图象向右平移π12个单位即可,故选B.3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π8对称B .关于点⎝⎛⎭⎫π4,0对称 C .关于直线x =π4对称D .关于点⎝⎛⎭⎫π8,0对称解析:选A 依题意得T =2πω=π,ω=2,故f (x )=sin ⎝⎛⎭⎫2x +π4,所以f ⎝⎛⎭⎫π8=sin ⎝⎛⎭⎫2×π8+π4=sin π2=1,f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫2×π4+π4=sin 3π4=22,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎫π4,0和点⎝⎛⎭⎫π8,0对称,也不关于直线x =π4对称.故选A. 4.把函数y =sin ⎝⎛⎭⎫5x -π2的图象向右平移π4个单位长度,再把所得图象上各点的横坐标缩短为原来的12倍,所得函数图象的解析式为( )A .y =sin ⎝⎛⎭⎫10x -3π4B .y =sin ⎝⎛⎭⎫10x -7π2 C .y =sin ⎝⎛⎭⎫10x -3π2 D .y =sin ⎝⎛⎭⎫10x -7π4 解析:选D 将原函数图象向右平移π4个单位长度,得y =sin ⎣⎡⎦⎤5⎝⎛⎭⎫x -π4-π2=sin ⎝⎛⎭⎫5x -7π4的图象,再把y =sin ⎝⎛⎭⎫5x -7π4的图象上各点的横坐标缩短为原来的12倍得y =sin ⎝⎛⎭⎫10x -7π4的图象.5.将函数y =sin ⎝⎛⎭⎫2x -π4图象上所有点的横坐标保持不变,纵坐标________(填“伸长”或“缩短”)为原来的________倍,将会得到函数y =3sin ⎝⎛⎭⎫2x -π4的图象. 解析:A =3>0,故将函数y =sin ⎝⎛⎭⎫2x -π4图象上所有点的横坐标保持不变,纵坐标伸长为原来的3倍即可得到函数y =3sin ⎝⎛⎭⎫2x -π4的图象. 答案:伸长 36.将函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝⎛⎭⎫π6=________. 解析:将y =sin x 的图象向左平移π6个单位长度可得y =sin ⎝⎛⎭⎫x +π6的图象,保持纵坐标不变,横坐标变为原来的2倍可得y =sin ⎝⎛⎭⎫12x +π6的图象,故f (x )=sin ⎝⎛⎭⎫12x +π6,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫12×π6+π6=sin π4=22. 答案:227.求函数y =sin ⎝⎛⎭⎫2x +π3图象的对称轴、对称中心. 解:令2x +π3=k π+π2(k ∈Z),得x =k π2+π12(k ∈Z).令2x +π3=k π,得x =k π2-π6(k ∈Z).即对称轴为直线x =k π2+π12(k ∈Z),对称中心为⎝⎛⎭⎫k π2-π6,0(k ∈Z).8.如图为函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫|φ|<π2的一个周期内的图象. (1)写出f (x )的解析式;(2)若y =g (x )与y =f (x )的图象关于直线x =2对称,写出g (x )的解析式;(3)指出g (x )的周期、频率、振幅、初相. 解:(1)由图知A =2,T =7-(-1)=8, ∴ω=2πT =2π8=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +φ. 将点(-1,0)代入,得0=2sin ⎝⎛⎭⎫-π4+φ. ∵|φ|<π2,∴φ=π4,∴f (x )=2sin ⎝⎛⎭⎫π4x +π4. (2)作出与f (x )的图象关于直线x =2对称的图象(图略),可以看出g (x )的图象相当于将f (x )的图象向右平移2个单位长度得到的,∴g (x )=2sin ⎣⎡⎦⎤π4(x -2)+π4=2sin ⎝⎛⎭⎫π4x -π4. (3)由(2)知,g (x )的周期T =2ππ4=8,频率f =1T =18,振幅A =2,初相φ0=-π4.。

