《大学物理学》第二版上册习题解答

合集下载

大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)

习 题 解 答第一章 质点运动学1-1 (1) 质点t 时刻位矢为:j t t i t r ⎪⎭⎫ ⎝⎛-+++=4321)53(2(m)(2) 第一秒内位移j y y i x x r)()(01011-+-=∆)(5.33)101(3)01(21)01(32m j i ji +=⎥⎦⎤⎢⎣⎡-+--=(3) 前4秒内平均速度)s m (53)2012(411-⋅+=+=∆∆=j i j i t r V(4) 速度)s m ()3(3d d 1-⋅++==j t i t r V∴ )s m (73)34(314-⋅+=++=j i j i V(5) 前4秒平均加速度)s m (43704204-⋅=-=--=∆∆=j j V V t V a (6) 加速度)s m ()s m (d d 242--⋅=⋅==j a j tV a1-2 23d d 23++==t t txv c t t t c t v x x +++=+==⎰⎰241d d 34 当t =2时x =4代入求证 c =-12 即1224134-++=t t t xtt tv a t t v 63d d 23223+==++= 将t =3s 代入证)s m (45)s m (56)(414123133--⋅=⋅==a v m x1-3 (1) 由运动方程⎩⎨⎧+==ty t x 2342消去t 得轨迹方程0)3(2=--y x(2) 1秒时间坐标和位矢方向为 m y m x 5411==[4,5]m: ︒===3.51,25.1ααxytg(3) 第1秒内的位移和平均速度分别为)m (24)35()04(1j i j i r+=-+-=∆)s m (2411-⋅+=∆∆=j i tr V(4) 质点的速度与加速度分别为i t Va j i tr V8d d ,28d d ==+==故t =1s 时的速度和加速度分别为 2111s m 8,s m 28--⋅=⋅+==i a j i V1-4 该星云飞行时间为a 1009.2s 1059.61093.31074.21046.910177915⨯=⨯=⨯⨯⨯⨯ 即该星云是101009.2⨯年前和我们银河系分离的. 1-5 实验车的加速度为g)(25m/s 1047.280.13600101600223≈⨯=⨯⨯==t v a 基本上未超过25g.1.80s 内实验车跑的距离为)(m 40080.13600210160023=⨯⨯⨯==t v s1-6 (1)设第一块石头扔出后t 秒未被第二块击中,则2021gt t v h -= 代入已知数得28.9211511t t ⨯-=解此方程,可得二解为s 22.1s,84.111='=t t第一块石头上升到顶点所用的时间为s 53.18.9/15/10===g v t m由于m t t >1,这对应于第一块石头回落时与第二块相碰;又由于m t t <'1这对应于第一块石头上升时被第二块赶上击中.以20v 和'20v 分别对应于在t 1和'1t 时刻两石块相碰时第二石块的初速度,则由于2111120)(21)(t t g t t v h ∆∆---= 所以184.1)184.1(8.92111)(2121121120--⨯⨯+=∆-∆-+=t t t t g h v m /s 2.17=同理.122.1)122.1(8.92111)(2121121120--⨯⨯+=-'-'+='t t t t g h v ∆∆ m/s)(1.51=(2) 由于'>=123.1t s t ∆,所以第二石块不可能在第一块上升时与第一块相碰.对应于t 1时刻相碰,第二块的初速度为3.184.1)3.184.1(8.92111)(2122122120--⨯⨯+=--+="t t t t g h v ∆∆ m/s)(0.23=1-7 以l 表示从船到定滑轮的绳长,则t l v d /d 0-=.由图可知22h l s -=于是得船的速度为02222d d d d v s h s t l h l lts v +-=-==负号表示船在水面上向岸靠近. 船的加速度为3202022d d d d d d s v h tl v h l ll t v a -=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--== 负号表示a 的方向指向岸边,因而船向岸边加速运动.1-8 所求位数为522422221048.9601.0)106(44⨯=⨯⨯⨯==ππωg r n g r1-9 物体A 下降的加速度(如图所示)为222m/s 2.024.022=⨯==t h a 此加速度也等于轮缘上一点在s 3='t 时的切向加速度,即)m/s (2.02='t a在s 3='t 时的法向加速度为)m/s (36.00.1)32.0()(2222=⨯='='=R t a R v a t n1-10 2m /s 2.1=a ,s 5.00=t ,m 5.10=h .如图所示,相对南面,小球开始下落时,它和电梯的速度为m/s)(6.05.02.100=⨯==at v以t 表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为2021gt t v h +=电梯下降的距离为习题1-9图 习题1-10图2021at t v h +='又20)(21t a g h h h -='-= 由此得s 59.02.18.95.1220=-⨯=-=a g h t而小球相对地面下落的距离为2021gt t v h += 259.08.92159.06.0⨯⨯+⨯= m 06.2= 1-11 人地风人风地v v v+=画出速度矢量合成图(a)又人地风人风地02v v v +'=,速度矢量合成如图(b )两图中风地v应是同一矢量.可知(a )图必是底角为︒45的等腰直角三角形,所以,风向应为西北风,风速为人地人地风地00245cos v v v =︒=)s m (23.41-⋅=1-12 (1) v LvL t 22==(2) 22212u v vLu v L u v L t t t -=++-=+= 1212-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=v u v L(3) v Lv L t t t '+'=+=21,如图所示风速u 由东向西,由速度合成可得飞机对地速度v u v +=',则22u v V -='.习题1-12图习题1-11图2221222⎪⎭⎫⎝⎛-=--='=v u v L uv L v L t 证毕1-13 (1)设船相对岸的速度为V '(如图所示),由速度合成得V u V +='V 的大小由图1.7示可得αβcos cos u V V +'=即332323cos cos -=⨯-=-='αβu V V 而1212sin sin =⨯=='αβu V 船达到B 点所需时间)s (1000sin =='='=D V DV OB t βAB 两点之距βββsin cos D Dctg S == 将式(1)、(2)代入可得m)(1268)33(=-=D S(2) 由αβsin 101sin 3u V D t ⨯='=船到对岸所需最短时间由极值条件决定0cos sin 11d d 2=⎪⎭⎫⎝⎛-=αααu t 即 2/,0c o s παα==故船头应与岸垂直,航时最短.将α值代入(3)式得最短航时为s)(500105.021012/sin 101333m in=⨯=⨯=⨯=s u t π (3) 设l OB =,则ααββsin cos 2sin sin 22u uV V u D V D V D l -+=''==欲使l 最短,应满足极值条件.习题1-13图a a uV V u u D l '⎢⎢⎣⎡''-+-='cos sin cos 2d d 22αα 0cos 2sin sin 2222=⎥⎦⎤'-+''+αuV V u a a uV 简化后可得01cos cos 222=+'+-'αuVV u a即 01cos 613cos 2=+'-'αa 解此方程得32cos ='α︒=='-2.4832cos 1α 故船头与岸成︒2.48,则航距最短.将α'值代入(4)式得最小航程为222222m in 321232322321000cos 1cos 2⎪⎭⎫ ⎝⎛-⨯⨯⨯-+='-'-+-=ααu uv v u D lkm)(5.1m 105.13=⨯= AB 两点最短距离为km)(12.115.122min min =-=-=D l S第二章 质点动力学2-1 (1)对木箱,由牛顿第二定律,在木箱将要被推动的情况下如图所示,x 向:0cos m ax m in =-f F θ y 向:0sin m in =--Mg F N θ 还有 N f s m ax μ=解以上三式可得要推动木箱所需力F 的最小值为θμθμsin cos s s min -=MgF习题2-1图在木箱做匀速运动情况下,如上类似分析可得所需力F 的大小为θμθμsin cos k k min -=MgF(2)在上面m in F 的表示式中,如果0sin cos s →-θμθ,则∞→m in F ,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是0sin cos s ≤-θμθ由此得θ的最小值为s1arctanμθ=2-2 (1)对小球,由牛顿第二定律x 向:ma N T =-θθsin cosy 向:0cos sin =-+mg N T θθ 联立解此二式,可得N)(32.3)30sin 8.930cos 2(5.0)sin cos (=︒+︒⨯⨯=+=ααg a m T N)(74.3)30sin 230cos 8.9(5.0)sin cos (=︒-︒⨯⨯=+=ααa g m N由牛顿第三定律,小球对斜面的压力N)(74.3=='N N(2)小球刚要脱离斜面时N =0,则上面牛顿第二定律方程为mg T ma T ==θθsin ,cos由此二式可解得2m/s 0.1730tan /8.9tan /=︒==θg a2-3 要使物体A 与小车间无相对滑动,三物体必有同一加速度a ,且挂吊B 的绳应向后倾斜。

