三次数学危机的感想
数学三次危机的认识论意义

数学三次危机的认识论意义
数学三次危机是指在20世纪初期,数学界出现了三次被称为危机的事件,分别是:1902年的费马大定理的证明、1906年的卡尔·费马的无穷小问题和1908年的第一次国际数学会议。
这些事件对数学认识论的发展产生了重大影响。
费马大定理的证明:费马大定理是指所有自然数都是费马素数或者可以写成两个费马素数之积的形式。
这个定理的证明对于当时数学界来说是一个极其棘手的问题,直到20世纪初期才被证明。
费马大定理的证明对数学认识论产生了巨大影响,它揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的。
卡尔·费马的无穷小问题:无穷小问题是指在数学中,一个数是否可以无限接近于0却永远不等于0。
卡尔·费马提出了无穷小问题,并建立了费马小数的概念,即一个数可以无限接近于0却永远不等于0。
这个问题对于当时数学界来说是一个棘手的问题,最终得到了解决。
无穷小问题的解决对数
学认识论产生了重大影响,它改变了人们对无限的理解,揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的。
第一次国际数学会议:1908年,第一次国际数学会议在巴黎举行。
这次会议上,众多数学家聚集在一起,就数学的发展方向展开了讨论。
这次会议对数学认识论产生了重大影响,它揭示了数学知识的基本特征,即数学是一门跨越不同领域的学科,并且数学知识是由不同领域的数学家共同创造的。
总的来说,数学三次危机对数学认识论的发展产生了重大影响,它们揭示了数学知识的基本特征,即数学是建立在一些基本的公理和定理之上的,是一门跨越不同领域的学科,并且数学知识是由不同领域的数学家共同创造的。
数学史上三次危机

数学史上三次危机对于数学仅限于学校里学的那点东西,薄如蝉翼,谈不上什么深刻理解,但也听说过数学史上有三次危机。
限于老郭水平不高,能力有限无法深入,蜻蜓点水的说一下。
第一次数学危机-无理数的发现勾股定理是咱们小伙伴们都熟悉的,a^2+b^2=c^2。
这个公式出来之后就用到了已知两条边长求解直角三角形第三条边的边长问题上。
很明显,开平方之后会出现根号2、根号3这种情况,这种不能完全开平方的数是无限不循环的小数,我们现在叫做无理数。
我们现在理解这些数当然是没问题的,不过在当时,这种数的出现,打破了毕达哥拉斯学派认为的世界的和谐性质。
他们认为宇宙万物都可以归结为整数或者是整数之比。
这就导致了一种认识上的“危机”,这个危机被称为第一次数学危机。
其实,这次“危机”(我并不认为这是什么危机)给几何的发展带来了一次推动。
因为,出现了无理数意味着,人类依靠直觉和经验建立的科学不一定是可靠的,而严格的推理证明才是靠得住的。
从那以后,希腊人开始重视演绎推理,并且建立了几何公理体系。
这就是危难之中的机遇,古希腊人抓住了这个机遇,创造了平面几何的第一次辉煌。
第二次数学危机-阿基里斯追不上乌龟“阿基里斯追不上乌龟”:阿基里斯总是首先必须到达乌龟的出发点,因而乌龟必定总是跑在前头。
这个数学悖论故事是很有名的,其实我们现在的小伙伴都能知道,这是不可能发生的事,只要求一个极限,这个事就搞定了,跟本不存在追不上乌龟的事情。
然而在17世纪,微积分刚刚诞生那个时代,这个事还真是个大事。
当时包括牛顿、莱布尼茨等等大佬都没有找到解决这个问题的办法。
当时微积分刚刚初创,逻辑基础非常的不牢固。
很多基础问题,无穷小概念,从而导数、微分、积分等概念不清楚;无穷大概念不清楚;发散级数求和的任意性等等;符号的不严格使用;不考虑连续性就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。
那时候,这个问题争论的焦点就在于无穷小量究竞是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论,造成了第二次数学危机。
数学史上的三次数学危机的成因分析

数学史上的三次数学危机的成因分析数学的发展并非一帆风顺,在其漫长的历史进程中,曾经历了三次重大的危机。
