离散数学课件_5 谓词逻辑
合集下载
第5章_谓词逻辑_meng

底是人。所以,苏格拉底是要死的。” 前提:任何人都是要死的。苏格拉底是人。 结论:苏格拉底是要死的。 从直观含义上看,该推理是正确的! 不是永真公式,在p 符号化: 取1、q取1和r取0下 p: 任何人都是要死的。 ,命题公式pq r q: 苏格拉底是人。 的真值为0。pqr r: 苏格拉底是要死的。 不成立 推理的形式结构为 p, q ╞ r
④某一个星球存在生命。
H(x, y):x存在y,个体变量x:星球,个体变量y:生命。 (x)(y)H(x, y)
5.2 谓词逻辑公式
由命题变元、命题常元、联结词、个体变元、 个体常量、谓词、函词、量词等组成的用以表 示复杂命题的符号串,称为一阶谓词逻辑公式 (first order predicate logic formula ),简称为谓词逻辑公式(predicate logic formula)或一阶逻辑公式(first order logic formula)。
5.1.3
函词(函数)
n元函词:
含有n个个体词的函词。 一般形式为f(x1,x2,…, xn), 表示“由x1, x2, …和xn根据f确定的个体”。
函词对于谓词逻辑来说不是必须的!
可以借助于谓词等进行表示 但引入函数之后表示起来更方便
例
例5.2 表示如下命题中的谓词和函词。
例
例5.3-4 表示如下命题中的量词。
①空集包含于任意集合;
P(x, y):x包含于y, 个体常量a:空集, 个体变量x:集合。 (x)P(a, x);
②所有自然数非负;
Q(x):x是负数,个体变量x:自然数。 (x)Q(x);
③有一些人登上过月球;
P(x, y):x登上过y, 个体常量a:月球, 个体变量x:人。 (x)P(x, a);
④某一个星球存在生命。
H(x, y):x存在y,个体变量x:星球,个体变量y:生命。 (x)(y)H(x, y)
5.2 谓词逻辑公式
由命题变元、命题常元、联结词、个体变元、 个体常量、谓词、函词、量词等组成的用以表 示复杂命题的符号串,称为一阶谓词逻辑公式 (first order predicate logic formula ),简称为谓词逻辑公式(predicate logic formula)或一阶逻辑公式(first order logic formula)。
5.1.3
函词(函数)
n元函词:
含有n个个体词的函词。 一般形式为f(x1,x2,…, xn), 表示“由x1, x2, …和xn根据f确定的个体”。
函词对于谓词逻辑来说不是必须的!
可以借助于谓词等进行表示 但引入函数之后表示起来更方便
例
例5.2 表示如下命题中的谓词和函词。
例
例5.3-4 表示如下命题中的量词。
①空集包含于任意集合;
P(x, y):x包含于y, 个体常量a:空集, 个体变量x:集合。 (x)P(a, x);
②所有自然数非负;
Q(x):x是负数,个体变量x:自然数。 (x)Q(x);
③有一些人登上过月球;
P(x, y):x登上过y, 个体常量a:月球, 个体变量x:人。 (x)P(x, a);
离散数学谓词逻辑

VS
复合命题
由原子命题通过逻辑运算符组合而成的命 题,如“John is a student and Mary is a teacher”
逻辑运算符和括号的使用
逻辑运算符
and(合取)、or(析取)、not(否定)、if...then(蕴含)等
括号的使用
对于复杂的命题,需要使用括号来表示逻辑运算的优先级
逻辑模型
通过建立合适的逻辑模型,将实际问题转 化为逻辑推理问题,从而得到最优解或可 行解。
06
总结与展望
离散数学谓词逻辑的重要性和应用价值
离散数学谓词逻辑是计算机科学、人 工智能、通信工程、应用数学等多个 学科领域的基础工具,对于解决这些 领域的问题具有重要的应用价值。
离散数学谓词逻辑提供了一种描述客 观世界中离散结构及其性质的方式, 可以用来刻画和解释计算机科学中的 数据结构和算法、人工智能中的知识 表示和推理等问题。
04
离散数学中的逻辑推理方法
演绎推理
定义
演绎推理是根据某些前提,通过推理得出结论的思维 方式。在离散数学中,演绎推理通常涉及逻辑推理、 集合推理、量词推理等。
形式化
演绎推理通常采用的形式是三段论,即大前提、小前 提和结论三个部分。例如,所有的偶数都是整数(大 前提),4是偶数(小前提),所以4是整数(结论) 。