人教A版(2019)高一上册数学:1.3 集合基本运算同步训练 word版,含答案

人教A 版(2019)高一上册数学:1.3 集合基本运算同步训练一、选择题1.设全集{1,A =2,3,4},{|21,}B y y x x A ==-∈,则A B ⋃等于( ) A .{}1,3 B .{}2,4C .{2,4,5,7}D .{1,2,3,4,5,7}2.设集合{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,则实数m 等于 A .1-B .1C .0D .23.已知集合{|26}A x x =∈-<<R ,{|2}B x x =∈<R ,则()C R A B ⋃=( ) A .{|6}x x <B .{|22}x x -<<C .{|2}x x >-D .{|26}x x ≤≤4.若全集{}1,2,3,4U =,集合{}2430M x x x =-+=,{}2560N x x x =-+=,则()UM N =.A .{}4B .{}1,2C .{}1,2,4D .{}1,3,45.已知全集U Z =,{31,}A x x n n Z ==-∈,{3,}B x x x Z =>∈,则()U A C B ⋂中元素的个数为 A .4B .3C .2D .16.已知集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈,则A B 的子集个数为( )A .2B .4C .7D .87.若集合A ={0,1,2,3},B ={1,2,4},则集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}8.设M 、P 是两个非空集合,定义M 与P 的差集为{M P x x M -=∈且}x P ∉,则()M M P --等于( ) A .P B .MC .MPD .M P ⋃9.设{|210},{|350}Sx x T x x ,则S TA .∅B .1|2x xC .3|5x x D .15|23x x10.设全集U ={x |x 是小于5的非负整数},A ={2,4},则∁U A = A .{1,3}B .{1,3,5}C .{0,1,3}D .{0,1,3,5}11.已知集合{}1A x x =≤,{}12B x x =-<<则()R A B =A .{}12x x <<B .{}1x x >C .{}12x x ≤<D .{}1x x ≥12.已知集合{}A x x a =<,{}2B x x =<,且()RA B =R ,则a 满足A .2a ≥B .2a >C .2a <D .2a ≤13.已知M,N 都是U 的子集,则图中的阴影部分表示( )A .M∁NB .∁U (M∁N)C .(∁U M)∩ND .∁U (M∩N)14.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()UM P S ⋂⋂D .()()UM P S ⋂⋃二、填空题15.设全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,则a =_____.16.已知集合{}0A x x a =->,{}20B x x =-<,且A B B ⋃=,则实数a 满足的条件是______. 17.设集合{}0,1,2,3U =,集合{}2|0A x U x mx =∈+=,若{}1,2U C A =,则实数m =_____.18.设集合{}24A x x =≤<,{}12B x x m =≤-,若AB =∅,则实数m 的取值范围为______.19.已知全集为R ,集合()(){}620A x x x =-->,{}44B x a x a =-≤≤+,且A B ⊆R,则实数a的取值范围是______.20.已知{}{}|12M x x N x x a =≤-=-,,若M N ≠∅,则a 的范围是________.三、解答题21.设{4,5,6,8}A =,{3,5,7,8}B =,求A B .22.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .23.已知集合22{|190}A x x ax a =-+-=,2{|560}B x x x =-+=,2{|280}C x x x =+-=. (1)若A B ⋂≠∅与A C ⋂=∅同时成立,求实数a 的值; (2)若()A B C ⊆⋂,求实数a 的取值范围.24.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ,()()U U A B .25.