这些危机不仅对当时的数学界产生了巨大的冲击,也推动了数学的不断进步和完善。
第一次数学危机发生在古希腊时期,主要源于对无理数的发现。
在古希腊,毕达哥拉斯学派深信“万物皆数”,这里的数指的是整数以及整数之比(有理数)。
他们认为,宇宙中的一切现象都可以用有理数来解释和描述。
然而,毕达哥拉斯学派的一个成员希帕索斯却发现了一个惊人的事实:边长为 1 的正方形,其对角线的长度无法用有理数来表示。
按照勾股定理,这个对角线的长度应该是根号 2。
但根号 2 既不是整数,也不是两个整数之比,这一发现直接冲击了毕达哥拉斯学派的基本信念。
这次危机的成因可以归结为以下几点。
首先,当时的数学观念和认知存在局限性。
人们过度依赖于整数和有理数来理解世界,对于无法用已有数学概念表达的量缺乏准备。
其次,数学的推理和证明体系还不够完善。
在面对根号 2 这样的新对象时,缺乏严谨的逻辑方法来处理和理解。
第一次数学危机的影响是深远的。
它促使人们重新审视数学的基础,推动了数学逻辑和证明的发展。
数学家们开始意识到,仅仅依靠直观和经验是不够的,必须建立更加严谨的数学体系。
第二次数学危机则与微积分的基础问题相关。
在 17 世纪,牛顿和莱布尼茨各自独立地发明了微积分。
微积分在解决众多科学和工程问题中显示出了强大的威力,极大地推动了科学技术的发展。
然而,微积分在创立初期却存在着逻辑上的漏洞。
例如,在求导数的过程中,无穷小量的概念含糊不清。
无穷小量有时被看作是零,有时又被当作非零的量参与运算,这引发了广泛的争议。
造成第二次数学危机的原因主要有两个方面。
一方面,微积分的发展速度过快,其应用的迫切需求超过了理论基础的完善速度。
科学家们急于利用微积分解决实际问题,而对其内在的逻辑矛盾关注不够。
另一方面,当时的数学分析方法还不够精确和严格。
对于极限、无穷小等概念的理解和定义存在模糊性。
数学小讲师--三次数学危机

学
小
讲
师
三次数学危机
01
第一次数学危机
公元前六世纪,在古希腊学 术界占统治地位的毕达哥拉斯 学派,其思想在当时被认为是 绝对权威的真理。其主要奉献 之一就是证明了毕达哥拉斯定 理,也就是勾股定理。
当时,毕达哥拉斯倡导的是一 种称为“唯数论〞的哲学观点,他 们认为宇宙的本质就是数的和谐。 他们认为万物皆数〔数字神化〕, 而数只有两种,就是正整数和可通 约的数〔即分数,两个整数的比〕, 除此之外不再有别的数,即是说世 界上只有整数或分数。
有理数 无理数
02
第二次数学Байду номын сангаас机
•
0.9
1
03
第三次数学危机
危机:既是危险,也是机遇。数学史上的每 一次危机都极大地推动了数学的开展。每一 次开展都是人们认识这个世界的更进一步。 数学也有着自己独特的文化与韵味。
谢谢欣赏
三次数学危机

站在危机中看未来——三次数学危机极其对数学的影响数学的发展并不是一帆风顺的,历史上数学一共经历了三次危机。
第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。
这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。
当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。
该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为l的正方形的对角线长度既不是整数,也不是整数的比所能表示。
希伯索斯的发现被认为是“荒谬”和违反常识的事。
它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。
使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
这场危机通过在几何学中引进不可通约量概念而得到解决。
两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。