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导

《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。

答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。

上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。

答案:D3.某质点的运动学方程为,以为单位,以为单位。

则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。

答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。

答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。

与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。

答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。

与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。

)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。

答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册课后习题答案详解

物理学教程(第二版)上册习题答案 第一章 质点运动学 1 -1分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t st d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 分析与解 t rd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t sd d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1 -3 分析与解 td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而td d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D).1 -4 分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B). 1 -5解 (1) 质点在4.0 s 内位移的大小m 32Δ04-=-=x x x(2) 由 0d d =tx得知质点的换向时刻为s 2=p t (t =0不合题意)则m 0.8Δ021=-=x x xm 40Δ242-=-=x x x所以,质点在4.0 s 时间间隔内的路程为m 48ΔΔ21=+=x x s(3) t =4.0 s 时1s0.4s m 48d d -=⋅-==t t xv2s0.422m.s 36d d -=-==t t x a1 -6 解 (1) 由x (t )和y (t )中消去t 后得质点轨迹方程为2412x y -= 这是一个抛物线方程,轨迹如图(a)所示.(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为j r 20= , j i r 242-=图(a)中的P 、Q 两点,即为t =0s和t =2s时质点所在位臵. (3) 由位移表达式,得j i j i r r r 24)()(Δ020212-=-+-=-=y y x x其中位移大小m 66.5)(Δ)(ΔΔ22=+=y x r而径向增量m 47.2ΔΔ2020222202=+-+=-==y x y x r r r r1 -7 .解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v 0x =-10 m ·s-1 , v 0y =15 m ·s-1,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v 0与x 轴的夹角为α,则23tan 00-==xy αv v α=123°41′(2) 加速度的分量式为2s m 60d d -⋅==t a xx v , 2s m 40d d -⋅-==t a y y v 则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==xy a a β β=-33°41′(或326°19′)1 -8 解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为20121at t y +=v20221gt t h y -+=v当螺丝落至底面时,有y 1 =y 2 ,即20202121gt t h at t -+=+v vs 705.02=+=ag ht(2) 螺丝相对升降机外固定柱子下降的距离为m 716.021202=+-=-=gt t y h d v 解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a ′=g +a ,螺丝落至底面时,有2)(210t a g h +-=s 705.02=+=ag ht(2) 由于升降机在t 时间内上升的高度为2021at t h +='v则m 716.0='-=h h d1 -9 解 由分析知,应有⎰⎰=tta 0d d 0v v v得03314v v +-=t t (1)由⎰⎰=tx x tx 0d d 0v得00421212x t t t x ++-=v (2) 将t =3s时,x =9 m,v =2 m ·s-1代入(1)、(2)得v 0=-1 m ·s-1, x 0=0.75 m于是可得质点运动方程为75.0121242+-=t t x 1 -10 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度)e 1(Bt BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)e 1(d d Bt BAt y --==v 并考虑初始条件有 t BAy tBt yd )e 1(d 00⎰⎰--= 得石子运动方程)1(e 2-+=-Bt BAt B A y 1 -11解 由加速度定义式,根据初始条件t 0 =0时v 0 =0,积分可得⎰⎰⎰+==tt tt 0)d 46(d d j i a v vj i t t 46+=v又由td d r=v 及初始条件t =0 时,r 0=(10 m)i ,积分可得⎰⎰⎰+==tt rr t t t t 0)d 46(d d 0j i r vj i r 222)310(t t ++=由上述结果可得质点运动方程的分量式,即x =10+3t 2y =2t 2消去参数t ,可得运动的轨迹方程3y =2x -20 m这是一个直线方程.直线斜率32tan d d ===αx y k ,α=33°41′.轨迹如图所示. 