(完整版)多波束测深与测扫声呐的比较
多波束与侧扫声呐在水下探测中的应用

多波束与侧扫声呐在水下探测中的应用作者:郑晖来源:《中国新技术新产品》2020年第10期摘; 要:多波束探测与侧扫声呐扫测作为水下障碍物探测的2种常用技术手段各有优势。
就多波束探测技术而言,其优势在于通过获得精确的水深数据,实现水下障碍物的精准定位。
侧扫声呐在大范围快速获取地貌性质、形状判断中优势更显著。
基于此,该文以某水库救援项目为研究案例,对水下障碍物侧扫声呐扫测和多波束探测的具体应用过程进行分析。
结合这2种技术对水下地形环境、水下地貌进行描绘,可以实现高效互补,从而获得精确的水下地形数据和水底地貌影像。
关键词:多波束探测;侧扫声呐扫测;水下障碍物中图分类号:P229; ; ; ; ; ; 文献标志码:A0 引言水下障碍物探测是水资源开发利用的基础和前提,其能在现代化探测技术的应用下,实现水下地形及障碍物的测量,这不仅确保了水域船舶通行的安全性,而且为水下救援工作的开展提供了有效指导。
在当前的水下探测中,多波束与侧扫声呐是2种较为有效且常用的探测方式。
从本质上讲,这2种障碍物探测方式均为条带式扫海系统,其能实现水底地形的全覆盖无遗漏扫测。
但是在实际扫测中,多波束与侧扫声呐的工作原理和工作方式仍有一定差异,该文以某水库救援-测试项目为例,对多波束与侧扫声呐的实际应用要点及效果进行分析[1]。
1 系统的组成及原理1.1 多波束测深系统组成及原理1.1.1 多波束测深系统组成多波束探测系统在水下测深中得到广泛应用。
从设备结构单元来看,其包含测深设备、定位设备、罗经运动传感器、声速剖面仪和辅助设备5 个单元[2]。
其中探测设备多波束换能器决定了整个系统的数据分辨率。
差分GNSS接收机是全系统的定位装置,其在障碍物定位测量中发挥着控制测量的作用。
在多波束测深作业中,罗经运动传感器能实现测量船实时姿态及航向数据的有效采集。
声速剖面仪用来测量海区的声速剖面数据,用于校正声速曲线。
潮位信息将实测水深值换算成与国家高程系统同一的高程数据。
多波束测深系统与三维声呐系统在码头r水下部分的应用对比

多波束测深系统与三维声呐系统在码头r水下部分的应用对比张顺洋;张卓【摘要】码头水下部分的仪器检测手段主要有多波束测深系统及三维全景成像声纳系统.以SeaBat T50-P多波束测深、BV5000-1350声呐系统为例,对码头水下部分进行检测分析,探讨各自的适用范围.结果表明:BV5000-1350声呐系统对水下工程结构的检测适用范围更广、精度高、仪器安装方便,无需导航、定位及姿态传感器等辅助设备;SeaBat T50-P多波束测深系统对码头的结构形式要求较高、精度适中、对大型码头的水下结构普查较为适用.【期刊名称】《吉林水利》【年(卷),期】2018(000)007【总页数】4页(P40-43)【关键词】多波束;三维声纳;码头水下部分;结构检测【作者】张顺洋;张卓【作者单位】中国冶金地质总局厦门地质勘查院,福建厦门 361000;福建省港航管理局勘测中心,福建福州 350009【正文语种】中文【中图分类】U666.750 引言码头在水运工程中占有非常重要的地位,码头水下部分的质量检测已成为水运工程质量检测的焦点。
由于码头水下部分的施工影响因素众多,质量难以控制,且大型码头水下结构也更加复杂,传统的人工水下探摸、二维声纳等方法无法满足要求。
多波束测深系统和三维声纳系统等技术的发展为其提供了多种解决方案。
其中,多波束测深系统采用广角度发射和多信道定向接收,可以得到水下目标体的三维点云图像[1];三维声呐系统,可生成水下目标体的类似光学全息效果的三维图像,提供了更多的轮廓细节信息[2]。