正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。
很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
不可通约量的研究开始于公元前4世纪的欧多克斯,其成果被欧几里得所吸收,部分被收人他的《几何原本》中。
这次数学危机对希腊数学产生了决定性的影响。
首先,希腊人得出直觉、经验都不是绝对可靠的,推理论明才是可靠的,因而希腊人此后更加重视逻辑,并在亚里士多德手中完成了古典逻辑学。
其次,由于整数及其比不能包括一切几何量,但几何量却可以表示一切数,因此希腊人认为几何较之算术占着更重要的地位。
在其后的希腊数学中,这种几何对算术的优势支配了希腊数学一千年。
希帕索斯的发现导致了第一次数学危机,然而为了解决这一危机,却又导致了古希腊古典逻辑学与公理几何学的诞生。
从我国数学的发展看三次数学危机

从我国数学的发展看三次数学危机从我国数学的发展看三次数学危机1 引言数学中有大大小小的许多矛盾,比如正与负、加法与减法、微分与积分、有理数与无理数、实数与虚数等等。
但是整个数学发展过程中还有许多深刻的矛盾,例如有穷与无穷,连续与离散,乃至存在与构造,逻辑与直观,具体对象与抽象对象,概念与计算等等。
在整个数学发展的历史上,贯穿着矛盾的斗争与解决。
而在矛盾激化到涉及整个数学的基础时,就产生数学危机。
整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
2 三次数学危机第一次数学危机发生在古希腊,源于毕达哥拉斯的以数为基础的宇宙模型和数是可公度的信条。
毕达哥拉斯认为,事物的本质是由数构成的,并以数为基础,构造了宇宙模型[1].在毕达哥拉斯看来,数就是整数或整数之比。
但这一信条后来遇到了困难。
因为有些数是不可公度的。
这一矛盾,导致了毕达哥拉斯关于数的信条的破产,并进一步导致了毕达哥拉斯以数为基础的宇宙模型的破产。
这在当时产生的震动太大了,因此历史上称之为第一次数学危机。
17、18世纪关于微积分发生的激烈的争论,被称为“第二次数学危机”[2].在17世纪晚期,形成了微积分学。
牛顿和莱布尼茨被公认为微积分的奠基者。
他们的功绩主要在于把各种有关问题的解法统一成微积分,有明确的计算步骤,微分法和积分法互为逆运算[3].由于新诞生的微积分方法中隐含着逻辑推理上的严重缺陷,导致了“无穷小悖论”[4].当时牛顿等人不能自圆其说,而且,其后一百年间的数学家也未能有力的回答贝克莱的质问,由此而引起数学界甚至哲学界长达一个半世纪的争论,造成“第二次数学危机”.19世纪末分析严格化的最高成就--集合论,似乎给数学家们带来了一劳永逸摆脱基础危机的希望。
庞加莱甚至在1900年巴黎国际数学大会上宣称:“现在我们可以说,完全的严格性已经达到了!”[5]但就在第二年,一场摇撼整个数学大厦基础的暴风雨来临了,英国数学家罗素以一个简单明了的集合论“悖论”打破了人们的上述希望,引起了关于数学基础的`新争论。
数学三次危机的内容

数学三次危机的内容全文共四篇示例,供读者参考第一篇示例:数学科学中的三次危机是指在20世纪上半叶发生的一系列重大数学问题,这些问题深刻地影响了数学家们的研究方向和方法论。
这三次危机分别是庞加莱猜想、康托尔难题和哈尔定理。
在这篇文章中,我们将对这三个数学难题进行详细介绍,并探讨它们对数学领域的影响。
让我们来了解一下庞加莱猜想。
庞加莱猜想是法国数学家亨利·庞加莱于1904年提出的一个关于拓扑学的问题。
该猜想的内容是“三维球面是唯一的紧致单连通的拓扑空间”。
庞加莱猜想对数学家们提出了一个挑战,因为在当时,拓扑学还处于发展的初级阶段,很多概念和理论尚未完善。
庞加莱猜想的证明一直是数学界的一个巨大难题,直到2003年,俄罗斯数学家格里戈里·佩雷尔曼通过使用里卡蒂流和流形拓扑学,证明了该猜想。
这一证明不仅解决了庞加莱猜想,也为流形拓扑学的发展提供了新的思路。
让我们来看看康托尔难题。
康托尔难题是德国数学家乔治·康托尔在19世纪末提出的一个极具挑战性的数学难题。
