(精品)氢燃料电池汽车系统控制原理框图

合集下载

燃料电池汽车工作原理

燃料电池汽车工作原理

燃料电池汽车工作原理燃料电池汽车是一种新型的环保型交通工具,其工作原理基于燃料电池的电化学反应,将氢气与氧气通过电化学反应产生电能驱动电动机,推动汽车运行。

在燃料电池汽车中,主要包括燃料电池、电动机、电池组、氢气储罐等组成部分,下面将详细介绍燃料电池汽车的工作原理。

1. 燃料电池的工作原理燃料电池是燃料电池汽车的核心部件,其工作原理类似于电池。

燃料电池有多种类型,常见的是质子交换膜燃料电池(PEMFC)。

在燃料电池中,氢气经过阴极,氧气经过阳极,在电解质膜中发生电化学反应。

反应式如下:在阳极:2H2→4H++4e-在阴极:O2+4H++4e-→2H2O综合反应:2H2+O2→2H2O这些反应释放出能量,转化为电能,从而驱动电动机工作,推动汽车前进。

2. 电动机的工作原理电动机是燃料电池汽车的动力来源,接收来自燃料电池的电能,通过电磁感应原理将电能转化为机械能,驱动车辆运行。

电动机具有高效率、无排放、无噪音等优点,是燃料电池汽车的核心部件之一。

3. 电池组的作用电池组是用来存储电能的装置,通常是锂电池,在燃料电池汽车中充当储能装置的作用。

电池组可以储存来自燃料电池的电能,同时也可以通过回收制动能量实现能量回馈,提高能量利用效率。

4. 氢气储罐的原理燃料电池汽车需要氢气作为燃料,氢气储罐是存放氢气的设备。

氢气储罐通常采用高压氢气罐或液态氢气罐,确保氢气的稳定储存和供给。

氢气作为清洁能源的一种,可以通过水电解或氢气提取等方式制备。

总结:燃料电池汽车通过燃料电池产生电能驱动电动机工作,实现零排放、高效能的特点。

随着新能源汽车的不断发展,燃料电池汽车将成为未来交通运输的重要发展方向,助力构建绿色低碳的车辆出行环境。

氢燃料电池 ppt课件

氢燃料电池  ppt课件
30
燃料电池的出现
1839年,英国Sir William R. Grove爵士发表了世界 上第一篇有关燃料电池研究的报告-以Pt为电极的氢氧燃料电池
从1960年10月质子交换膜燃料电池首次用于双子星 座航天飞船飞行
燃料电池用于航天领域
长时间运作 重量轻 发电时不用回转装置,没有噪音和磨损 产生纯水,作为宇航员的饮用水
6
氢的特点
氢能利用形式多
既可以通过燃烧产生热能 ➢ 发电 ➢ 做功
作为能源材料用于燃料电池 转换成固态氢用作结构材料
用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在 的内燃机稍加改装即可使用
氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各 种应用环境的不同要求
7
氢能有待解决的关键问题
31
燃料电池分类
碱性燃料电池
Alkaline Fuel Cell, AFC 电解质——强碱(KOH) 燃料——纯氢 氧化剂——纯氧或脱除微量CO2的空气 电池工作温度——50~200 度 用于特殊场合,航天提供饮用水和动力
地面应用缺陷
以空气代替纯氧时,必须消除微量的CO2 以重整气代替纯氢时,必须消除大量的CO2
现在,我国实施可持续发展战略,积极推动包括氢能在 内的洁净能源的开发和利用。近年来,在氢能领域取得 了多方面的进展。
29
氢能利用代表之一——燃料电池
燃料电池发电是继水力、火力和核能发电之后的第四 类发电技术
不经过燃料燃烧直接将电化学反应方式将燃料的化学 能转变为电能的高效发电装置
特点
高效85%~90%;实际40~60% 环境友好 安静 可靠性高
二氧化碳6%
16
生物质制氢
生物质气化制氢