1 -12 解 (1) 由参数方程 x =2.0t , y =19.0-2.0t 2消去t 得质点的轨迹方程:y =19.0 -0.50x 2(2) 在t 1 =1.00s 到t 2 =2.0s时间内的平均速度j i r r 0.60.2ΔΔ1212-=--==t t t r v (3) 质点在任意时刻的速度和加速度分别为j i j i j i t ty t x t y x 0.40.2d d d d )(-=+=+=v v v j j i a 22222s m 0.4d d d d )(-⋅-=+=tyt x t则t 1 =1.00s时的速度 v (t )|t =1s=2.0i -4.0j切向和法向加速度分别为t t y x t t ttt e e e a 222s1s m 58.3)(d d d d -=⋅=+==v v v n n t n a a e e a 222s m 79.1-⋅=-=(4) t =1.0s质点的速度大小为122s m 47.4-⋅=+=y x v v v则m 17.112==na ρv1 -13解 (1) 取如图所示的坐标,物品下落时在水平和竖直方向的运动方程分别为x =vt , y =1/2 gt 2飞机水平飞行速度v =100 m ·s -1,飞机离地面的高度y =100 m,由上述两式可得目标在飞机正下方前的距离m 4522==gyx v(2) 视线和水平线的夹角为o 5.12arctan==xyθ (3) 在任意时刻物品的速度与水平轴的夹角为vv v gtαx y arctan arctan ==取自然坐标,物品在抛出2s 时,重力加速度的切向分量与法向分量分别为2s m 88.1arctan sin sin -⋅=⎪⎭⎫ ⎝⎛==v gt g αg a t2s m 62.9arctan cos cos -⋅=⎪⎭⎫ ⎝⎛==v gt g g a n α1 -14解 在图示坐标系中,有t v x )cos (0α= (1) 2021sin (gt t v y -=)α (2) gt v v y -=αsin 0 (3)(1) 由式(1),令57m ==x x m ,得飞跃时间37.1cos 0mm ==αv x t s(2)由式(3),令0=y v ,得飞行到最大高度所需时间gv t αsin 0m =’将’m t 代入式(2),得飞行最大高度67.02sin 220m ==gv y αm则飞车在最高点时距河面距离为10m +=y h m 67.10= m(3)将37.1m=t s 代入式(2),得西岸木桥位臵为y = - 4.22 m“-”号表示木桥在飞车起飞点的下方.讨论 本题也可以水面为坐标系原点,则飞车在 y 方向上的运动方程应为10=y m + 2021)sin (gt t v -α 1 -15解 1 由分析知,在图(a )坐标系中,有20)sin (21)]cos([t g t v x ααβ-+-= (1)20)cos (21)]sin([t g t v y ααβ-+-= (2)落地时,有y =0,由式(2)解得飞行时间为31.230tan 20==gv t s 将 t 值代入式(1),得1.263220===gv x OP m解 2 由分析知,在图(b )坐标系中,对小球 t v x )cos (0β= (1)2021)sin (gt t v y -=β (2) 对点P αtan x y =' (3)由式(1)、(2)可得球的轨道方程为ββ2202cos 2tan v gx x y -= (4)落地时,应有y y '=,即60cos 260tan 30tan 2202v gx x x -=解之得落地点P 的x 坐标为gv x 3320=(5)则 1.263230cos 20===gv xOPm 联解式(1)和式(5)可得飞行时间31.2=t s讨论 比较两种解法,你对如何灵活运用叠加原理有什么体会?1 -16 解 (1) 质点作圆周运动的速率为bt ts-==0d d v v 其加速度的切向分量和法向分量分别为b t s a t -==22d d , Rbt R a n 202)(-==v v故加速度的大小为R)(402222bt b a a a a t tn-+=+=v其方向与切线之间的夹角为⎥⎦⎤⎢⎣⎡--==Rb bt a a θt n20)(arctan arctan v (2) 要使|a |=b ,由b bt b R R=-+4022)(1v 可得 bt 0v =(3) 从t =0 开始到t =v 0 /b 时,质点经过的路程为bs s s t 2200v =-=因此质点运行的圈数为bRR s n π4π22v ==1 -17 解 因ωR =v ,由题意ω∝t 2得比例系数322s rad 2-⋅===Rtt ωk v 所以22)(t t ωω==则t ′=0.5s 时的角速度、角加速度和切向加速度分别为12s rad 5.02-⋅='=t ω 2s rad 0.24d d -⋅='==t tωα2s m 0.1-⋅==R αa t总加速度n t t n R ωR αe e a a a 2+=+=()()2222s m 01.1-⋅=+=R ωR αa 在2.0s内该点所转过的角度rad 33.532d 2d 2032220====-⎰⎰t t t t ωθθ1 -18 解 (1) 由于342t θ+=,则角速度212d d t tθω==.在t =2 s 时,法向加速度和切向加速度的数值分别为 22s 2s m 30.2-=⋅==ωr a t n2s2s m 80.4d d -=⋅==tωra t t(2) 当22212/t n t a a a a +==时,有223nt a a =,即 ()()422212243t r rt =得 3213=t此时刻的角位臵为rad 15.3423=+=t θ(3) 要使t n a a =,则有()()422212243t r rt =t =0.55s1 -191'22v v v += (如图所示),于是可得1o12s m 36.575tan -⋅==v v 1 -20 解 由122v v v -='[图(b)],有θθcos sin arctan221v v v -=α而要使hlαarctan≥,则 h lθθ≥-cos sin 221v v v⎪⎭⎫ ⎝⎛+≥θh θl sin cos 21v v第二章 牛顿定律2 -1分析与解 当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力F T (其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a ,如图(b)所示,由其可解得合外力为mg cot θ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征. 2 -2 分析与解 与滑动摩擦力不同的是,静摩擦力可在零与最大值μF N 范围内取值.当F N 增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2 -3 分析与解 由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μF N .由此可算得汽车转弯的最大速率应为v =μRg .因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2 -4 分析与解 由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力F N 作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位臵有关.重力的切向分量(m g cos θ) 使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程Rm θmgF N 2sin v =-可判断,随θ 角的不断增大过程,轨道支持力F N 也将不断增大,由此可见应选(B).*2 -5 分析与解 本题可考虑对A 、B 两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A 、B 两物体受力情况如图(b)所示,图中a ′为A 、B 两物体相对电梯的加速度,ma 为惯性力.对A 、B 两物体应用牛顿第二定律,可解得F T =5/8 mg .故选(A).2 -6解 取沿斜面为坐标轴Ox ,原点O 位于斜面顶点,则由牛顿第二定律有ma αmg μαmg =-cos sin (1)又物体在斜面上作匀变速直线运动,故有()22cos sin 2121cos t αμαg at αl -==则()αμααg lt cos sin cos 2-=(2)为使下滑的时间最短,可令0d d =αt,由式(2)有 ()()0sin cos cos cos sin sin =-+--αμαααμαα则可得 μα12tan -=,o49=α此时 ()s 99.0cos sin cos 2min =-=αμααg lt2 -7解 按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy 轴正方向(如图所示).