该难题的核心内容是研究无限集合的基数大小。
康托尔提出了连续统假设,即不存在介于自然数和实数之间的集合。
康托尔难题的解决涉及到了极限集合论、集合论和拓扑学等多个领域,成为20世纪数学发展的一个重大挑战。
直到1960年代,由保罗·科恩证明了连续统假设和选择公理的独立性,康托尔难题才得以部分解决。
康托尔难题的解决为数学领域的发展开辟了新的方向,促进了集合论和拓扑学的深入研究。
让我们来谈谈哈尔定理。
哈尔定理是由挪威数学家埃米尔·哈尔于1900年提出的一个著名数学难题。
该定理的内容是“任意一个连续函数序列在闭区间上一致收敛于一个连续函数”,这个定理在分析学中起到了至关重要的作用。
哈尔定理的证明引入了严格的收敛性概念和一致收敛性概念,为数学家们提供了新的研究方法。
哈尔定理的证明通过构造逼近序列和使用极限过程,为数学分析领域的研究提供了新的思路和工具。
数学史上的三次危机及对数学发展的影响

《校园百家讲坛》演讲稿数学史上的三次危机及对数学发展的影响主讲卢伯友一引言“校园百家讲坛”很早就邀请我,要我给同学们讲点什么,因为这个讲坛的神圣性和严肃性,我一直没有敢答应下来。
今天,站在这个讲坛上,我仍然感到诚惶诚恐的。
讲什么呢?从哪儿开始呢?我一直思考着这个问题。
国学大师王国维在《人间词话》中说过:“诗人对宇宙人生,须入乎其内,又须出乎其外。
入乎其内,故能写之。
出乎其外,故能观之。
入乎其内,故有生气。
出乎其外,故有高致。
”同学们平时听课、读书、做习题是入乎其内,今天听讲座是出乎其外,两者相互相成。
只知入乎其内,那是见木不见林,常常会迷失方向。
所以,还要辅助以出乎其外,站出来作高瞻远瞩。
正所谓“风声、雨声、读书声、声声入耳;家事、国事、天下事,事事关心!”整个人类文明的历史就像长江的波浪一样,一浪高过一浪,滚滚向前,科学巨人们站在时代的潮头,以他们的勇气、智慧和勤劳把人类的文明从一个高潮推向另一个高潮。
我们认为,整个人类文明可以分为三个层次:(1) 以锄头为代表的农耕文明;(2) 以大机器流水线作业为代表的工业文明; (3) 以计算机为代表的信息文明。
数学在这三个文明中都是深层次的动力,其作用一次比一次明显。
基于此原因,我今天演讲的题目是:数学史上的三次危机及对数学发展的影响古人讲,欲穷千里目,更上一层楼。
今天,我们站在历史的角度,剖析历史上发生的三次数学危机及其对数学发展的重要影响,让同学们不仅从数学自身的思想方法和应用的角度,而且从文化和历史的高度审视数学的全貌和美丽。
赞美数学思想的博大精深,赞美由数学文化引出的理性精神,以及在理性精神的指导下,人类文明的蓬勃发展。
二数学史上的三次危机及对数学发展的影响1毕达哥拉斯与第一次数学危机1.1第一次数学危机的内容毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。
他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。
由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三次数学危机的感想
——数学文化与思维作业学号:20115261 姓名:刘奇学院:计算机年级:2011 无理数的确认──第一次数学危机
第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。
整数的尊崇地位受到了挑战,古希腊的数学观点受到极大的冲击。
第一次数学危机同时反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。
从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。
这是数学思想上的一次革命,也是第一次数学危机的自然产物。
什么是无穷──第二次数学危机
伴随着十七世纪末牛顿和莱布尼兹发现微积分而发生的激烈争论,被称为第二次数学危机。
以求速度为例,瞬时速度是当趋近于零时的值。
是零,是很小的量,还是什么东西?无穷小量究竟是不是零?无穷小及其分析是否合理?