因此,本文通过对码头水下部分的检测,对比分析这两种系统各自的特点。
1 系统简介1.1 多波束测深系统简介多波束测深系统以SeaBat T50-P系统为例,包括:便携式声纳处理器、接收/发射换能器、数据采集计算机、光纤罗经运动传感器、相关采集与处理软件等。
多波束测深系统的工作原理是利用发射换能器阵列向海底发射宽扇区覆盖的声波,利用接收换能器阵列进行窄波束接收,能得到上百个被测点的水深值,可以快速地测出沿航线方向一定范围内水下目标的大小、形状和高低变化,形成三维点云图像[3]。
侧扫声纳与多波束测深系统在大连五·七空难搜救中的应用

图1测量范围扫海测量的主要仪器装备:扫测区位于大连港内,平均水深在9m左右,由于海洋污染和泥沙回淤,底质为污泥,海水浑浊,水下能见度非常差,只有20cm左右,打捞难度很大,于是对扫测定位提出了更高的要求。
在本次扫海测量中,我们主要配备了如下设备。
(1)侧扫声纳仪器型号:美国BENTHOS生产的SIs一1500型侧扫声纳工作频率:200kHz量程范围:25~500m横向分辨率:O.04m纵向分辨率:O.04m本次扫海时所使用工作参数:量程:50m,75m,100m拖曳方式:尾拖拖放电缆长度:20m航速:4~5节拖鱼入水深度:3~4m(2)多波束测深系统宽深比:3.5~4.7倍脉冲最大重复频率(PRF):15次/秒216图2在距预报概位南偏西约400m处发现大片可疑物体影象。
(见图3)图3通过对仪器反映的声像进行判读后,计算出飞机失事后的具体位置应在38。
56’59”N121。
39’57”E附近,并且通过影像初步判断飞机已经解体,不存在打捞上飞机整体的可能性。
通过判读计算,整理出10个较大体积可疑物体的具体位置。
根据第一次扫海结果,我们对信号可疑区域使用侧扫声纳又进行了二次扫测,测量区域为:2182.2多波束扫海多波束测深系统是目前世界上先进的海洋测深设备,可对海底地貌进行高精度和全覆盖测量。
可以提供水深图、平面等值线图、分色图、三维立体图、影像图等高技术产品。
根据侧扫声纳扫海的结果,又使用多波束对可疑区域进行了地毯式扫测。
扫测部分海底地貌的三维立体图如图4所示下。
图4根据声纳和多波束的扫海结果,陆续打捞出了大量的机体残骸,包括机首的右半部和部分飞机右侧舷窗、飞机的机翼、水平尾翼、垂直尾翼、发动机、发动机倒流罩、印有公司名称的机体外壳、座椅等等。
侧扫声纳与多波束测深系统在大连"五·七"空难搜救中的应用作者:李鲜枫, 张铁军, 黄永军作者单位:交通部天津海事局海测大队(天津)1.学位论文马纯芳基于MapObjects的海底地形地貌成图技术研究2008多波束测深系统具有全覆盖、高精度、高密度和高效率的特点,因而在大面积扫海测量、河道疏浚、水库测量、海底数据调查、海洋工程等众多领域得到广泛应用。
多波束声呐和侧扫声呐数据融合方法研究综述

多波束声呐和侧扫声呐数据融合方法研究综述摘要:多波束声纳系统和扫描声纳系统是海底探测的重要工具。
两者都采用声学方法,在工作原理上有异同。
本文的数据处理进行了比较分析,多波束声纳侧重于测量精度的数据处理方法,侧扫声纳主要集中在图像处理,从数据采集到数据融合方法的原理进行了深入分析,发现即使某种处理,收集并不是一个简单的平面形象,所以的数据融合是有一定难度。
关键词:多波束声呐;侧扫声呐;数据融合1引言海洋在地球上占据了71%的区域,其中包含丰富的矿产资源和生物资源,近年来,随着海洋开发活动的需求逐渐增加,电子产品的发展,计算机和其他技术成果,多波束声纳(MBES)和侧扫描声纳(SSS)和其他水下探测技术逐步提高,底部的海洋工程,已广泛应用于矿产资源调查,通过分析表面特征可以研究复杂地质和海洋水下核研究,并通过进一步分析,反射和散射信号可以用于海底沉积物分类、水下栖息地在这项研究中,都是使用声学方法,通过潜艇发射接收声波的测绘,但重点是不同的,在处理方法上存在较大差异。