当框架以加速度a 上升时,有F T-( m 1 +m 2 )g =(m 1 +m 2 )a (1)F N2 - m 2 g =m 2 a (2)解上述方程,得F T =(m 1 +m 2 )(g +a) (3)F N2 =m 2 (g +a) (4)(1) 当整个装臵以加速度a =10 m ·s-2上升时,由式(3)可得绳所受张力的值为F T =5.94 ×103N乙对甲的作用力为F ′N2 =-F N2 =-m 2 (g +a) =-1.98 ×103N(2) 当整个装臵以加速度a =1 m ·s-2上升时,得绳张力的值为F T =3.24 ×103N此时,乙对甲的作用力则为F ′N2=-1.08 ×103 N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2 -8 解 分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A 、B 及滑轮列动力学方程,有m A g -F T =m A a (1) F ′T1 -F f =m B a ′ (2) F ′T -2F T1 =0 (3)考虑到m A =m B =m , F T =F ′T , F T1 =F ′T1 ,a ′=2a ,可联立解得物体与桌面的摩擦力()N 2.724f =+-=am m mg F2 -9解1 以地面为参考系,在摩擦力f F =μmg 的作用下,根据牛顿定律分别对木块、平板列出动力学方程f F =μmg =ma 1 f F =-f F =m ′a 2a 1 和a 2 分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a =a 1 +a 2 ,木块相对平板以初速度- v ′作匀减速运动直至最终停止.由运动学规律有- v ′2=2as由上述各式可得木块相对于平板所移动的距离为解2 以木块和平板为系统,它们之间一对摩擦力作的总功为mgs l F l s F W μ=-+=f f )( 式中l 为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m ′v ′=(m ′+m ) v ″由系统的动能定理,有()222121v v ''+'-''=m m m mgs μ 由上述各式可得()m m g μm s +'''=22v 2 -10解 取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程θωmR ma θF n N sin sin 2== (1)mg θF N =cos (2)且有 ()Rh R θ-=cos (3)由上述各式可解得钢球距碗底的高度为2ωg R h -=可见,h 随ω的变化而变化.2 -11解 隔离后,各物体受力如图(b )所示,有滑轮 02T =-F FA A A A T a m g m F =-B B B B T a m g m F =-联立三式,得2.15A =a 7.2s m B 2=⋅-a ,2s m -⋅2 -12 解 (1)由分析知F)(2/5cos 25.0d /d 22π+-===t t y ma (N ) 该式表示作用于物体上的合外力随时间t 按余弦作用周期性变化,F >0表示合力外力向下,F <0表示合外力向上. (2) Fy t t 25.1)]2/5(cos 20.0[25.1)2/5cos(25.0-=+-=+-=ππ.由上式知,合外力F 的大小与物体离开平衡位臵距离y 的大小成正比.“-”号表示与位移的方向相反.2 -13 解 因加速度a =d v /d t ,在直线运动中,根据牛顿运动定律有tmt d d 40120v =+ 依据质点运动的初始条件,即t 0 =0 时v 0 =6.0 m ·s-1,运用分离变量法对上式积分,得()⎰⎰+=ttt 0d 0.40.12d 0v v vv =6.0+4.0t+6.0t 2又因v =d x /d t ,并由质点运动的初始条件:t 0 =0 时 x 0 =5.0 m,对上式分离变量后积分,有()⎰⎰++=txx t t t x 020d 0.60.40.6dx =5.0+6.0t+2.0t 2 +2.0t 32 -14 解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有t αtmma F -===d d v⎰⎰-=tt mt α0d d 0vv v 得202t mα-=v v 因此,飞机着陆10s后的速率为v =30 m ·s-1又⎰⎰⎪⎭⎫ ⎝⎛-=t xx t t m αx 0200d 2d v 故飞机着陆后10s内所滑行的距离m 4676300=-=-=t mαt x x s v 2 -15解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为gh 20=v运动员入水后,由牛顿定律得P -fF -F =ma由题意P =F 、fF =bv 2,而a =d v /d t =v (d v /d y ),代入上式后得-bv 2= mv (d v /d y )考虑到初始条件y 0 =0 时,gh 20=v ,对上式积分,有⎰⎰=⎪⎭⎫⎝⎛-v v v v 0d d 0ty b m m by m by e gh e //02--==v v(2) 将已知条件b/m =0.4 m -1,v =0.1v 0 代入上式,则得m 76.5ln 0=-=v vb m y 2 -16解 小球在运动过程中受到重力P 和圆轨道对它的支持力F N .取图(b)所示的自然坐标系,由牛顿定律得t mαmg F t d d sin v=-= (1) R m m αmg F F N n 2cos v =-= (2)由tαr t s d d d d ==v ,得vαr t d d =,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 ()⎰⎰-=απαα2/sin 0d rg d vv v v得αrg cos 2=v则小球在点C 的角速度为r αg rω/cos 2==v由式(2)得 αmg αmg rm m F N cos 3cos 2=+=v 由此可得小球对圆轨道的作用力为αmg F F N Ncos 3-=-=' 负号表示F ′N 与e n 反向.2 -17解 (1) 设物体质量为m ,取图中所示的自然坐标,按牛顿定律,有R m ma F n N 2v ==tma F t d d f v-=-=由分析中可知,摩擦力的大小F f=μF N ,由上述各式可得tR μd d 2v v -=取初始条件t =0 时v =v 0 ,并对上式进行积分,有⎰⎰-=v v v v020d d μR t ttμR R 00v v v +=(2) 当物体的速率从v 0 减少到2/0v 时,由上式可得所需的时间为v μR t ='物体在这段时间内所经过的路程⎰⎰''+==t t t tμR R t s 000d d v v v2ln μRs =2 -18解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有ym t mkm mg d d d d 2v v v v ==-- 依据初始条件对上式积分,有⎰⎰+-=02d d v v v v k g y y⎪⎪⎭⎫⎝⎛++-=202ln 21v v k g k g k y 物体到达最高处时, v =0,故有⎪⎪⎭⎫ ⎝⎛+==g k g k y h 20maxln 21v (2) 物体下落过程中,有yv mkm mg d d 2v v =+-对上式积分,有⎰⎰--=02d d v v vv k g y y则 2/1201-⎪⎪⎭⎫⎝⎛+=g k v v v2 -19 解 设摩托车沿x 轴正方向运动,在牵引力F 和阻力F r 同时作用下,由牛顿定律有tmk F d d 2vv =- (1) 当加速度a =d v /d t =0 时,摩托车的速率最大,因此可得k =F/v m 2(2)由式(1)和式(2)可得t m F m d d 122vv v =⎪⎪⎭⎫ ⎝⎛- (3) 根据始末条件对式(3)积分,有⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m tF m t v v v v 2101220d 1d则3ln 2Fm t mv =又因式(3)中xm t m d d d d v v v =,再利用始末条件对式(3)积分,有 ⎰⎰-⎪⎪⎭⎫ ⎝⎛-=m m xF mx v v v v 2101220d 1d则 Fm F m x mm 22144.034ln 2v v ≈=*2 -20 解 由牛顿第二定律和相关运动学规律有F 0 -fF =ma -μmg =ma ′ (1)v ′ 2=2a ′L (2)联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为()L g a μ-='2v =1s m 9.2-⋅=第三章 动量守恒定律和能量守恒定律3 -1 分析与解 在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C). 