应当承认,贝克莱的责难是击中要害的。
“无穷小”的方法在概念上和逻辑上都缺乏基础。
牛顿和当时的其它数学家并不能在逻辑上严格说清“无穷小”的方法。
数学家们相信它,只是由于它使用起来方便有效,并且得出的结果总是对的。
特别是像海王星的发现,那样鼓舞人心的例子,显示出牛顿的理论和方法的巨大威力。
所以,人们不大相信贝克莱的指责。
这表明,在大多数人的脑海里,“实践是检验真理的唯一标准。
”
19世纪70年代初,魏尔斯特拉斯、狄德金、康托等人独立地建立了实数理论,而且在实数理论的基础上,建立起极限论的基本定理。
“ε-σ”语言给出了极限的准确描述,消除了历史上各种模糊的用语。
虽然所得结论与牛顿原先的结论是一样的,但每一步都有了严格的逻辑基础。
这样就使数学分析建立在了实数理论的严格基础之上。
罗素悖论的责难──第三次数学危机
这次危机是由于在康托的一般集合理论的边缘发现悖论而造成的。
数学家们发现,从自然数与集合论出发似乎可建立起整个数学大厦,因而集合论成为现代数学的基石。
而罗素悖论使整个数学大厦动摇了。
其实,在罗素之前集合论中就已经发现了悖论。
但是,由于这那些悖论都涉及集合中的许多复杂理论,所以只是在数学界揭起了一点小涟漪,未能引起大的注意。
罗素悖论则不同,它非常浅显易懂,而且所涉及的只是集合论中最基本的东西。
所以,罗素悖论一提出就在当时的数学界与逻辑学界内引起了极大震动。
承认无穷集合,承认无穷基数,就好象一切灾难都出来了。
这就是第三次数学危机的实质。
尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。
经过“悖论”大辩论的洗礼,现代公理集合论的一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。
所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。
关于三次数学危机的感想
三次数学危机都与无穷有关,也与人们对无穷的认识有关。
第一次数学危机的要害是不认识无理数,而无理数是无限不循环小数,它可以看成是无穷个有理数组成的数列的极限。
所以,第一次数学危机的彻底解决,是在危机产生二千年后的19世纪,建立了极限理论和实数理论之后。
实际上,它差不多是与第二次数学危机同时,才被彻底解决的。
第二次数学危机的要害,是极限理论的逻辑基础不完善,而极限正是“有穷过渡到无穷”的重要手段。
贝克莱的责难,也集中在“无穷小量”上。
由于无穷与有穷有本质的区别,所以,极限的严格定义,极限的存在性,无穷级数的收敛性,这样一些理论问题就显得特别重要。
第三次数学危机的要害,是“所有不属于自身的集合”这样界定集合的说法有毛病。
而且这里可能涉及到无穷多个集合,人们犯了“自我指谓”、恶性循环的错误。
以上事实告诉我们,由于人们习惯于有穷,习惯于有穷情况下的思维,所以一旦遇到无穷时,要格外地小心;而高等数学则是经常与无穷打交道的。
从另一方面,数学的历史发展有顺利也有曲折。
大的挫折也可以叫做危机,危机也意味着挑战,危机的解决就意味着进步。
所以,危机往往是数学发展的先导。
数学发展史上有三次数学危机。
每一次数学危机,都是数学的基本部分受到质疑。
实际上,也恰恰是这三次危机,引发了数学上的三次思想解放,大大推动了数学科学的发展。