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()UU A B ; (2)()()U U A B ⋃.26.若A ={3,5},B ={x |x 2+mx +n =0},A ∁B =A ,A ∩B ={5},求m ,n 的值.27.设全集I R =,已知集合(){}{}22|30,|60M x x N x x x =+≤=+-=(1)求()I C M N ⋂;(2)记集合(),I A C M N =⋂已知集合{}|15,,B x a x a a R =-≤≤-∈若A B A ⋃=,求实数a 的取值范围.参考答案1.D 【解析】 【分析】先求出集合A ,B ,再利用并集定义能求出结果. 【详解】全集{1,A =2,3,4},{|21,}{1,B y y x x A ==-∈=3,5,7}, {1,A B ∴⋃=2,3,4,5,7}.故选D . 【点睛】本题考查并集的求法,是基础题. 2.A 【分析】根据,A B ,以及A 与B 的并集,确定出m 的值即可. 【详解】{}{}0,2,A B m ==,且{}1,0,2A B ⋃=-,所以1B -∈,1m ∴=-,故选A.【点睛】本题主要考查并集的定义,意在考查对基础知识的掌握情况,属于简单题. 3.C 【分析】先由补集的概念,求出C R B ,再和集合A 求交集,即可得出结果. 【详解】由{|2}B x x =∈<R ,得C {|2}R B x x =∈≥R .又{|26}A x x =∈-<<R ,所以()C {|2}R A B x x ⋃=>-.故选:C. 【点睛】本题主要考查集合的交集与补集的运算,熟记概念即可,属于基础题型. 4.C 【分析】先根据一元二次方程的解表示出集合,M N ,然后再求解出M N ⋂的结果,最后求解出()UM N 的结果. 【详解】2430x x -+=的解为1x =或3,{}1,3M ∴=,2560x x -+=的解为2x =或3,{}2,3N ∴=,∁{}3M N ⋂=,∁(){}1,2,4UM N =,故选C . 【点睛】本题考查集合的交集、补集混合运算,难度较易.()UM N 的计算除了按本题的方法外,还可以由()()()UUUMN M N =来计算.5.C 【分析】先求出U C B ,然后求出()U A C B ⋂,即可得到答案. 【详解】{3,}U C B x x x Z =≤∈,{31,}A x n n Z ==-∈,则(){}12U A C B ⋂=-,.故答案为C. 【点睛】本题考查了集合的运算,主要涉及交集与补集,属于基础题. 6.D 【分析】先求出A B ⋂集合元素的个数,再根据求子集的公式求得子集个数. 【详解】因为集合{}0,1,2,3A =,{}=02,B x x x R ≤≤∈ 所以{}0,1,2A B ⋂= 所以子集个数为328= 个 所以选D 【点睛】本题考查了集合交集的运算,集合子集个数的求解,属于基础题. 7.A 【详解】因为集合A ={0,1,2,3},B ={1,2,4}, 所以由并集的定义可得,故选A.8.C 【分析】根据题意,分M P ⋂=∅和M P ⋂≠∅两种情况,结合集合的基本运算,借助venn 图,即可得出结果. 【详解】当M P ⋂=∅,由于对任意x M ∈都有x P ∉,所以M P M -=, 因此()M M P M M M P --=-=∅=⋂; 当M P ⋂≠∅时,作出Venn 图如图所示,则M P -表示由在M 中但不在P 中的元素构成的集合,因而()M M P --表示由在M 中但不在M P -中的元素构成的集合,由于M P -中的元素都不在P 中,所以()M M P --中的元素都在P 中,所以()M M P --中的元素都在M P ⋂中,反过来M P ⋂中的元素也符合()M M P --的定义,因此()M M P M P --=⋂.故选:C. 【点睛】本题主要考查集合的应用,熟记集合的基本运算即可,属于常考题型. 9.D 【分析】先分别求解出集合,S T 中表示元素的范围,然后利用数轴表示出交集,从而求解出S T 的结果.【详解】 ∁1{|210}|2Sx x x x,5{|350}|3T x x x x,如图所示,∁15|23S T x x, 故选D. 【点睛】本题考查集合的交集运算,难度较易.集合的交集运算结果可通过数轴来直观表示,具体做法为:将相应集合对应的解集表示在数轴上,然后求解公共部分范围即为交集运算结果. 10.C 【分析】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},由集合的补集的概念得到结果. 