3 -2 分析与解 对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒.3 -3 分析与解 保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位臵有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为零(详见习题3 -2 分析),由此可见只有说法(2)正确,故选(C).3 -4 分析与解 由题意知,作用在题述系统上的合外力为零,故系统动量守恒,但机械能未必守恒,这取决于在A 、B 弹开过程中C 与A 或D 与B 之间有无相对滑动,如有则必然会因摩擦内力作功,而使一部分机械能转化为热能,故选(D).3 -5 分析与解 子弹-木块系统在子弹射入过程中,作用于系统的合外力为零,故系统动量守恒,但机械能并不守恒.这是因为子弹与木块作用的一对内力所作功的代数和不为零(这是因为子弹对地位移大于木块对地位移所致),子弹动能的减少等于子弹克服阻力所作功,子弹减少的动能中,一部分通过其反作用力对木块作正功而转移为木块的动能,另一部分则转化为热能(大小就等于这一对内力所作功的代数和).综上所述,只有说法(C)的表述是完全正确的.3 -6 解 以飞鸟为研究对象,取飞机运动方向为x 轴正向.由动量定理得Δ-='v m t F式中F '为飞机对鸟的平均冲力,而身长为20cm 的飞鸟与飞机碰撞时间约为Δt =l /v ,以此代入上式可得N 1055.252⨯=='lm F v鸟对飞机的平均冲力为N 1055.25⨯-='-=F F式中负号表示飞机受到的冲力与其飞行方向相反.从计算结果可知,2.25 ×105N 的冲力大致相当于一个22 t 的物体所受的重力,可见,此冲力是相当大的.若飞鸟与发动机叶片相碰,足以使发动机损坏,造成飞行事故. 3 -7 解1 物体从出发到达最高点所需的时间为gαt sin Δ01v =则物体落回地面的时间为gt t αsin Δ2Δ0122v ==于是,在相应的过程中重力的冲量分别为j j F I αsin Δd 011Δ1v m t mg t t -=-==⎰j j F I αsin 2Δd 022Δ2v m t mg t t -=-==⎰解2 根据动量定理,物体由发射点O 运动到点A 、B 的过程中,重力的冲量分别为j j j I αm y m mv Ay sin 001v v -=-= j j j I αm y m mv By sin 2002v v -=-=3 -8 解 (1) 由分析知()s N 68230d 43020220⋅=+=+=⎰t t t t I(2) 由I =300 =30t +2t 2,解此方程可得t =6.86 s(另一解不合题意已舍去)(3) 由动量定理,有I =m v 2- m v 1由(2)可知t =6.86 s 时I =300 N ·s ,将I 、m 及v 1代入可得112s m 40-⋅=+=mm I v v3 -9 解1 以人为研究对象,按分析中的两个阶段进行讨论.在自由落体运动过程中,人跌落至2 m 处时的速度为gh 21=v (1)在缓冲过程中,人受重力和安全带冲力的作用,根据动量定理,有()12Δv v m m t -=+P F (2)由式(1)、(2)可得安全带对人的平均冲力大小为()N 1014.1Δ2ΔΔ3⨯=+=+=tgh mg t m Δmg F v解2 从整个过程来讨论.根据动量定理有N 1014.1/2Δ3⨯=+=mg g h tmg F3 -10 解 力F 的冲量为ωωωkAt t kA t kx t F I t t t t -=-=-==⎰⎰⎰2/π02121d cos d d即()ωkA m -=v Δ 3 -11 分析 第(1)问可对垒球运用动量定理,既可根据动量定理的矢量式,用几何法求解,如图(b )所示;也可建立如图(a )所示的坐标系,用动量定量的分量式求解,对打击、碰撞一类作用时间很短的过程来说,物体的重力一般可略去不计.解 (1) 解 1 由分析知,有12mv mv t F -=∆其矢量关系如图(b )所示,则)60180cos())((2)()()(2122212 --+=∆mv mv mv mv t F解之得 N 9.197=F解 2 由图(a )有x x x mv mv t F 12-=∆02-=∆y y mv t F将,则和代入解得及y x y x x F F v v v v v v 60sin 60cos ,22221=-==N 9.19722=+=y x F F F(2) 由质点动能定理,得J 7.4721212122=-=mv mv W3 -12 解 在Δt 时间内,从管一端流入(或流出) 水的质量为Δm =ρυS Δt ,弯曲部分AB 的水的动量的增量则为 Δp =Δm (v B -v A ) =ρυS Δt (v B -v A )依据动量定理I =Δp ,得到管壁对这部分水的平均冲力()A B t S ρtv v v -==ΔΔIF 从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='v S ρF F作用力的方向则沿直角平分线指向弯管外侧.3 -13 解 设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A ′ 、v B ′ 表示,被搬运重物的质量以m 表示.分别对上述系统Ⅰ、Ⅱ应用动量守恒定律,则有()A A B A A m m m m v v v '=+- (1)()''=+-B B A B B m m m m v v v (2)由题意知v A ′ =0, v B ′ =3.4 m ·s -1代入数据后,可解得()()12s m 40.0-⋅-=---'-=mm m m m m m A B BB A v v ()()()12s m 6.3-⋅=---'-=mm m m m m m m B A B B A B v v 也可以选择不同的系统,例如,把A 、B 两船(包括传递的物体在内)视为系统,同样能满足动量守恒,也可列出相对应的方程求解. 3 -14解 取如图所示坐标.把人与物视为一系统,当人跳跃到最高点处,在向左抛物的过程中,满足动量守恒,故有()()u m m αm m -+'='+v v v cos 0式中v 为人抛物后相对地面的水平速率, v -u 为抛出物对地面的水平速率.得u m m mα'++=cos 00v v人的水平速率的增量为u mm mα'+=-=cos Δ0v v v 而人从最高点到地面的运动时间为g αt sin 0v =所以,人跳跃后增加的距离()gm m αm t x '+==sin ΔΔ0v v3 -15 解 由运动学方程x =ct 3,可得物体的速度23d d ct tx==v 按题意及上述关系,物体所受阻力的大小为3/43/242299x kc t kc k F ===v则阻力的功为⎰⋅=x F W d 3/73/23/403/20727d 9d 180cos d l kc x x kc x W ll -=-==⋅=⎰⎰⎰x F 3 -16解 水桶在匀速上提过程中,a =0,拉力与水桶重力平衡,有F +P =0在图示所取坐标下,水桶重力随位臵的变化关系为P =mg -αgy其中α=0.2 kg/m,人对水桶的拉力的功为()J 882d d 100100=-=⋅=⎰⎰y agy mg W y F3 -17解 (1) 如图所示,重力对小球所作的功只与始末位臵有关,即()J 53.0cos 1Δ=-==θmgl h P W P在小球摆动过程中,张力F T 的方向总是与运动方向垂直,所以,张力的功s F d T T ⋅=⎰W(2) 根据动能定理,小球摆动过程中,其动能的增量是由于重力对它作功的结果.