4 - 新能源热管理控制

4 - 新能源热管理控制
自动空调控制系统及人机交互设计
2018-9-3
1、PHEV空调系统的原理构架 2、自动空调控制与传统燃油车的差异 3、PHEV车型热管理控制器原理 4、实例:TMS控制器设计逻辑 5、新能源汽车热管理控制系统发展趋势讨论
PHEV原理构架
新能源车型分类
纯电动汽车(EV):电池+电机+减速机构,代表车型特斯拉
电池冷却器控制
EVA侧电子开关及充电机冷却
其余PHEV拓扑参考
东风小康
吉利PHEV构架
1、压缩机对车内和电池进行制冷(绿色回路); 2、PTC和发动机对车内和电池进行制热(红色回路); 3、电池散热(浅蓝色回路); 4、电机散热(蓝色回路); 5、由于电机散热的安全等级更高,而热管理控制器不是安全键,因此热管 理控制器不参与电机散热。
PWM
\ Lin 同上

PHEV控制逻辑设计思路
根据系统原理进行功能分解。 每项功能采用场景分析方法,进行控制原理设计。
补充:PWM风扇控制
风扇需求=MAX(发动机需求、空调需求、电机需求) 具体控制思路根据实际情况考虑,也可以参照上面讲过的燃油车PWM风扇控制
乘员舱采暖
电池冷却水泵控制
电机冷却水泵控制
弱度混合动力汽车:节油率3~5%,代表技术:怠速启停
混合动力汽车
中度混合动力汽车:节油率10%~20%,代表技术:制动能量回收 混合动力汽车(HEV)
重度混合动力汽车
燃料电池汽车:
氢质子反应堆+电池+电机+减速机构
插电式混合动力汽车 (PHEV)
新能源车型分类
PHEV:续航里程中等,但结构复杂,成本高。且纯电续航里程之外,燃油模式比普 通燃油车更耗油 HEV:节油能力有限,电池能力有限。不过不用充电,结构相对简单,成本低。 EV:续航里程最大,不过没有发动机模式,对可靠性提出更高要求。

燃料电池工作原理、分类及组成_图文

燃料电池工作原理、分类及组成_图文

磷酸 (PAFC)
电解质
KOH
含氟质子交换膜
H3PO4
阳极
Pt/C
Pt/C
Pt/C
阴极
C(含觸煤)
流动离 子
操作温 度 可用 燃料
特性
OH-
室温~100℃
精炼氢气 电解副产氢气 1.需使用高纯度氢
气做燃料 2.低腐蚀性及低温
较易选择材料
Pt/C
H+
室温~80℃
天然气、甲醇 汽油
1.功率密度高, 体积小,重量轻 2.低腐蚀性及低溫 ,较易选择材料
当采用甲醇水溶液作燃料时,DMFC的核心部件MEA阳 极侧是浸入甲醇水溶液中的,加之在DMFC工作时, 又有C02的析出;而阴极侧,排水量也远大于电化学 反应生成水,不管是气化蒸发以气态排出,还是靠 毛细力渗透到扩散层外部被气体吹扫以液态排水, 均会对电极与膜之间结合界面产生一定分离作用力。
因此,在制备DMFC的MEA时,与PEMPC的MEA相比,要改 进结构与工艺,增加MEA的电极与膜之间的结合力,防 止MEA在电池长时间工作时膜与电极分离、增加欧姆极 化,大幅度降低电池性能,严重时导致电池失效。
根据电池工作温度不同,AFC系统可分为中温型与 低温型两种。
前者以培根中温燃料电池为代表,它由英国培根 (F.T.Bacon)研制,工作温度约为523K,阿波罗 登月飞船上使用的AFC系统就属于这一类型。
低 温 型 APC 系 统 的 工 作 温 度 低 于 373K , 是 现 在 AFC系统研究与开发的重点。
因此与PEMFC相比,DMFC阴极侧不但排水负荷增 大,而且阴极被水掩的情况更严重,在设计DMFC 阴极结构与选定制备工艺时必须考虑这一因素。
正因为如此,在至今评价DMFC时,阴极氧化剂(如 空气中氧)的利用率均很低,其目的是增加阴极流 场内氧化剂的流动线速度,以利于向催化层的传质 和水的排出,但这势必增加DMFC电池系统的内耗, 这是研究高效大功率DMFC电池系统时必须解决的 技术问题。

