理想电路元件与电路模型_New
电路分析基础基本概念

电路分析基础基本概念电路分析基础基本概念1实际电路:实际电路是各个器件按照一定的方式相互连接而构成电流的通路。
以实现电能或电信号的产生、传输、转换、控制和处理等。
模型:是对实体的特征和变化规律的一种表示或者抽象。
理想电路元件:理想电路元件是用数学关系式严格定义的假想元件,每一种理想电路元件都可以表示其实际器件的其中主要的一种电磁性能,理想电路元件是电路模型的最小组成单元。
R、L、C是电路中的三类基本元件电路模型:电路模型是实际电路在一定条件下的科学抽象和足够精确的数学描述。
集总概念:当实际电路的尺寸远小于电路工作时电磁波的波长时,可以把元件的作用集总起来,这样的元件叫做集总元件,这样的电路参数叫做集总参数,由集总元件构成的电路称为集总电路。
分布概念:当实际电路的尺寸可以电路工作时电磁波的波长相比拟时,电路中同一瞬间相邻两点的电位和电流都不相同,这样的元件叫做分布元件,这样的电路参数叫做分布参数,由分布元件构成的电路叫做分布电路。
1集总电路的分类:(1)静态电路(2)动态电路二端元件:具有两个端子的元件叫做二端元件,又叫单口元件支路:电路的每一个二端元件称为一条支路,流经元件的电流叫做支路电流,元件的端电压叫做支路电压。
节点:电路中两条或两条以上的支路的公共连接点叫做节点。
回路:电路中由支路组成的任一闭合路径称为回路。
网孔:内部不含有支路的回路叫做网孔。
网络:一般把含有元件较多的电路称为网络。
有源网络:内部含有独立电源的网络无源网络:内部不含独立电源的网络平面网络:可以画在一个平面上而不出现任何支路交叉现象的网络。
非平面网络:不属于平面网络即为非平面网络。
KCL:对于任一集总电路的任一节点,在任一时刻,流进(或流出)改节点的支路电流的代数和为零。
或表示为流入任一节点的支路电流的等于流出任一节点的支路电流。
KVL:对于任一集总电路的任一回路,在任一时刻,沿着该回路的所有支路电压的代数和为零。
或表示为回路中各支路电压升的代数和等于各支路电压降的代数和。
电路-2集总电路和电路模型

电路有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)问题:电路的研究对象是电工设备或器件?电路课程的研究对象:集总参数电路模型集总参数电路电路模型由集总元件构成的电路集总元件集总条件:电路的实际尺寸远小于波长λ<<d 不考虑电路中电场与磁场的相互作用不考虑电磁波的传播现象电能的传送是瞬间完成的1.集总(参数)电路已知电磁波的传播速度与光速相同,即(1)若电路的工作频率为f=50Hz ,则波长v=3×108m/s8310=600050km f νλ×==室内150m 的电线能看成集总电路?1500km 的高压输电线呢一般电路例如家庭电路尺寸远小于λ,能看成集总参数电路8310=600050km f νλ×==远距离的高压电力传输线线路长度达几百甚至几千千米,不能看成集总参数电路(2)若电路的工作频率为f =50M Hz ,则一般电路不能视为集总参数电路86310=65010mf νλ×==×结论:同一频率,不同尺寸,不一定能看成集总电路同一尺寸,不同频率,不一定能看成集总电路有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)常见的实际的电路元件电阻2.电路模型电感电容有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)信号发生器的内部结构变压器transformer 框架frame可变电阻器rheostat实际器件在某种条件下都可以抽象出它的模型例1:一个白炽灯在有电流通过时i R例2:手电筒由电池、灯泡、开关和筒体组成电池:提供能量灯泡:消耗电能筒体:连接电池和灯泡开关:控制电路的通断电路研究的是电路模型而不是实际电路s R LR sU 电路图实际电路图电源负载连接导线开关K反映实际电路部件的主要电磁性质的理想电路元件及其组合电路模型电阻器电路研究的对象都是由理想电路元件组成的实际电路的电路模型理想电路元件理想元件实际器件有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)电路元件抽象原则:具体问题具体分析—提取主要性质,忽略次要性质1) 具有相同的主要电磁性能的各实际电路部件,在一定条件下可用同一模型表示2) 同一实际电路部件在不同的应用条件下,其模型可以有不同的形式例:电感线圈的电路模型R3.电路课程的任务:电路分析:给定电路结构及电路参数,求各部分的电压、电流电路综合:给定电路某部分的电压和电流,设计电路结构及电路参数THANK YOU谢!谢FOR YOUR listening。
电路模型和电路定律