【详解】全集U ={x |x 是小于5的非负整数}={0,1,2,3,4},A ={2,4},∁∁U A ={0,1,3}. 故选C . 【点睛】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识.纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算.解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素.二是考查抽象集合的关系判断以及运算. 11.A 【分析】 根据()RA B ⋂可知,应先求解A R ,再求解B ,最终根据交集运算进行求解即可【详解】因为集合{}1A x x =≤,所以{}1RA x x =>,则(){}12R AB x x ⋂=<<.答案选A 【点睛】本题考查集合的混合运算,在运算法则中应遵循有括号先算括号的基本原则,易错点为将A R错解为{}1RA x x =≥12.A 【分析】 可先求出B R,再根据()RAB =R 进行求解即可【详解】{}2RB x x =,则由()RA B =R ,得2a ≥,故选A.【点睛】本题考查并集与补集的混合运算,易错点为求解时忽略端点处2a =能取得到的情况,为了提升准确率,建议对范围理解陌生的考生最好辅以数轴图进行求解 13.B 【分析】观察图形可知,图中非阴影部分所表示的集合是A B ,从而得出图中阴影部分所表示的集合.【详解】由题意,图中非阴影部分所表示的集合是A B ,所以图中阴影部分所表示的集合为A B 的 补集,即图中阴影部分所表示的集合为()U C A B ,故选B.【点睛】本题主要考查集合的venn 图的表示及应用,其中venn 图既可以表示一个独立的集合,也可以表示集合与集合之间的关系,熟记venn 图的含义是解答的关键. 14.C 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题. 15.2或8 【分析】根据题意得出53a -=,解出该方程即可得出实数a 的值. 【详解】全集{}1,3,5,7,9U =,{}1,5,9A a =-,{}5,7UA =,53a ∴-=,解得2a =或8.故答案为2或8. 【点睛】本题考查利用补集的结果求参数,根据题意得出方程是解题的关键,考查运算求解能力,属于基础题. 16.2a ≥ 【分析】根据A B B ⋃=可得A B ⊆,分别化简集合A 与B ,进行求解即可 【详解】{}{}0A x x a x x a =->=>,{}{}202B x x x x =-<=>.A B B =,A B ⊆,则2a ≥. 【点睛】本题考查根据集合的并集结果求参数问题,易错点为忽略端点处元素2的存在,需注意若A B ⊆,其中也包括A B =的情况下 17.-3 【详解】因为集合{}0,1,2,3U =, {}1,2U C A =,A={0,3},故m= -3.18.1,2⎛⎫-+∞ ⎪⎝⎭【解析】【分析】根据A B =∅可判断212m >-,求出m 即可【详解】因为A B =∅,所以212m >-, 所以1,2m ⎛⎫∈-+∞ ⎪⎝⎭. 【点睛】本题考查根据空集的概念求解参数问题,属于基础题19.{|10a a ≥或}2a ≤-【分析】先求解出R B ,根据A B ⊆R 得到集合,A B 的端点值之间的不等式关系,从而求解出a 的取值范围. 【详解】 由题可知{}26A x x =<<,{4R B x x a =<-或}4x a >+, 因为A B ⊆R ,所以64a ≤-或24a ≥+,即10a ≥或2a ≤-.故答案为{|10a a ≥或}2a ≤-.【点睛】本题考查根据集合的包含关系确定参数范围以及补集运算,难度一般.除了直接分析出不等式组,通过数轴根据解集的位置关系列出不等式组求解亦可.20.1a <【分析】表示出N 中不等式的解集,根据M 与N 交集不为空集,即可确定出a 的范围.【详解】集合{}{}|12M x x N x x a =≤-=-,,MN ≠∅,则21a -<-,解得:1a <故填1a <.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.21.{3,4,5,6,7,8}【解析】【分析】根据并集定义直接求解即可.【详解】由并集定义可知:{}3,4,5,6,7,8AB = 【点睛】本题考查集合运算中的并集运算,属于基础题.22.{}5,8A B =,{}3,4,5,6,7,8A B =【分析】根据交集和并集定义直接求解即可.