燃料电池电动汽车原理

燃料电池电动汽车原理

燃料电池电动汽车原理
燃料电池电动汽车是一种利用燃料电池作为能量源的汽车。

燃料电池是一种将化学能转化为电能的装置,其原理是利用氢气和氧气的反应来产生电能。

具体来说,燃料电池电动汽车的原理如下:
1. 氢气供应:燃料电池电动汽车使用氢气作为燃料。

氢气可以从氢气储存罐中储存,并通过供氢系统供应给燃料电池。

2. 氧气供应:燃料电池电动汽车从空气中获取氧气,一般通过空气滤清器和进气道进入系统中。

氧气与氢气在燃料电池中进行反应。

3. 化学反应:燃料电池中的阳极和阴极之间存在电解质层,其中阳极通常为氢气供应电极,阴极则是氧气供应电极。

在电解质层内,氢气从阳极通过一系列化学反应转化为电子和正电离子,这些正电离子会穿过电解质层到达阴极。

4. 电子流动:电子流经过外部电路以供电。

这些电子在电路中形成电流,是燃料电池电动汽车工作的主要能量来源。

5. 氧化还原反应:正电离子与到达阴极的氧气发生氧化还原反应,产生水。

这是一个放出能量的过程,并产生一定的热量。

6. 电能输出:通过电流控制器将电能输出给电动机,从而驱动汽车行驶。

电能的输出可以控制来调节汽车的速度。

总之,燃料电池电动汽车利用燃料电池将氢气和氧气反应产生电能,从而驱动电动机进行汽车的行驶。

与传统燃料发动机相比,燃料电池电动汽车具有零排放、高能量转化效率等优点,是一种环保且高效的交通工具。

氢能源汽车设计图PPT(共 42张)

氢能源汽车设计图PPT(共 42张)

高压储氢罐 空气
调压器 控制阀门 压缩机
循环泵
管口
注水
注水
质子交换膜燃 料电池
水箱
热交换器
直流电动机

排放阀 输出
控制阀门 冷却或加热电路
返回目录
氢能源汽车原理图
2.高压储氢罐原理图
管道系统阀门 气瓶阀门
调压器
感应器
导电连接
低压氢气出口
气瓶 高压充氢
安全阀的支管 氢气进入或释放的支管
储氢罐 表层密封Biblioteka 料关闭阀门冷却水热交换器
外壳 碳纤维 内衬
支架 真空绝缘
感应器
调压器 泵 热交换器 流量控制
前往发动机
阀门
释放 阀门
氢气进去
中等量储存 5.6kg可回收氢气
容器 2.25安全系数
·
热传输系统 更换燃料率
最小流速
漏电率
The end
返回目录

1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。
1. 高压氢气罐2.进气格栅Airflow (via Intake grille) 3. 动力 控制单元( PCU ) 4. 动力电池(Battery) 5. 驱动电机 (Electric Motor )6.燃料电池 ( Fuel Cell. )
专业名词:
Anode:正极 cathode负极 hydrogen氢气 oxygen氧气
氢能源汽车
一、氢能源汽车
日本丰田Mirai
1.外部设计图 2.部件设计图
日本本田FCV CLARITY
1.外部设计图 2.部件设计图
奔驰 GLC F-Cell
1.外部设计图