2020/5/12
4
3.由电路元件构成的实际电路-原理图
2020/5/12
5
4.由电路元件构成的实际电路-安装图
2020/5/12
解:设电流的编号及参考方向如图。
发出功率: p2 u2i2 4(W)
i2 4(A)
a i2 B b - u2 +
负号代表图中电流的实际方向由b向a
2020/5/12
17
练习∶功率的计算
一、计算下面支路的功率、并说明性质。
iA
A
- uA +
iB B - uB +
uA= 1V, iA= -1A
uB= 1V, iB= 1A
如:已知图中电流为2A,方向由a指向b(实际方向),
电压 u1=1V。求元件A的功率及其性质。
解:设电流的编号及参考方向如
a i1
b
图
i1=2A
A
+ u1 -
吸收功率: p u1i1 1 2 2(W )
2020/5/12
16
例2:已知图中电压 u2= -1V,元件B发出的功率 为4W。 求其电流。
3
1)基本表述方式: 对结点列写
结点① :i1+i2+i3=0
i3 ① i2 2
④4
S
② i6 6
结点② :i6 - i2 - i5=0 结点③ :- i6 - i4+i7=0
1
5
i1 i5
i7
2)扩展表述方式:对闭合边界S列写
⑤
电路和电路模型

正弦稳态分析
正弦稳态
交流电路中的电压和电流随时间变化,但它们的波形是稳定的, 不会随时间发生突变。
相量法
将正弦量表示为复数形式,简化了计算过程,使得交流电路的分析 变得更为方便。
阻抗和导纳
在正弦稳态下,电路中的元件可以用阻抗和导纳来表示,它们是复 数,包含了电阻、电感和电容等参数。
功率因数与效率
详细描述
叠加定理指出,在由多个独立电源共同作用的线性电路中, 任何一个电源单独作用时产生的电压或电流,等于各个电源 单独作用于电路所产生的电压或电流的代数和。这个定理在 计算复杂电路的电压和电流时非常有用。
04
线性电路分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
一阶电路分析
三相电路的应用
广泛应用于电力系统、电机控制和工业自动化等领域。
05
非线性电路分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
非线性元件
01
定义
非线性元件是指其伏安特性不能 用线性方程描述的元件,即其输 出与输入不成正比。
02
常见非线性元件
二极管、晶体管、开关等。
03
非线性元件在电路 中的作用
1 2
功率因数
衡量交流电路中电压和电流之间的相位关系,反 映了电路中无功功率的大小。
效率
表示电路中电能转换为有用功的比例,反映了电 路的性能和损耗。
3
提高功率因数和效率的方法
通过无功补偿、滤波器设计、优化电路布局等方 式,可以改善电路的性能,提高能源利用率。
三相交流电路分析
三相电源
由三个相位差为120度 的交流电源组成,常用 于电力系统。
电路模型和电路元件

图1-4 简单电路
图1-5 复杂电路
ቤተ መጻሕፍቲ ባይዱ
由此可见,在分析、计算电路时,电流的实际方向 很难预先判断出来,交流电路中的电流实际方向还在不 断地随时间而改变,很难也没有必要在电路图中标示其 实际方向。为了分析、计算的需要,引入了电流的参考 方向。
下面以辅助绕组串入电容的单相电动机为例,如图3-24所示。 辅助绕组WA与电容C串联后同主绕组WM并联,再接入电源。
电动机接通电源时,因辅助绕组电路为容性(电容量应足够大 ),故电流iA超前电源电压一定角度,而主绕组电路为感性,故电 流iM滞后电源电压一个角度。
只要电容器选择适当,就能使iM滞后iA90º。
电路组成三个基本环节:电源、负载和中间环节(导线、 开关)。
电源是将其它形式的能量转换为电能的装置,如发电机、
干电池、蓄电池等。
负载是取用电能的装置,通常也称为用电器,如白炽灯、
电炉、电视机、电动机等。
中间环节是传输、控制电能的装置,如连接导线、变压
器、开关、保护电器等。
如图1-1所示,干电池是电源,是把非电能转化为电能
图1-3 手电筒照明电路的电路模型
1.2 电路的基本物理量
1.2.1 电流及其参考方向
1.电流的基本概念
电路中电荷沿着导体的定向运动形成电流,其方向规定为正电荷流动 的方向(或负电荷流动的反方向),其大小等于在单位时间内通过导体横 截面的电量,称为电流强度(简称电流),用符号 或 表示,讨论一般电 流时可用符号 。
三、理想电路元件及实际电源

1、理想电路元件
• 为了研究电路的特性和功能, 用一些模型来代替实际电气 元件和设备的外部功能。这 种模型称为电路模型。构成 电路模型的元件称为理想电 路元件。
2、实际电源的两种电路模型
2、实际电源的两种电路模型
• (1)电压源:理想电压源与电 阻R0的串联组合。
例题:
• 有一电动势为 6 V,内阻是 0.2 的电源, 当接上5.8 负载时,用电压源模型和电 流源两种模型,计算负载消耗的功率和 内阻消耗的功率。 • •
• 解:(1) 用电压源模型计算: I=US/R0+R=6/0.2+5.8=1A,负载消耗的功 率PL = I2R = 5.8 W,内阻的功率P0 = I2R0 = 0.2 W (2) 用电流源模型计算 • 电流源的电流IS = US /R0 = 30 A,内阻RS = R0 = 0.2
2、实际电源的两种电路模型 • (2)电流源:理想电流源与 电阻RS的并联组合。
2、实际电源的两种电路模型 • (3)两种电源模型的等效变换 • ①电压源→电流源 • IS=US/R0;RS=R0。 • ②电流源→电压源 • US = RS IS ; R0 = RS 。
注意:
• 1、理想电压源与理想电流源不能等效变 换。 • 2、等效变换只对外电路等效,对内部电 路不能等效。 • 3、 US与IS等效后方向应一致。
例题:
• 如图所示的电路,已知:E1 = 12 V,E2 = 6 V,R1 = 3 ,R2 = 6 ,R3 = 10 ,试 应用电源等效变换法求电阻R3中的电流。
解:
• (1) 先将两个电压源等效变换成两个电流 源,两4 A, IS2 = E2/R2 = 1 A • (2) 将两个电流源合并为一个电流源,得 到最简等效电路,等效电流源的电流 • IS = IS1 IS2 = 3 A
第1章-电路模型和电路定律