初始时动能为零,因而,在最低位臵时的动能为J 53.0k ==P W E小球在最低位臵的速率为1PK s m 30.222-⋅===mW m E v(3) 当小球在最低位臵时,由牛顿定律可得l m P F 2T v =-N 49.22T =+=lm mg F v3 -18 解 (1) 摩擦力作功为20202k0k 832121v v v m m m E E W -=-=-= (1) (2) 由于摩擦力是一恒力,且F f =μmg ,故有mg r s F W μπ2180cos o f -== (2)由式(1)、(2)可得动摩擦因数为rgπμ1632v =(3) 由于一周中损失的动能为2083v m ,则在静止前可运行的圈数为 34k0==W E n 圈3 -19解 选取如图(b)所示坐标,取原点O 处为重力势能和弹性势能零点.作各状态下物体的受力图.对A 板而言,当施以外力F 时,根据受力平衡有F 1 =P 1 +F (1)当外力撤除后,按分析中所选的系统,由机械能守恒定律可得2221212121mgy ky mgy ky +=- 式中y 1 、y 2 为M 、N 两点对原点O 的位移.因为F 1 =ky 1 ,F 2 =ky 2 及P 1 =m 1g ,上式可写为F 1 -F 2 =2P 1 (2)由式(1)、(2)可得F =P 1 +F 2 (3)当A 板跳到N 点时,B 板刚被提起,此时弹性力F ′2 =P 2 ,且F 2 =F ′2 .由式(3)可得F =P 1 +P 2 =(m 1 +m 2 )g应注意,势能的零点位臵是可以任意选取的.为计算方便起见,通常取弹簧原长时的弹性势能为零点,也同时为重力势能的零点. 3 -20 解 (1)子弹-木块系统满足动量守恒,有v m m mv )2/(2/0+=解得共同速度031v v =对木块 2022k 181021mv mv E =-=∆ 对子弹 202022k 92)2(21)2(21mv v m v m E -=-=∆ (2) 对木块和子弹分别运用质点动能定理,则对木块201k 1181mv E W =∆= 对子弹 202k 292mv E W -=∆= (3) 设摩擦阻力大小为fF ,在两者取得共同速度时,木块对地位移为s ,则子弹对地位移为L +s ,有对木块 s F W f1=对子弹 )(f2s L F W +-=得 L F W W W f21-=+=式中L 即为子弹对木块的相对位移,“-”号表示这一对摩擦阻力(非保守力)所作功必定会使系统机械能减少.(4) 对木块 2f 121mv s F W ==对子弹 202f2)2(21)2(21)(v m v m s L F W -=+-= 两式相加,得202221)2(21])2(2121[v m v m mv W W -+=+ 即 20f 183mv L F -=- 两式相加后实为子弹-木块系统作为质点系的动能定理表达式,左边为一对内力所作功,右边为系统动能的变化量.3 -21 解 因阻力与深度成正比,则有F =kx (k 为阻力系数).现令x 0=1.00 ×10 -2m,第二次钉入的深度为Δx ,由于钉子两次所作功相等,可得⎰⎰+=xx x x x kx x kx Δ000d dΔx =0.41 ×10 -2m3 -22 解 (1) 卫星与地球之间的万有引力提供卫星作圆周运动的向心力,由牛顿定律可得()E 22E E 33R m R m m G v = 则EE 2k 621R m m G m E ==v(2) 取卫星与地球相距无限远(r →∞)时的势能为零,则处在轨道上的卫星所具有的势能为EE P 3R mm GE -=(3) 卫星的机械能为EE E E E E P k 636R mm G R m m G R m m GE E E -=-=+=3 -23解 由系统的机械能守恒,有θmgR m mgR cos 212+=v (1) 根据牛顿定律,冰块沿径向的动力学方程为Rm F θmgR 2N cos v =- (2)冰块脱离球面时,支持力F N =0,由式(1)、(2)可得冰块的角位臵o θ2.4832arccos== 冰块此时的速率为32cos RgθgR ==v v 的方向与重力P 方向的夹角为α=90° - θ =41.8°3 -24 解 小球要刚好通过最高点C 时,轨道对小球支持力F N =0,因此,有rm m g c2v =(1)取小球开始时所在位臵A 为重力势能的零点,由系统的机械能守恒定律,有()()22213Δ21c m r mg l k v += (2) 由式(1)、(2)可得()12m N 366Δ7-⋅==l mgrk 3 -25 解 设弹簧的最大压缩量为x 0 .小球与靶共同运动的速度为v 1 .由动量守恒定律,有()1v v m m m '+= (1)又由机械能守恒定律,有()20212212121kx m m m +'+=v v (2) 由式(1)、(2)可得()v m m k m m x '+'=3 -26 解 由水平方向的动量守恒定律,有v vv ''+=m mm 2(1) 为使摆锤恰好能在垂直平面内作圆周运动,在最高点时,摆线中的张力F T=0,则lm g m h2v ''=' (2)式中v ′h 为摆锤在圆周最高点的运动速率.又摆锤在垂直平面内作圆周运动的过程中,满足机械能守恒定律,故有221221h m gl m m v v ''+'='' (3) 解上述三个方程,可得弹丸所需速率的最小值为glm m 52'=v3 -27 解 (1)由动能守恒得mv i v mj mv i mv +-=+-200 碰撞后另一物体速度为j v i v v 002+-= 通过上式,读者还可求得速度大小和方向.(2) 碰撞后另一物体速度大小为0202025)2(v v v v =+-= 则 20202020241)2121(])2(2121[mv mv mv v m mv E -=+-+=∆“-”号表示碰撞后系统机械能减少了. 3 -28解 取如图所示的坐标,由于粒子系统属于斜碰,在碰撞平面内根据系统动量守恒定律可取两个分量式,有αm βmm A B A cos cos 221v v v '+= (1) αm βmA B sin sin 20v v '-= (2)又由机械能守恒定律,有222212m 2121A B A m v v v '+⎪⎭⎫ ⎝⎛= (3) 解式(1)、(2)、(3)可得碰撞后B 粒子的速率为()1722s m 1069.42-⋅⨯='-=A A B v v v各粒子相对原粒子方向的偏角分别为022243arccos o 22'=''+=AA AA αv v v v65443arccos o '==ABβv v3 -29 解 在子弹与物块的撞击过程中,在沿斜面的方向上,根据动量守恒有()10cos v m m αmv '+= (1)在物块上滑的过程中,若令物块刚滑出斜面顶端时的速度为v 2 ,并取A 点的重力势能为零.由系统的功能原理可得()αh αg m m μsin cos '+-()()()21222121v v m m gh m m m m '+-'++'+=(2) 由式(1)、(2)可得()1cot 2cos 202+-⎪⎭⎫⎝⎛'+=αμgh αm m m v v3 -30 题 3 解 根据水平方向动量守恒定律以及小球在下滑过程中机械能守恒定律可分别得0='-'m m m m v v (1)mgR m m m ='+'222121v v v (2) 式中v m 、v m ′分别表示小球、容器相对桌面的速度.由式(1)、(2)可得小球到达容器底部时小球、容器的速度大小分别为m m gR m m '+'=2vm m gR m m m m '+''='2v由于小球相对地面运动的轨迹比较复杂,为此,可改为以容器为参考系(非惯性系).在容器底部时,小球相对容器的运动速度为()gR m m m m m m m m 2⎪⎭⎫⎝⎛''+=+=--='''v v v v v (3)在容器底部,小球所受惯性力为零,其法向运动方程为Rm mg F mN 2v '=- (4)由式(3)、(4)可得小球此时所受到的支持力为第四章 刚体的转动4-1 分析与解 力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2 分析与解 刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位臵,重力矩最大,当棒处于竖直位臵时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mvd 为子弹对点O 的角动量0ω为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0,则ω<0ω.故选(C).。