【详解】由交集定义知:{}5,8AB =;由并集定义知:{}3,4,5,6,7,8A B = 【点睛】本题考查集合运算中的交集和并集运算,属于基础题.23.(1)2a =-(2)a >a < 【分析】(1)先化简集合B 与集合C ,再根据A B ⋂≠∅,A C ⋂=∅,得到3是方程22190x ax a -+-=的解,求出2a =-或5a =,再检验,即可得出结果;(2)先由(1)得到{}2B C ⋂=,根据()A B C ⊆⋂,得到A =∅或{}2A =,分别讨论这两种情况 ,即可得出结果.【详解】(1)由题意可得{}2{|560}2,3B x x x =-+==,{}2{|280}2,4C x x x =+-==-, ∁A B ⋂≠∅,A C ⋂=∅,集合A 中的元素有3,即3是方程22190x ax a -+-=的解;把3x =代入方程得23100a a --=,解得2a =-或5a =.当2a =-时,{}5,3A =-,满足题意;当5a =时,{}2,3A =,此时A C ⋂≠∅,故5a =不满足题意,舍去.综上知2a =-.(2)由(1)可知{}2B C ⋂=,若()A B C ⊆⋂,则A =∅或{}2A =.当A =∅时,()224190a a ∆=--<,解得a >或a <. 当{}2A =时,方程22190x ax a -+-=有两个相等的实数根2,由根与系数的关系得222,1922,a a =+⎧⎨-=⨯⎩解得a ∈∅.综上可得,实数a 的取值范围是3a >或3a <-. 【点睛】本题主要考查由集合交集的结果求参数,以及由集合间的包含关系求参数,熟记集合交集的概念,以及集合间的基本关系即可,属于常考题型.24.(){}2,4U A B =,()(){}6U U A B =.【分析】 根据补集定义首先求得U A 和U B ,由交集定义可求得结果. 【详解】{}1,3,6,7U A =,{}2,4,6U B =(){}2,4U A B ∴=,()(){}6U U A B =【点睛】本题考查集合运算中的补集和交集运算,属于基础题.25.(1)图象见解析;(2)图象见解析.【分析】根据补集、交集和并集的定义,利用Venn 图表示出来即可.【详解】如下图阴影部分所示.【点睛】本题考查Venn 图表示集合,涉及到集合的交集、并集和补集运算,属于基础题.26.10,{25.m n =-=【分析】由题意,A∁B =A ,A∩B ={5},求得B ={5},进而得到方程x 2+mx +n =0只有一个根为5,列出方程组,即可求解.【详解】解:∁A ∁B =A ,A ∩B ={5},A ={3,5},∁B ={5}.∁方程x 2+mx +n =0只有一个根为5,∁2255040m n m n ++=⎧⎨∆=-=⎩∁解得10,25.m n =-⎧⎨=⎩【点睛】本题主要考查了集合的交集、并集的应用,其中解答中熟记集合的交集、并集的基本运算,转化为方程的根求解是解答的关键,着重考查了转化思想的应用,以及推理与运算能力.27.(1){}2;(2){}|3a a ≥.【分析】(1)通过解不等式和方程求得集合M,N ,再进行集合的补集、交集运算;(2)由(1)知集合{}2A =,根据集合关系B A A ⋃=,得B φ=或{}2B =,利用分类讨论求出a 的范围.【详解】(1)∁(){}{}2|303,M x x =+≤=- {}2{|60)3,2,N x x x =+-==- {|I C M x x R ∴=∈且3},x ≠-(){}12C M N ∴⋂=(2)由题意得(){}2I A C M N =⋂=.∁,A B A ⋃=B A ∴⊆,∁B =∅或{}2,B =∁当B =∅时, 15a a ->-,得3a >;∁当{}2B =时,解得3a =.综上所述,所求a 的取值范围为{}|3a a ≥.【点睛】该题考查的是与集合相关的参数的取值范围的问题,在解题的过程中,涉及到的知识点有集合的交集,集合的补集,以及集合之间的包含关系,正确得出其满足的式子是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标训练3 边 城一、夯基训练1.下列词语中加点字的注音完全正确的一项是( )A.挣扎.(zhá) 包扎.(zhā) 翘.起(qiào ) 翘.首(qiáo ) B.擂.鼓(léi ) 打擂.(lèi ) 脖颈.(ɡěnɡ) 长颈.鹿(jǐnɡ) C.埋怨(mán ) 拮据(jù) 停泊(bó) 血泊(pō) D.蚱.蜢(zhà) 舴.艋(zhà) 眺.望(tiào ) 角隅.(yú)解析:A 项,“包扎”的“扎”应读“zā”;C 项,“拮据”的“据”应读“jū”;D 项,“舴艋”的“舴”应读“zé”。