本文分别对数据处理等进行了梳理,对归纳总结和融合方法进行了分析,从注册的各方面进行分析,以便以后的数据处理和融合方法可供参考。
2数据处理2.1多波束声纳处理传统多波束数据处理包括数据格式转换和阅读声速剖面数据处理、定位、数据处理、数据处理、潮流立场深度数据处理,数据处理,和网格坐标系统转换,等等。
随着现代科学技术的支持,多波束声纳系统在原深度在这个过程中,不仅可以实现速度改正,而且还有效的计算波束脚印和测深数据滤波处理,将覆盖的噪声和虚假信号。
2.2扫描声呐图像处理技术作为潜艇开发的重要基础装备,扫描声纳可以实现水下高分辨率成像,直接影响海底探测的科学性和有效性。
扫描声呐数据处理主要包括降噪和坡度校正两个方面。
距离成像、侧扫描声纳工作当传感器高从海底和系统范围可达1:10的比例,所以目标中的形象有严重的节略,褶皱的面具和顶点位移的几何失真,更基于声线跟踪法用于消除直线距离函数;侧扫声纳系统的回声在一段时间内是水下声波的矢量,它包含了各种噪声,会使声波被误判。
多波束测深系统与三维声呐系统在码头水下部分的应用对比

BV5000—1350声 呐 系统 的 1:作 疗式 是 固定 的
头 扫描 到 的信 息 生成 1个 2D图像 (帧 ),再 通 过计 测 站式 ,声纳 头 和 云 台安 装 定 在 一 厢 支架 上 ,
算 机控 制 云 台在 水平 方 向 上 360。旋 转 .实 现 检测 具体 的 测站 位置 沉放 入水
结 构普 查较 为适 用 。
[关 键 词 ] 多波 束 ;三 维 声 纳 ;码 头 水 下 部 分 ;结 构 检 测
[中 图 分 类 号 ]U 666.75
[文献 标 识 码 ]B
0 引 言
码 头 在 水 运 工 程 中 占有 非 常 重 要 的地 位 ,码 头 水 下 部分 的质 量 检测 已成 为水 运 工 程 质 量 检测 的焦 点 。由于码 头水 下 部分 的施 工影 响 因素 众多 , 质 量 难 以控 制 ,且 大 型码 头水 下 结构 也 更 加 复 杂 , 传 统 的人 工水 下 探 摸 、二 维 声 纳 等方 法 无 法 满 足 要 求 。多 波束 测 深 系统 和 三 维 声 纳 系统 等 技 术 的 发 展 为其 提 供 了多种 解决 方案 。其 中 ,多波束 测 深 系统 采用 广 角 度发 射 和 多信道 定 向接 收 ,可 以得 到 水 下 目标 体 的 三 维 点 云 图像 【’I:三 维 声 呐 系 统 .可 生 成 水 下 目标 体 的类 似 光 学 全 息 效 果 的 三 维 图 像 ,提供 了更 多 的轮廓 细 节信 息 。因此 ,本 文通 过 对 码头 水 下部 分 的检测 ,对 比分 析这 两 种 系 统 各 自的特 点
[收稿 日期 ]2018-Ol一29 [作者 简 介 ] 张 顺 洋 (1969一),男 ,工程 师 ,现 主 要 从 事矿 产普 查及 水 文 工程 。
海底地形测量与海洋地质调查的方法与仪器

海底地形测量与海洋地质调查的方法与仪器1.引言海底地形测量和海洋地质调查是对海洋地貌和地质特征进行研究和探测的重要手段,为解密海洋深处的秘密提供了关键的数据和信息。
本文将介绍一些常用的海底地形测量和海洋地质调查方法,以及所使用的仪器设备,展示出当今科技的进步和创新。