蕴含
用if...then或者⇒表示,如“if John is a student, then Mary is a teacher”
逻辑量词:全称量词和存在量词
全称量词
用for all或者∀表示,如“for all x, x>0”
存在量词
用exists或者∃表示,如“exists x, x>0”
离散数学谓词逻辑.ppt

作用变元、 指导变元
量词 的辖域
xA(x),xA(x)
例如:D=全班同学的集合。A(x):今天x迟到了。
Hale Waihona Puke 西 华xA(x) 表示今天x迟到了。x∈D,从而x指同学。
大 学
xA(x)表示今天有同学迟到了。
xA(x)就表示为今天所有的同学都迟到了。
显然,当D为有限集合时,D={a1,a2,……,an}
(课堂 作业)
例4.在成都工作的人未必是成都人。
西 华
D={人类集合}
大
学
• 解:设P(x):x在成都工作;Q(x):x是成都 人。
• ⑴存在这样的x,x在成都工作但是x不是 成都人。x(P(x) ∧ Q(x))
• ⑵ 并不是说,所有的x在成都工作,x就是 成都人。 (x(P(x) Q(x)))
L(a,b)才是命题,并且是假命题。 c为2,d为0
时,L(c,d)是真命题。
有时将不带个体变项的谓词称为0元谓词。 0元谓词 中的谓词的意义确定后, 0元谓词是命题。
使用谓词注意:
(1) n元谓词中,客体变项的次序很重要 。
例:F(x,y)表示x是y的父亲,
西
a:张三,b:张小明。
华
F(a,b)表示张三是张小明的父亲。
(2)存在x,使得:x+5=2
大 学
要求:
1)个体域为自然数集合
2)个体域为实数集合
例4 :在一阶逻辑中将下面命题符号化
(1)凡偶数均能被2整除
西 华
(2)存在着偶素数
大 学
(3)没有不吃饭的人
(4)素数不全是奇数
例5.对任意的x都存在y,使得x +y=2。
D=实数集合
离散数学 谓词逻辑

例1 给定解释I1如下:
(1)个体域为自然数集合N; (2)N中的特定元素a=0; (3)F(x,y):x大于或等于y. 在解释I1下,求下列各式的真值: (1)(∀x)F(x,a);(2)(∀x∃y)F(x,y) 解 在解释I1下,公式分别解释为: (1)任何自然数都大于或等于零, 为真命题.
(2)对任一自然数x,都存在一自然数y使得x≥y, 为真命题.
4
例子
[例2-1.1] 张明是位大学生。 解:设S(x):x是大学生,c:张明, 一元谓词:表 则原句的谓词形式为S(c)。 示客体性质 [例2-1.2]我坐在张三和李四中间。 解:设S(x,y,z):x坐在y和z之间,i:我,z:张 三,l:李四, 多元谓词:表 示客体间关系 则原句的谓词形式为S(i,z,l)。
★从以上两命题的符号化可以看出,同一命题在不同个体域下 符号化的形式可能不同。
11
这里,M(x)称为特性谓词。应该注意 的是,全称量词和存在量词符号化时,引入 特性谓词时的形式是不同的。 用全称量词 符号化时,特性谓词作为条 件式的前件; 用存在量词符号化时则作为合取式的一 项。
12
对于任一给定的实数x,都存在着一个实数y,使得 x+y=0。 如果取个体域为实数集合 ∀ x ∃ y H(x, y ) 然而 ∃ y ∀ x H(x, y ): 存在着一个少数y,对于任一实数x,使得x+y=0
3
谓词的表示
客体词有两种:客体常元和客体变元。客体常 元表示具体的或特定的客体,一般用小写字母 a、b、c等表示;表示抽象的或泛指的客体的 词称为客体变元,常用小写字母x、y、z等表 示。 谓词,通常用大写的字母A、B、C等表示。
谓词填式:单独一个谓词不是完整的命题, 把谓词字母后填以客体所得的式子。
《离散数学课件》谓词逻辑

A(a, H(b)) →F(a,b)
非一阶谓词 26/44
例3 符号化:我送他这本书。
解:令 A(e1,e2,e3)表示“e1送e3给e2”; B(e)表示“e为书”; a表示“我”; b表示“他”; c表示“这”;
则原句译为: A(a,b,c) B(c)
27/44
例4 符号化:这只大红书柜摆满了那些古书。
32/66
例 计算机学院的有些老师是青年教师
解: 设 C(e)表示e为计算机学院的人; T(e)表示e为教师; Y(e)表示e为青年.