答案:B2.下列词语书写没有错误的一项是( )A.缠裹 唢呐 赤裸 吊角楼B.竟争 棕榈 艾篙 踩高跷C.伶俐 渡船 景致 碧溪岨D.皱眉 粗鄙 蘸酒 笑咪咪解析:A 项,“角”应为“脚”;B 项,“竟”应为“竞”,“篙”应为“蒿”;D 项,“咪咪”应为“眯眯”。

答案:C3.填入句中横线处的词语恰当的一项是( )(1)祖父说着,于是,把手膀子弯曲起来,努力使筋肉在 中显得又有力又年青。

(2)翠翠望到这个景致,忽然起了一个怕人的想头,她想:“ 爷爷死了?”(3)正似乎因为那个过渡人送钱气派有些强横,使老船夫受了点压迫,这撑渡船人就 生气似的,迫着那人把钱收回。

A.局束 假若 俨然B.局促 难道 居然C.局促 假若 俨然D.局束 难道 居然解析:“局束”指控制,约束;“局促”指拘谨不自然。

依据语境,第(1)句应选“局束”。

第(2)句是个假设句,不是反问句,应填“假若”。

“俨然”形容庄严、齐整、很像。

“居然”表示出乎意料,竟然。

第(3)句中老船夫并非真的生气,所以使用“俨然”。

答案:A4.下列各句中,加点的成语使用恰当的一项是( )A.随着全社会对宏观经济增长目标的深入解读,“幸福感”“幸福指数”毋庸置疑....地成为民生改善和文化发展进程中的重要话题,受到公众的普遍关注。

B.《舌尖上的中国》是国内首次使用高清设备拍摄的美食类纪录片,片中由近距离拍摄呈现出的各类食材的纹理构造,带给观众焕然一新....的审美感受。

C.如今,视觉文化方兴未艾....,在这图像和文本相互转换、相互模仿、共同存在的现实状况下,图文关系正在成为中外学者共同关注的跨学科研究热点。

D.完善各级各类学校的心理健康工作者队伍建设,实施有针对性的心理健康教育,可以亡.羊补牢...,使学生的常见心理问题在萌芽状态及时得到解决。

解析:C项,方兴未艾:事物正在兴起、发展,一时不会终止。

用在这里表现“视觉文化”的发展,准确恰当。

A项,毋庸置疑:无须怀疑(多用于否定式)。

意思过重,同时该词一般不作状语,可换为“毫无疑问”。

B项,焕然一新:形容出现了崭新的面貌。

用在这里不恰当,应该是“耳目一新”,听到的、看到的跟以前完全不同,使人感到新鲜。

D项,亡羊补牢:羊丢失了,才修理羊圈。

比喻在受到损失之后想办法补救,免得以后再受类似的损失。

与后半句的意思不一致,可以改用“未雨绸缪”,比喻事先做好准备工作。

答案:C5.下列各句中,没有..语病的一句是()A.湘、鄂、皖、赣四省地域相邻,山水相连,在非物质文化遗产的保护、传承等方面开展深度合作,既可整合旅游资源,也有助于形成极具特色的区域文化生态圈。

B.“辽宁舰”的舰员在选拔时,年龄、经历、任职时间、现实表现等方面都有着严格的规定,入选者还要经过一系列的理论和技术培训才能成为合格的航空母舰舰员。

C.政府主导,媒体监督与宣传,社会各界积极行动,是解决目前我国农村约5 800万缺失父母庇护的留守儿童身心成长、学习生活所面临的失管、失教和失衡问题。

D.城镇化攸关到亿万人民的生活质量,它不是简单的城镇人口比例增加和城市面积扩张,而是在人居环境、社会保障、生活方式等方面实现由“乡”到“城”的转变。

解析:B项,首先是缺少介词“在”,应该在“年龄”前加“在”;其次是并列短语并列不当,“经历”与“任职时间”在概念外延上不相同,“经历”应该包含“任职时间”;还有后一句断开更顺畅,即“入选者还要经过一系列的理论和技术培训,才能成为合格的航空母舰舰员”。