2.多波束测深技术多波束测深技术是目前常用的海底地形测量方法之一。
其原理是利用多个声纳波束,通过不同角度的发射和接收来获取海底地形数据。
这种技术具有快速、高分辨率和精度高等优势,能够提供海底地形的大量细节,并绘制出三维地形图。
常见的多波束测深设备包括多波束测深仪和声纳阵列。
3.侧扫声呐技术侧扫声呐技术是另一种常用的海底地形测量方法。
通过将声纳波束从船舶的一侧发射,然后接收回波,可以获取沿船舶航道两侧的地形数据。
这种技术可在较大范围内测量海底地形,提供较全面的信息。
侧扫声呐设备常常搭载在专门的调查船只上,能够对海洋地质特征进行详细的调查。
4.子底剖面仪器子底剖面仪器常被用于海洋地质调查。
这种设备能够通过电磁波或声波的传播与反射,获取地下沉积物的特征和分布。
子底剖面仪器通常用于确定海底地质构造,包括岩石、沉积物厚度和特性等。
它不仅能够探测到地壳的结构,还能够记录海底地震活动的痕迹,为地震研究和预测提供重要线索。
5.潜水器和浮标探测系统潜水器和浮标探测系统是深入海底进行地理调查的重要工具。
潜水器能够下潜到海底并携带各种传感器设备进行测量。
浮标探测系统则通过将浮标悬浮在海面上,将信号传输到海底设备或传感器,实现对海底地貌和地质的监测。
这些设备能够获取高分辨率的数据,并探测到海底的微小变化,对海底地貌演化和地质构造变化有着重要意义。
6.声纳测距系统声纳测距系统是测量海底地形的重要工具之一,其原理是通过声波的传播和反射来确定海底地形的特征。
声纳测距系统使用传感器将声波发射到海水中,然后接收回波来计算出海底的距离和形状。
这种方法常用于快速获取大范围海底地形数据,对海域的地形和结构进行初步了解和分析。
多波束和侧扫声纳系统在海底目标探测中的应用

多波束和侧扫声纳系统在海底目标探测中的应用摘要:随着我国海洋资源的日益开发,海底目标的探测变得尤为重要。
本文介绍了多波束和侧扫声纳系统在海底目标探测中的应用,主要包括测量原理、系统组成和关键技术。
以南海某海域为例,采用多波束系统探测了海底目标的几何形态、面积、体积、深度等信息,并用侧扫声纳系统获取了目标的声学图像,对两种方式获取的数据进行了比较分析,探讨了多波束和侧扫声纳系统在海底目标探测中的优缺点。
结果表明:侧扫声纳系统更适合于海底目标探测,但侧扫声纳系统在浅海环境下的探测深度和分辨率远不及多波束系统;多波束声呐系统可以对海底目标进行三维立体成像,但存在一定的测量盲区。
关键词:多波束;侧扫声纳;数据处理;海底目标引言:多波束和侧扫声纳系统作为目前最常用的声呐设备,具有探测精度高、工作效率高、探测范围广、可多方位同时探测等优点,已广泛应用于海洋调查、海洋测绘、海洋环境监测等领域。
根据测量目的不同,多波束系统主要分为全波束声呐和侧扫声呐两类。
侧扫声呐系统工作时由侧扫声纳探头从海底发射声波,到达海底后通过换能器接收声波信号,并通过图像处理方法得到海底目标的三维成像信息。
全波束声呐系统则可以同时探测多个目标。
一、海底目标探测方法在水下目标探测中,通常使用换能器、多波束和侧扫声纳等设备,其中多波束声纳可同时探测多个目标,它通过发射和接收多个波束信号进行数据采集,并对目标进行三维成像。
侧扫声纳是利用海底的回波信号进行目标探测,它能实现对海底地形地貌的高分辨率和高精度探测。
在实际工程中,根据海底目标的特点,通常会采用多种方法综合应用于海底目标探测。
先用侧扫声纳对海底区域进行扫描测量,然后利用多波束声纳系统获取多个波束的三维数据。
数据处理后得到的数据文件包括原始数据文件、高精度航迹文件、坐标系文件和测深图像文件等。
在实际工程中,通常利用多波束系统获取某一区域的多个波束数据点,然后通过计算机软件处理得到海底地形地貌和海底目标的三维图像。