大学物理习题册及解答_第二版_第一章_质点的运动

大学物理习题册及解答_第二版_第一章_质点的运动

如果质点在原点处的速度为零,试求其在任意位置的速度


a
d
dt
d
dx
dx dt
d
dx
d adx (3 6x2 )dx
d
x (3 6x2 )dx
0
0
6x 4x3
2.一质点沿半径为R的圆周运动,其路程S随时间t变化的规律为:
(S I)S,式bt中b0、.5cct为2 大于零的常数,且b2>R c.
Δt
2 1
“-”表示平均速度 方向沿x轴负向。
dx
(2) 第2秒末的瞬时速度 v 10t 9t 2 16m/s
dt
t2
(3) 由2秒末的加速度 a dv 10 18t 26m/s2
dt
t2
2.一质点在Oxy平面上运动,运动方程为x=3t, y=3t2-5(SI), 求(1)质 点运动的轨道方程,并画出轨道曲线;(2)t1=0s和t2=120s时质点的 的速度、加速度。
与其速度矢量恰好垂直;(4) 在什么时刻电子离原点最近.
4 质点作曲线运动, 表示位置矢量, 表示速度, 表示加速度,
S表示路程,at表示切向加速度,下列表达式中,
(1) d a
dt
(3) dS
dt
(2) dr
(4)
ddtr
dt
at
(A)只有(1)、(4)是对的.
(B) 只有(2)、(4)是对的.
(C)只有(2)是对的.
(D) 只有(3)是对的.
, ay
dvy dt
dv 2dt, dv 36t 2dt
x
y
dv vx
0
x
t
0
2 dt