C项,成分残缺,可改为“是解决目前我国农村约5 800万缺失父母庇护的留守儿童身心成长、学习生活所面临的失管、失教、失衡问题的好办法”。

D项,成分赘余,把“攸关到”改为“攸关”;关联词语使用不当,“不是……而是……”是并列关系,而该句的意思应该是递进关系,可改为“不只是……而且是……”。

答案:A二、延伸阅读6.阅读下面的文字,完成第6~9题。

寻找翠翠祝勇闲坐于草亭,忽的想起翠翠,仿佛想起一个熟识的故人。

天碰巧落着雨。

我们碰巧饮着酒。

雨和酒,碰巧都易于勾起人的愁肠。

碰巧是在酉水边,酉水碰巧和沈从文小说里写的一般模样。

我们碰巧都是沈从文迷。

所有与翠翠有关的事物,碰巧在这个时刻聚齐。

而翠翠,却只能隔着茫漠的时空同我们说话。

翠翠很远。

翠翠只生长于沈从文三十年代的小说里,穿着图案简单的衣裳。

悠远的日子早已布满了旧电影似的划痕,但她的明眸不会褪色。

沈从文说:“翠翠在风日里长养着,故把皮肤变得黑黑的,触目为青山绿水,故眸子清明如水晶。

自然既长养她且教育她,故天真活泼,处处俨然如一只小兽物。

人又那么乖,从不想到残忍事情,从不发愁,从不动气。

平时在渡船上遇陌生人对她有所注意时,她便用光光的眼睛瞅着那陌生人,作成随时皆可举步逃入深山的神气,但明白了面前的人无心机后,就又从从容容地来完成任务了。

”严格来说,翠翠是由所有喜欢翠翠的人集体创作的。

凡是读过《边城》的人,心里都装着一个翠翠。

翠翠是典型的中国式梦境的产物。

她容纳了民间中国对于自然、人性、爱情与生命的本质看法。

或者说,翠翠是河流的另一种形式的存在。

她的每一寸肌肤都是秋露和山雨凝聚成的,所以她才清明秀丽,有着透明的秉性。

她是中国河流的青春写照。

凡是河流可以带我们去的地方,她都可以带我们去。

翠翠就是这样陪着我,在湘西,一路走了好远。

她是无处不在的河水和月光。

我知道她不独属于我,但她总会在我最需要的时候出现。

——这是《边城》以外的翠翠。

沈从文不知道还有这样一个翠翠。

翠翠在《边城》里,在沈从文的设计里,只属于傩送,傩送就一下子成了《边城》外许多人的共同的情敌。

翠翠在水边长大,像朵被一阵偶然的风吹落在山间的野花。

她的父亲母亲很久以前死于一场浓烈的爱情,她却懵懂着,不知情为何物。

翠翠在世俗生活的边缘,旺盛地生长着。

她只能透过城里来的人来打量那个她所未知的世界,但沈从文却将她永远隔绝于世俗世界之外,斩断了她同外部世界可能发生的联系——天保和傩送都拥有“外面的世界”,或许他们中某一个的世界会与翠翠相连,但是天保死了,傩送出走,翠翠仍然守着她的渡口,消磨着她的年华;然而,翠翠的生命出路在哪里呢?在纯净的爱情里吗?爱情像河水一样不可捉摸,像青春一样无常和易逝。

翠翠就这样面对着河流、青春和爱情。

《边城》真正煽情之处,是翠翠的等待。

翠翠的等待就是整部作品的高潮。

也可以说,前面所有的故事,都只是一个交代,翠翠执着而执拗的等待,才是作品的核心。

但是故事恰好就在这里戛然而止了,读者会根据自己的人生取向作出自己的抉择和判断,沈从文一句也没有多写,只有轻描淡写的几句:“到了冬天,那个坍塌了的白塔,又重新修好了。