则原句译为:
x(C(x)T(x) Y(x))
此例中:x就取值于全总个体域U, 谓词C(x)限定x取值范围。
33/66
例 个体域I为人类集合,将下列命题符号化:
(1) 凡人都呼吸。 (2) 有的人用左手写字。
21/44
一元谓词变元
A(x)
其中x为变量符号项、A为谓词变元。 此式表示x具有性质A。 注意:x,A分别在两个域上变化。
22/44
二元谓词变元
A(x,y)
其中x, y为变量符号项、A为谓词变元。 此式表示x和y具有关系A。 注意:x,y,A分别在三个域上变化。
23/44
二、谓词语句的符号化
例1 将命题符号化 要求:先将它们在命题逻辑中符号化,再在一阶
1A(e)如下图所示: e A1 A2 a TF
2 谓词数目:
14/44
个体域{a,b}上的一元谓词
A(e)如下图所示: e A1 A2 A3 A4 a TFTF b TTFF
22
谓词数目:
15/44
个体域{a,b,c}上的一元谓词
A(e)如下图所示:
e A1 A2 A3 A4 A5 A6 A7 A8
离散数学L5谓词逻辑2

或干脆规定B不含x
– 这个条件很容易满足:对约束变元改名即可.
Lu Chaojun, SJTU
9
基本等值式(4)
• 量词对的分配律
(x)(P(x) Q(x)) (x)P(x) (x)Q(x) (x)(P(x) B) (x)P(x) B (x)(B P(x)) B (x)P(x) (x)(P(x) B) (x)P(x) B (x)(B P(x)) B (x)P(x) – 其中B不含x的自由出现!
Lu Chaojun, SJTU
3
约束变元换名规则
• 约束变元的名字是无关紧要的. • 换名规则:对于公式(x)A(或(x)A),设变 元y不在A中出现,将A中所有受此量词约 束的x出现都换成y得到A,且量词改成 (y)(或(y)).得到的公式(y)A (或(y)A ) 与原公式等值.
所有人要么是男人要么是女人.
(x)Man(x)(x)Woman(x)
要么所有人都是男人,要么所有人都是女人.
Lu Chaojun, SJTU
8
基本等值式(3)
• 量词对及的分配律
(x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B – 其中B不含x的自由出现!
– 只有普遍有效的公式A ,才与其-前束范式是 等值的. – 一般的公式与其-前束范式并不等值. – 用于FOL完备性的证明.
Lu Chaojun, SJTU
20
例:-前束范式
求(x)(y)(u)P(x,y,u)的-前束范式(P中无量词). 1.先求前束范式.本例已是. 2.关键一步:(y)改写成(y)...(z).形如 (x)((y)(u)(P(x,y,u) S(x,y)) (z)S(x, z))
– 这个条件很容易满足:对约束变元改名即可.
Lu Chaojun, SJTU
9
基本等值式(4)
• 量词对的分配律
(x)(P(x) Q(x)) (x)P(x) (x)Q(x) (x)(P(x) B) (x)P(x) B (x)(B P(x)) B (x)P(x) (x)(P(x) B) (x)P(x) B (x)(B P(x)) B (x)P(x) – 其中B不含x的自由出现!
Lu Chaojun, SJTU
3
约束变元换名规则
• 约束变元的名字是无关紧要的. • 换名规则:对于公式(x)A(或(x)A),设变 元y不在A中出现,将A中所有受此量词约 束的x出现都换成y得到A,且量词改成 (y)(或(y)).得到的公式(y)A (或(y)A ) 与原公式等值.
所有人要么是男人要么是女人.
(x)Man(x)(x)Woman(x)
要么所有人都是男人,要么所有人都是女人.
Lu Chaojun, SJTU
8
基本等值式(3)
• 量词对及的分配律
(x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B (x)(P(x)B) (x)P(x) B – 其中B不含x的自由出现!
– 只有普遍有效的公式A ,才与其-前束范式是 等值的. – 一般的公式与其-前束范式并不等值. – 用于FOL完备性的证明.