大学物理学第二版答案

大学物理学第二版答案

大学物理学第二版答案【篇一:大学物理上第二版网上考试答案第三四期】绳子各一端,他们由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是:(正确答案:c 提交答案:c 判题:√ 得分:10分)a、甲先到达b、乙先到达c、同时到达d、无法确定2、假设某卫星环绕地球中心作椭圆轨道运动,则在运动过程中,卫星对地球中心的(正确答案:b 提交答案:b 判题:√ 得分:10分)a、角动量守恒,动能守恒b、角动量守恒,机械能守恒c、角动量不守恒,机械能守恒d、角动量不守恒,动能守恒3、几个力同时作用在一个具有固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(正确答案:d 提交答案:d 判题:√ 得分:10分)a、必然不会转动b、转速必然不变c、转速必然改变d、转速可能不变,也可能改变4、一水平放置的直杆,质量为m,长度为l,绕其一端作匀速率转动(转动惯量度为v,则杆的动能为(正确答案:c 提交答案:c 判题:√ 得分:10分)a、b、c、d、),外端点线速5、一质点作匀速率圆周运动时(正确答案:c 提交答案:c 判题:√ 得分:10分)a、它的动量不变,对圆心的角动量也不变b、它的动量不变,对圆心的角动量不断改变c、它的动量不断改变,对圆心的角动量不变d、它的动量不断改变,对圆心的角动量也不断改变6、一水平圆盘可绕固定铅直中心轴转动,盘上站着一个人,初始时整个系统处于静止状态,忽略轴的摩擦,当此人在盘上随意走动时,此系统(正确答案:c 提交答案:d 判题:╳得分:0分)a、动量守恒b、机械能守恒c、对中心轴的角动量守恒d、动量、机械能和角动量都守恒7、多个力作用在有固定转轴的刚体上,这些力的矢量和为零,则刚体绕该轴转动的角加速度将(正确答案:d 提交答案:d 判题:√ 得分:10分)a、保持不变的恒量b、为0c、不为0的变量d、无法确定8、有两个半径相同,质量相等的细圆环a和b,a环的质量分布均匀,b环的质量分布不均匀,它们对通过环心与环面垂直的轴的转动惯量分别为、,则()(正确答案:c 提交答案:d 判题:╳得分:0分)a、a环的转动惯量较大b、b环的转动惯量较大c、一样大d、不能确定9、花样滑冰运动员绕过自身的竖直轴转动,开始时两臂伸开,转动惯量为,角速度为,然后她将两臂收回,使转动惯量减少为。

大学物理学(上)(第二版)习题答案

大学物理学(上)(第二版)习题答案

解 : u = 0. 6 c
由洛仑兹变换

5 γ = = 2 4 u 1− 2 c
1
u x′ = γ ( x − ut ), t ′ = γ t − 2 x c 得 u ′ ′ t2 − t1 = γ t2 − t1 − 2 ( x2 − x1 ) = 2.25 × 10−7 s c
练习45
1.一静止长度为 l0的火箭以速度 v相对地面运动,从火箭前端发出一个光 . 相对地面运动, 信号,对火箭和地面上的观察者来说,光信号从前端到尾端各用多少时间? 信号,对火箭和地面上的观察者来说,光信号从前端到尾端各用多 方法一:
∆ t′ =
l0 ∆x′ = − c c
′ ′ x2 − x1 = γ [x2 − x1 − u(t2 − t1 )] = −72.5 m
在某地发生两个事件,静止位于该地的甲测得时间间隔为4 2.在某地发生两个事件,静止位于该地的甲测得时间间隔为4s,若相 对甲作匀速直线运动的乙测得时间间隔为5 求乙相对于甲的运动速度。 对甲作匀速直线运动的乙测得时间间隔为5s,求乙相对于甲的运动速度。
≈ −0.946 c ≈ −2.84 × 108 m/s
所以宇航员看到彗星以速率0.946c 向他们飞来。 向他们飞来。 所以宇航员看到彗星以速率
2.地球上某一天文台发现,一只以速率0.60c向东航行的宇宙飞船将在 秒钟 .地球上某一天文台发现,一只以速率 向东航行的宇宙飞船将在5秒钟 向东航行的宇宙飞船将在 后同一个以0.80c速率向西飞行的慧星相撞,试问: 速率向西飞行的慧星相撞, 后同一个以 速率向西飞行的慧星相撞 试问: 避免碰撞。 (2)按飞船上的时钟计,还有多少时间允许他们离开原来航线 避免碰撞。 )按飞船上的时钟计,

大学物理学第二版习题解答

大学物理学第二版习题解答

大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2)平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4)质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5)r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v 有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt=及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及a = 你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1)最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2)s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。

《大学物理学》第二版上册习题解答

《大学物理学》第二版上册习题解答

大学物理学习题答案习题一1.1 简要回答下列问题:(1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变?(5) r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt =各代表什么运动?(6) 设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =drv dt =及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及a =你认为两种方法哪一种正确?两者区别何在?(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,na 、ta 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

解:(1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:0(/)2ave x v m s t ∆===∆t 时刻的瞬时速度为:()44dxv t t dt ==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2) s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆(3) s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt -===-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档