那个在月下唱歌,使翠翠在睡梦里为歌声把灵魂轻轻浮起来的年轻人,还不曾回到茶峒来。

”“这个人也许永远不会来了,也许明天回来!”美丽的翠翠,就这样将期望抛向未知的远方。

她实在不该在遥遥无期的等待中耗尽自己的一生,她蓬勃健美的生命不该有这样的结局。

也许,在某个“明天”,翠翠会突然看见傩送风尘仆仆的微笑重又出现在岸头,但是我们仍不妨作一个残酷的假设——傩送从此远行,心中装着他的翠翠,梦里想着他的翠翠,走遍天涯,却永不归来。

而翠翠,则同渡口一同老去。

这样,翠翠的一生,因为爱而不完整;另一方面,对爱的忠贞又使她的生命比任何一个人都要完整。

翠翠于是成了沈从文为我们造的一个断臂女神。

然而,这一切即使是梦想,也来得太迟了。

翠翠被时间裹挟着,像傩送一样一去不回头了。

傩送和翠翠分别在时间和空间上远离着我们。

翠翠如蓝印花布一样纯朴的背影,带着湿润的乡下气息,消失在时间深处了。

坐在草亭里想念翠翠,翠翠既远且近。

雨还在下,河面上是一片烟,天气越来越寒凉。

酒还在饮,身子却越来越暖。

野渡无人,视野里有浓有淡。

浓的是水边的青石,怪兽般长满绿毛;淡的是若有若无的远山,以及山脚下的江水。

一幅典型的中国式风景。

遂想起沈从文的一句话:“一切总永远那么静寂,所有的人每个日子都在这种不可开窍的单纯寂寞里过去。

”当然,翠翠也在其中。

想起她的爱,她悠长的等待,想哭。

生活也许早已不那么静寂,在自己的节拍里沉了很久的湘西人在现代的步伐面前也表现出一丝慌乱。

要抵挡香车宝马的诱惑已不那么容易了,尽管它的价值并不超过当年的一座碾坊。

爱情,早已成了休闲中的甜点与速食,成了一次性消费品。

这个时代里,过路的女学生,即使装扮再奇奇怪怪,行为再不可思议,也不是风景了。

但翠翠是。

可是河流还在。

只要河流还在翠翠就在。

当翠翠在孤独中等待傩送的时候,世间有多少个傩送,踏遍千山,在寻找着翠翠!寻找翠翠,翠翠成了我们这个时代的忧伤。

(选自散文集《凤凰:草鞋下的故乡》,有删改) 本文描述了《边城》内外作者心中的翠翠,她们各具怎样的特点?请分别加以简要概括。

解析:本题考查分析把握小说人物形象的能力。

思考翠翠的性格特点,不仅要立足于其本身,还要着眼于当时社会的大背景。

答案:《边城》外的翠翠:是典型的中国式梦境的产物。

她容纳了民间中国对于自然、人性、爱情与生命的本质看法。

《边城》里的翠翠:美丽,单纯,执着,忠贞。

7.理解下面两句话在文中的含义。

(1)翠翠于是成了沈从文为我们造的一个断臂女神。

(2)坐在草亭里想念翠翠,翠翠既远且近。

解析:本题考查品味精彩语言的能力。

思考时既要结合句子的本身义,更要揣摩该句的语境义。

答案:(1)形象地说明翠翠已成为一个永恒的文学形象。

翠翠的一生,因为爱而不完整;而对爱的忠贞又使她的生命比任何一个人都要完整。

(2)“远”是指翠翠在时间和空间上远离着我们;“近”是指“我”心里装着翠翠,翠翠一直陪着“我”,在“我”最需要的时候出现。

8.文章的结尾说:“寻找翠翠,翠翠成了我们这个时代的忧伤。

”请结合全文,分析这句话在文中的作用。

解析:本题考查对小说的情节思路和主旨的理解能力。

答题时不能脱离文意——对文章主旨的正确理解。

答题角度有两个,一个是情节的结构思路,一个是文章主旨。

所以在解答这类题目时要注意考虑到思想主题和结构思路两个方面。

答案:点题,卒章显志,表达了作者对自然的青山绿水、人性的静谧安详、爱情的执着忠贞、生命的纯净美好的追求。

相关文档
最新文档