多波束与侧扫声呐在水下探测中的应用

- 34 -高 新 技 术0 引言水下障碍物探测是水资源开发利用的基础和前提,其能在现代化探测技术的应用下,实现水下地形及障碍物的测量,这不仅确保了水域船舶通行的安全性,而且为水下救援工作的开展提供了有效指导。
在当前的水下探测中,多波束与侧扫声呐是2种较为有效且常用的探测方式。
从本质上讲,这2种障碍物探测方式均为条带式扫海系统,其能实现水底地形的全覆盖无遗漏扫测。
但是在实际扫测中,多波束与侧扫声呐的工作原理和工作方式仍有一定差异,该文以某水库救援-测试项目为例,对多波束与侧扫声呐的实际应用要点及效果进行分析[1]。
1 系统的组成及原理1.1 多波束测深系统组成及原理1.1.1 多波束测深系统组成多波束探测系统在水下测深中得到广泛应用。
从设备结构单元来看,其包含测深设备、定位设备、罗经运动传感器、声速剖面仪和辅助设备5 个单元[2]。
其中探测设备多波束换能器决定了整个系统的数据分辨率。
差分GNSS 接收机是全系统的定位装置,其在障碍物定位测量中发挥着控制测量的作用。
在多波束测深作业中,罗经运动传感器能实现测量船实时姿态及航向数据的有效采集。
声速剖面仪用来测量海区的声速剖面数据,用于校正声速曲线。
潮位信息将实测水深值换算成与国家高程系统同一的高程数据。
此外,辅助设备包含了导航和数据处理软件。
通常水深探测的数据采集、显示和处理均是通过工作站操作完成的。
1.1.2 多波束测深系统工作原理利用声呐换能器向水底发射宽扇区声脉冲并接收回波信号,是多波束测深系统应用的基本原理(如图1所示)。
就发射宽扇区声脉冲而言,其声波的频率多处于100 kHz 以上,当发出的声波经水底障碍物反射形成返回波束时,换能器能对这些返回波束进行有效地接收和处理。
此时,通过同步获取的潮位和声迷剖面数据,即可实现探测水域底部状况的有效检测。
具体来说,结合获取的波束旅行时间和波束角,控制软件能实现波束脚印的水深和位置的有效计算,根据计算结果,即可获得具有较高精度都的水深条带数据,在计算机系统级及相关建模软件的支撑下,可以建立水下地形数字高程模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多波束测深与测扫声呐的比较:
(1)侧扫声纳是目前常用的海底目标(如沉船、水雷、管线等)探测工具,在测深领域,多波束以全覆盖和高效率证明了它的优越性。
由于多波束具有很高的分辨率,目前在工程上已经开始应用多波束进行海底目标物的探测。
(2)多波束的最大优点在于定位精度高,但其适用范围不如侧扫声纳广泛,尤其受到水深和波束角的限制,多波束和侧扫声纳在探测海底目标时具有很好的互补性,同时应用可以提高目标解译的准确性。
(3)侧扫声纳能直观地提供海底形态的声成像,但这种声像只能由目标影子长度等参数估计目标的高度,所以对数据解译人员的要求很高。
多波束测深系统主要用于进行水下地形测量。
(4)探测目标机制的差异:多波束是一种测深工具而并非成像系统,无法直接在记录纸上进行打印,必须先构建数字地形模型(digital terrainmode,l DTM),再根据DTM构建地貌影像图,从而能够反映细微的地形起伏所导致的坡度和坡向变化;此外,多波束的中央波束探测效好,边缘波束效果差;多波束采用三维可视化的方法进行目标判断,在3D GIS系统中可以直接提取目标物的平面位置和高度,还能够从不同的角度进行观察,便于掌握目标物的形状特征。
但是,除非我们在进行测深的同时采集反向散射强度信息,否则我们无法得到与目标物的底质类型相关的信息,因此,多波束比较适合于沉船或者管线等容易根据形状进行判断的目标。
