不等式练习题(带答案)
不等式练习(含答案)

不等式练习考点一:一元二次不等式的解法1 •不等式X2—2X—3C0的解集是()A. (_3,1)B. (-1,3)C. (",_1 切(3,咼)D.(, 一3切(1, +处)2•不等式2x2—x—1 A0的解集是()1八1A. (——,1) B • (1 , +R)2C . (-°o,12 (2,畑)D• (-°0,-一2 (3*°)23 •不等式x(x—1)v0的解集是()A. {x|x<0}B. {x|xc1}C. {x|0cxc1} D . {x|x c0 或x>1}4 •已知集合A={x|0cxc2}, B={x|(x_1)(x+1)>0},则 B =()A. (0,1) B . (1,2) C. (",-1)U(0,邑) D•(严-1)U(1S5 .已知集合A = {x乏R2x-3^0},集合B ={x^ R2x—3x + 2c0},则A"B =()f (A) x x迢f(B) x31Ex c2》(C){ x 1 £X < 2}f(D) i31£X£2I2J2J I2J 6•不等式x(x-2)^0的解集是()A. [0,2) B • [0,2] C. (-::,0]IJ[2,二)D • (-::,0) U (2,)7 •设集合A = {x|x>l},B ={x|x(x—2) <0},则B 等于( )A. {x|x>2} B • {x|0c x c2} C. {x| 1<x<2} D • {x|0cx£l}考点二:含绝对值不等式的解法28•不等式x -2 <2的解集是( )(A)-1,1 (B) -2,2 (0 -1,0 U 0,1 ( D) -2,0 u 0,29 •不等式丨2-x|> 1的解集是A、{x | 1 < x< 3}B、{x | x< 1 或x> 3}C、{ x | x< 1}D、{x | x >3}10 •不等式|x -1|:::2的解集为( )A. ^x| -V x < 3B. ^x|x 3C.「x|x::—1D.1x|x :T或x - 3^11 • 7.不等式3-2x^5的解集是()A. {x x 兰一1}B. {x —1 兰x 兰4}C. {x x 兰一1或x>4}D. {x x Z 4}12 •不等式x2-x c2的解集为()考点三:利用均值不等式求函数的最值113 •若a 一1,则a 的取值范围是()a +1A. [1, ::)B. [2, ::)C • [-2,2] D • [-2,0)(0,2]414.若x 0,则函数y =3x 有()xA.最大值2 3B.最小值2 3115 .若x 1,则X —1 • -------- 的最小值是A. -2x -1B. 14x 的最小值是(x16. 若x 0,则J*A.2B.3 C. 2.2 D.41x17. 已知x t求x _1的最小值A. 1B.2C. 3D. 4C.最大值4 3 D.最小值4 3)C. 2D. 3)(A) -1,2(B)一1,1(C)一2,1(D)-2,2参考答案1. B【解析】试题分析:由x2-2x -3 :::0:二(x -3)(x • 1) :::0= -1 :::x :::3 ,所以不等式2x -2x-3:::0 的解集为(-1,3),故选B.考点:1. 一元二次不等式.2. D.【解析】1试题分析:将不等式2x2 -x-1・0化简为:2(x -1)(x ) • 0 ,根据一元二次不等式与21 2二次函数的关系知,x 1或x ,即不等式2x2-x-1・0的解集是2—1 - -(-〜)(1, ■-).2考点:一元二次不等式的解法.3. C【解析】试题分析:画出x(x -1) ::: 0对应二次函数的草图,如下图所示,是开口方向向上,与x轴的交点分别是x=0,x=1,应用口诀“小于取中间”写出解集,所以x(x-1):::0的解集为:x |0 ::x : 1 ?。
不等式练习题及答案