Lu Chaojun, SJTU
20
例:-前束范式
求(x)(y)(u)P(x,y,u)的-前束范式(P中无量词). 1.先求前束范式.本例已是. 2.关键一步:(y)改写成(y)...(z).形如 (x)((y)(u)(P(x,y,u) S(x,y)) (z)S(x, z))
离散数学PPT教学谓词逻辑

b. X(P(X,Y)→YR(X,Y) ) 解:其中的P(X,Y)中的Y是自由变元,X是约束变元, R(X,Y)中的X,Y是约束变元。
注:在一个公式中,一个变元既可以约束出现,又可以 自由出现。为避免混淆可用改名规则对变元改名。
返回
3、约束变元改名规则
1.若要改名,则该变元在量词及该量词的辖域中的所有 出现须一起更改。
全总个体域 人
全总个体域
要死的
二条规则
返回
4.全总个体域 故得二条规则: ①对全称量词,特性谓词作为蕴含式之前件而加入之。 ②对存在量词,特性谓词作为合取项而加入之。
返回
5、举例
a,
b,
c,
d,
e
注:命题翻译为谓词公式,由于对个体的刻划深度不
同,可译成不同形式的谓词公式。
返回目录
5、举例
a.没有不犯错误的人 解:设F(x)为‘x是犯错误’,M(x)为‘x是人’,则
例
返回
一、基 本 定 义
例:当A(x)P(x)X P(x)且P(x)只能解释: (1)R(x):x是质数(2)S(x):x是合数。
论述域为{3,4},判定A(x)是否为永真
解: P(x) x
P(x)X P(x)
--------------------------------------
R (x)
3
二、 量 词
2.存在量词x x读作‘至少有一x’,‘存在一x’ x ┐P(x)表示 ‘存在一x,使┐P(x) 为真’ ┐x ┐P(x)表示 ‘并非存在一个x,使┐ P(x)为真’
返回目录
二、 量 词
3.量词的作用 在P(x),P(x,y)前加上x或x,称变元x被存在量
化或全称量化。 将谓内变元X的一切出现叫约束出 现,称这样的X为约束变元。
注:在一个公式中,一个变元既可以约束出现,又可以 自由出现。为避免混淆可用改名规则对变元改名。
返回
3、约束变元改名规则
1.若要改名,则该变元在量词及该量词的辖域中的所有 出现须一起更改。
全总个体域 人
全总个体域
要死的
二条规则
返回
4.全总个体域 故得二条规则: ①对全称量词,特性谓词作为蕴含式之前件而加入之。 ②对存在量词,特性谓词作为合取项而加入之。
返回
5、举例
a,
b,
c,
d,
e
注:命题翻译为谓词公式,由于对个体的刻划深度不
同,可译成不同形式的谓词公式。
返回目录
5、举例
a.没有不犯错误的人 解:设F(x)为‘x是犯错误’,M(x)为‘x是人’,则
例
返回
一、基 本 定 义
例:当A(x)P(x)X P(x)且P(x)只能解释: (1)R(x):x是质数(2)S(x):x是合数。
论述域为{3,4},判定A(x)是否为永真
解: P(x) x
P(x)X P(x)
--------------------------------------
R (x)
3
二、 量 词
2.存在量词x x读作‘至少有一x’,‘存在一x’ x ┐P(x)表示 ‘存在一x,使┐P(x) 为真’ ┐x ┐P(x)表示 ‘并非存在一个x,使┐ P(x)为真’
返回目录
二、 量 词
3.量词的作用 在P(x),P(x,y)前加上x或x,称变元x被存在量
化或全称量化。 将谓内变元X的一切出现叫约束出 现,称这样的X为约束变元。
离散数学谓词逻辑课件

第二章谓词逻辑
第二章 小结
本章重点掌握内容: 1.各基本概念清楚。 2.会命题符号化。 3.熟练掌握等价公式和永真蕴涵式。 4.会写前束范式。 5.熟练3)b)P:2>1,Q(x):x≤3, R(x):x>5,a:5,{-2,3,6} x(P→Q(x))∨R(a)(P→xQ(x))∨R(a) (P→(Q(-2)∧Q(3)∧Q(6)))∨R(5) (T→(T ∧T ∧F ))∨F (T→F)∨FF∨F F (4)b)对约束变元换名 x(P(x)→(R(x)∨Q(x)))∧ xR(x)→zS(x,z) y(P(y)→(R(y)∨Q(y)))∧ tR(t)→uS(x,u) (5)a)对自由变元代入 (yA(x,y)→xB(x,z))∧ xzC(x,y,z) (yA(u,y)→xB(x,v))∧ xzC(x,w,z)