新能源汽车技术概论 第七章 燃料电池电动汽车

新能源汽车技术概论 第七章   燃料电池电动汽车
离子电池(High-Output Battery)等五部分组成。
本章课程结束
3)需要配备辅助电池系统
燃料电池可以持续发电,但不能充电和回收再生制动的反馈能量。通常在燃料电池汽 车上须增加辅助电池,来储存燃料电池富裕的电能和在燃料电池汽车减速时接受再生 制动时的能量。
燃料电池电动汽车基本机构
纯燃料电池电动汽车只有燃料电池一个动力源,汽 车的所有功率负荷都由燃料电池承担。其主要缺点有: 燃料电池的功率大,成本昂贵。
(1)当输入直流电压在一定范围内变化时,能输出负载要求的变化范围的 直流电压。
(2)输出负载要求的直流电流(范围):能够输出足够的直流负载电流, 并且能够允许在足够宽的负载变化范围的情况下设备能正常运行。
(3)变换器是能量传递部件,因此需要转换效率高,以便提高能源的利用 率;
(4)为了降低对燃料电池的输出电压要求,变换器应具有升压功能; (5)由于燃料电池输出的不稳定,需要变换器闭环运行进行稳压,为了给 驱动器稳定的输入,需要变换器有较好的动态调节能力;
燃料电池发动机系统
驱动电机 DC/DC变换器的基本功能:
(1)直流电机驱动系统采用换向器和电刷,保证了励磁磁动势与电枢磁动 势的严格正交,易于控制。但直流电机结构复杂,其高速性能和可靠性受换 向器和电刷的影响较大。 (2)交流电机坚固耐用、结构简单、技术成熟、免维护、成本低,尤其适 合恶劣的工作环境。其缺点在于损耗大、效率低、功率因数低,进而导致控 制器容量增加,成本上升。
功率跟随模式 开关模式。
五、 典型的氢燃料电池汽车
图7-14 2017款本田FCX Clarity燃料电池车
Honda FCX Clarity主要动力部件的整车布置图
Honda FCX Clarity动力系统结构主要由动力控制单元 (Power Control Unit),燃料储气罐(Hydrogen Storage Tank),驱动 电机(Electric Motor),燃料电池堆(Fuel Cell Stack ),高功率的锂

第09章 氢燃料电池课件

第09章 氢燃料电池课件

第9章氢燃料电池本章主要内容:1.燃料电池基本原理2.燃料电池热力学和反应动力学3.燃料电池的电荷管理4.燃料电池内的质量传递5.燃料电池的一维数值模型9.1 燃料电池简介燃料电池(Fuel Cell,FC)是一种直接将储存在燃料和氧化剂中的化学能高效地转化为电能的发电装置。

这种装置的最大特点是由于反应过程不涉及到燃烧,因此其能量转换效率不受“卡诺循环”的限制,能量转换效率高达60~80%。

实际使用效率是普通内燃机的2~3倍。

另外,它还具有燃料多样化、排气干净、噪声小、环境污染低、可靠性高及维修性好等优点。

燃料电池被认为是21世纪全新的高效率、节能、环保的发电方式之一。

9.1.1 原理燃料电池是一种能量转换装置。

它按电化学原理,即原电池(如日常所用的锌锰干电池)的工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能。

对于一个氧化还原反应,如:[O]+[R]→P式中,[O]代表氧化剂,[R]代表还原剂,P代表反应产物。

原则上可以把上述反应分为两个半反应,一个为氧化剂[O]的还原反应,一个为还原剂[R]的氧化反应,若e代表电子,即有:以最简单的氢氧反应为例,即为如图9-1所示,氢离子在将两个半反应分开的电解质内迁移,电子通过外电路定向流动、作功,并构成总的电的回路。

氧化剂发生还原反应的电极称为阴极,其反应过程称为阴极过程,对外电路按原电池定义为正极。

还原剂或燃料发生氧化反应的电极称为阳极,其反应过程称阳极过程,对外电路定义为负极。

图9-1燃料电池工作原理示意图燃料电池与常规电池不同,它的燃料和氧化剂不是贮存在电池内,而是贮存在电池外部的贮罐中。

当它工作(输出电流并做功)时,需要不间断地向电池内输入燃料和氧化剂,并同时排出反应产物。

因此,从工作方式上看,它类似于常规的汽油或柴油发电机。

由于燃料电池工作时要连续不断地向电池内送入燃料和氧化剂,所以燃料电池使用的燃料和氧化剂均为流体(即气体和液体)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档