现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。
当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi
-beamSonarSystem) ,后一种是测深侧扫声纳。
总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。
侧扫声纳通常安装在拖体上,其到海底面的距离是可以调节的,而多波束换能器大多数固定安装在船体上,随着水深的增大,换能器至海底的距离增加,导致波束与海底面的接触面即脚印
变大,所以多波束垂直于航行方向的分辨率降低。
此外,水深增大也导致换能器单位时间内能够接收到的有效声信号数目(即采样更新率)减少,因此沿着航行方向的分辨率同样降低。
侧扫声纳不存在波束角的问题,而Seabat8101的波束角为115b,每个声波波束与海底面的接触面被视为一个水深点,因此波束角的影响与水深是正相关的。
在同样的海况条件下,多波束数据的信噪比常常比侧扫声纳图像要高,这是因为多波束的旁瓣波束被有效压制,因而没有假回波。
多波束的定位精度比侧扫声纳要高2~5m。
这是因为,一方面多波束的平面位置误差传递方程比侧扫声纳系统要简单;另一方面多波束系统中的电罗经和船资测量传感器具有很高的精度,可以精确地测定船体的姿态和船首向;此外,多波束系统的校正比超短基线要容易,各种系统
误差的消除也更为彻底。
因此,对于多波束靠近中央波束所探测到的海底目标,可以认为其定位精度近似地等于GPS本身所能提供的精度。
多波束的优点在于定位精度高、噪声少、能够进行三维可视化分析,但其适用范围不如侧扫声纳广泛;侧扫声纳的优点在于拖体距海底面的高度容易调节、具有很高的分辨率、能够区分目标物的底质特征,缺点是定位精度稍差并且容易受工作环境的影响产生噪声。
Seabeam2112系统和EM120系统之间的对比
由于这两套多波束系统是世界范围内使用最为广泛的两套多波束测深系统,因此拿他们作对比,从而选择出最适合此次调查的系统。
SeaBeam 2112多波束系统工作时,只能采用等角工作模式,波束间距为1°,在测量中,虽然可以控制其条幅开角,但条幅增大或减小,相应波束数也会增加或减小。
等角工作模式,意味着波束横向间距是随着波束角的增大而增大的,中间波束间距相对较小,越往边缘,波束间距不断增加。
EM120多波束系统除与SeaBeam系统相同的等角工作模式外,还有等距工作模式,这种工作模式在实际测量中非常重要。
实行等距工作模式,保证了每次发射接收到的波束,即每个条幅内的波束,它们的间距基本相等。
SeaBeam 2112多波束系统及EM120多波束系统在其技术指标中,都明确表示达到了IHO 所要求精度[2],全部波束测量水深相对误差小于水深的0.5%。
在相同测量区域,EM120系统测量数据相对SeaBeam2112系统更密、更均匀,能够绘制更详细、更大比例尺地形图。
通过对EM120和SeaBeam2112多波束系统实际测量资料的对比,在数据密度方面,EM120系统数据分布均匀,SeaBeam系统波束水深条幅中间数据较密,而边缘波束间距相对较大。
从地形剖面的比对看,两套系统测量精度基本相同,相对误差只有0.29%。
在数据密度能满足成图要求的格网间距时,绘制小比例尺的地形图(如1:25万)进行比较,两系统测量结果具有很好的一致性。
但是,EM120系统测量数据相对SeaBeam2112系统密度更大、更均匀,能够绘制更详细、更大比例尺地形图。