第二章谓词逻辑
(6)判断下面推证是否正确。 x(A(x)→B(x)) ⑴ x(A(x)∨B(x)) ⑵ x(A(x)∧B(x) ⑶ x(A(x)∧B(x)) ⑷ (xA(x)∧xB(x)) ⑸ xA(x)∨xB(x) ⑹ xA(x)∨xB(x) ⑺ xA(x)→xB(x) 第⑷步错,由⑶到⑷用的是公式: x(A(x)∧B(x))(xA(x)∧xB(x)) 无此公式,而是 x(A(x)∧B(x)) xA(x)∧xB(x),应将⑷中的换成 即:
第二章谓词逻辑
例2.7.1 所有金属都导电。铜是金属。故铜导电。 令 M(x):x是金属。C(x):x导电。a:铜。 符号化为: x(M(x)→C(x)),M(a) C(a) ⑴ x(M(x)→C(x)) P ⑵ M(a)→C(a) US ⑴ ⑶ M(a) P ⑷ C(a) T ⑵⑶ I11
2-7 谓词演算的推理理论
第二章谓词逻辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7 2014-9-23
第一节
谓词与量词
本节的主要内容有: 1.给出了谓词与量词两个概念,其中量词 又分为全称量词与存在量词; 2.给出许多自然语言符号化的例子; 3.初步体会到应用谓词与量词后,逻辑表 达能力大为加强.
返回本章首页
2 2014-9-23
第二节
公式与解释
本节主要内容有: 1.给出了4种符号,即常量符号、变量符号、 函数符号、谓词符号的定义; 2.在4种符号的基础上,定义了项,在项和谓词 的基础上定义原子,在原子的基础上用递归 的方法定义了公式; 3.公式的指导变元、辖域、约束变元、自由 变元及变元的改名规则; 4.命题的解释或赋值的概念; 4.恒真、恒假公式的定义;
返回本章首页
6 2014-9-23
本章小结
本章讨论问题的方式与前一章基本上是平 行的,首先认识到前一章的命题的局限 性进而引后用等价式、蕴涵式等 进行推理,与命题逻辑相比,谓词逻辑 的内容较为丰富也较为复杂.
返回本章首页
返回本章首页
5 2014-9-23
第五节 谓词演算的演绎与推理
与命题逻辑中的推理一样 ,谓词逻辑中的推理 也是利用公式间的各种等价关系,蕴涵关系. 通过一些推理规则,从已知的公式推出某些 新的公式 . 且命题逻辑的推理规则在谓词逻 辑中仍可使用 , 但由于谓词逻辑中引进了个 体词,谓词和量词,因此我们还必须添加一 些与量词有关的推理规则, 1.添加的推理规则是 :全称特定规则、存在特 定规则、全称推广规则、存在推广规则; 2.此外本节给出许多例子说明推理方法.
返回本章首页
3 2014-9-23
第三节
等价与蕴涵
与命题逻辑一样,一阶逻辑也有等价与蕴 涵的问题,考虑了下列问题: 1.量词与否定联结词之间的关系 ; 2.量词辖域的扩张与收缩规律; 3.量词与联结词之间的13个基本等价式; 4.5个基本蕴涵式; 5.改变公式的两个量词排列次序的变化规律; 6.对偶式的概念与对偶原理
第五章
谓词逻辑
本章可视为前一章的深入和提高; 由于命题逻辑的局限性我们必须 引入谓词逻辑.学习本章时要求掌 握好谓词与命题的关系、量词、 辖域、公式等概念.比较谓词公式 的等价、蕴涵与命题公式相应的 概念的异同;能将自然语言符号 化;能用谓词逻辑进行推理;理 解前束范式的意义.
返回首页
1 2014-9-23
返回本章首页
4 2014-9-23
第四节
前束范式
范式是解决公式的标准表示形式问题.在 一阶逻辑性中同样有范式的概念并且范式 也不只一种.但我们仅介绍一种范式—— 前束范式 1.前束范式的定义; 2.前束范式的存在性,即一阶逻辑中的任意 公式,都存在一个与之等价的前束范式; 3.前束范式的求法,见书中给出的例子.