1.6 电容元件 (capacitor)
1、电容器
++ ++ ++ ++ +q –--– –--– –q
线性定常电容元件:任何时刻,电容元件极板上的电 荷q与电压 u 成正比。
2、电路符号
C
3. 元件特性 i
与电容有关两个变量: C, q 对于线性电容,有: q =Cu
1.7 电感元件
1 、线性定常电感元件
iL
变量: 电流 i , 磁链
+
u
–
def ψ L
i
L 称为自感系数 L 的单位:亨(利) 符号:H (Henry)
2 、韦安( ~i )特性
0
i
3 、 电压、电流关系:
i
+–
ue –+
i , 右螺旋 e , 右螺旋 u , e 非关联 u , i 关联
交流: iS是确定的时间函数,如 iS=Imsint
(b) 电源两端电压是任意的,由外电路决定。
(3). 伏安特性
i
+
iS
u
_
u
IS
O
i
(a) 若iS= IS ,即直流电源,则其伏安特性为平行于电 压轴的直线,反映电流与 端电压无关。
(b) 若iS为变化的电源,则某一时刻的伏安关系也是 这样 电流为零的电流源,伏安曲线与 u 轴重合, 相当于开路元件
+ u
+ C
C
def
q
u
C 称为电容器的电容
–
–
电容 C 的单位:F (法) (Farad,法拉)
五种基本理想电路元件

五种基本理想电路元件电路理论是电子工程学科中最基础的内容之一。
在任何一款电子产品中,我们都可以找到许多基本的电路元件。
这些电路元件是构成完整电子电路的基础,也是我们研究和设计电子产品的基础。
本文将会介绍五种基本的理想电路元件:电阻器、电容器、电感器、理想电压源和理想电流源。
一、电阻器电阻器是电路中最简单的元件之一,它的作用是控制电流。
它的特性是电流和电压成正比,电压和电流的关系可以用欧姆定律来描述,即:V=IR。
在实际电路中,电阻器通常用来限制电流流过的路径,将电流分配到需要的部分。
二、电容器电容器是一种储存电荷的元件,其内部由两个导体隔开,并用绝缘体隔开。
电容器的主要特性是它能够储存电能,并且电容值取决于其电介质的特性和两个导体之间的距离。
在实际电路中,电容器通常用来滤除电源中的噪声,并且可以作为振荡电路的组成部分。
三、电感器电感器是一种通过磁场储存电能的元件。
它们的主要特性是储存电能的量取决于其感应电流的大小,以及导体之间的距离。
在实际电路中,电感器通常用来限制电流变化速度,并且可以作为电压转换器的组成部分。
四、理想电压源理想电压源是一个恒定电压的电子元件,其输出电压并不会随着负载电流的变化而发生变化。
在实际电路中,理想电压源通常用来提供恒定的电源电压,例如电池、变压器等。
五、理想电流源理想电流源是输出电流恒定、与负载电阻无关的电子元件。
在实际电路中,理想电流源通常用来提供恒定的电流流量,例如电流源、传感器等。
总结:以上五种基本的理想电路元件是电路设计中的核心基础,它们的组合和使用构成了大量的电子电路。
这些元件通常由数学模型来描述它们的性质和行为,这些数学模型通常是通过仿真程序来验证和优化的。
通过我们对这些基本理想电路元件的了解,我们可以更好地设计出适合实际需求的电子电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想电路元件与电路模型
————————————————————————————————作者:————————————————————————————————日期:
理想电路元件与电路模型
理想电路元件
在一定条件下对实际器件加以理想化, 只考虑其中起主要作用的某些电磁现象。
理想电路元件是一种理想化的模型, 简称为电路元件。
电路元件的电路符号
电感元件
表示其周围空间存在着磁场而可以储存磁场能量的元件;电容元件
表示其周围空间存在着电场而可以储存电场能量的元件;
电阻元件
一种只表示消耗电能的元件;
二端元件
具有两个引出端的元件;
多端元件
具有两个以上引出端的元件。
电路模型
实际电路可以用一个或若干个理想电路元件经理想导体连接起来模拟,这便构成了电路模型。