不等式练习题及答案一、单项选择题1. 若 x > -3,下列不等式成立的是:A) x > 2 B) x < -2 C) x < 3 D) x > -1答案:D) x > -12. 若 2x + 5 < 13,下列不等式成立的是:A) x < 4 B) x < 3 C) x < 6 D) x < -4答案:C) x < 63. 若 -2x + 3 > -7,下列不等式成立的是:A) x > 2 B) x < -2 C) x > 5 D) x < -3答案:A) x > 2二、填空题1. 若 -4x + 5 < -3,解得 x > ______。
答案:-2/32. 若 2x - 7 > 13,解得 x > _______。
答案:103. 若 3x + 2 < -4,解得 x < _______。
答案:-2三、证明题证明:对于任意实数 x,都成立 x + 7 > x + 3。
解答:假设 x 为任意实数。
我们需要证明当 x + 7 > x + 3。
首先,将 x + 7 和 x + 3 分别展开,得到:x + 7 > x + 3由于两边都有 x,我们可以将其消去,得到:7 > 3由于 7 大于 3,所以原不等式成立。
证毕。
四、应用题若某数与它的倒数的和大于5/2,求这个数的取值范围。
解答:假设该数为 x。
根据题意,我们有不等式:x + 1/x > 5/2为了处理分式,我们可以先将不等式转化为二次方程的形式,即:2x^2 + 2 - 5x > 0化简后得到:2x^2 - 5x + 2 > 0为了求解该二次不等式,我们需要找到其根的位置。
通过求解 x 的二次方程 2x^2 - 5x + 2 = 0,得到两个根 x = 1/2 和 x = 2。
不等式练习题及答案

1.设M ={x |x 2-x ≤0},N ={x |1x ≤1},则M ∩N =( B ) A .∅ B .{1} C .{x |0<x ≤1} D .{x |x ≥1} 2.不等式组îïíïìx -1>a2x -4<2a 有解,则实数a 的取值范围是( A ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1) D .(-∞,-3)∪(1,+∞) 3.已知a 1、a 2∈(0,1).记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( B ) A .M <N B .M >N C .M =ND .不确定.不确定4.设α∈(0,π2),β∈[0,π2],那么2α-β3的取值范围是( D ) A .(0,5π6) B .(-π6,5π6) C .(0,π) D .(-π6,π)5.若不等式ax 2+bx +c >0的解集是(-4,1),则不等式b (x 2-1)+a (x +3)+c >0的解集为( A ) A .(-43,1) B .(-∞,1)∪(43,+∞) C .(-1,4) D .(-∞,-2)∪(1,+∞) 6.(2012·洛阳调研)若不等式x 2+ax +1≥0对一切x ∈(0,12]成立,则a 的最小值为( C ) A .0 B .-2 C .-52D .-3 7.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( A )f (5)>0 A .(-235,+∞) B .[-235,1] C .(1,+∞) D .(-∞,-235] 8.(2012·贵阳质检)对于在区间[a ,b ]上有意义的两个函数m (x )与n (x ),如果对于区间[a ,b ]中的任意x 均有|m (x )-n (x )|≤1,则称m (x )与n (x )在[a ,b ]上是“密切函数”,[a ,b ]称为“密切区间”,若函数m (x )=x 2-3x +4与n (x )=2x -3在区间[a ,b ]上是“密切函数”,则b -a 的最大值为_____ 1 ___.x ∈[2,3] 9.(2012·上海交大附中月考)不等式(x +2)x 2-9≤0的解集为__x ≤-3或x =3.______. 10.若不等式-4<2x -3<4与不等式x 2+px +q <0的解集相同,则p q =_127_______. 11.设函数f (x )=ax +b (0≤x ≤1),则“a +2b >0”是“f (x )>0在[0,1]上恒成立”的____“必要但不充分____条件.(填“充分但不必要”,“必要但不充分”,“充要”或“既不充分也不必要”) 12、已知31,11£-££+£-y x y x ,求y x -3的取值范围。
完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。
解不等式组计算专项练习60题(有答案)

1.2.3.4. *解不等式组专项练习60题(有答案)2 (x+1) - 1>34+x<72K- 1>3 (x- 2)-2x<43x+l>x+3二一—.鼻+3>42F<6,X.12.13.14.15.16. x<2x+l:二-二■ :.. 1 .7.x+3>02 (x- 1) +3>3xf3xH<2 (x+2)_劭< 号十29.10.2x+3<x+G"-①:…二.一,,…②-3 (x- 2)<4-7*_ 1 3r4x- 3<5K汀x+2.^1,LrPT冷(计4) <2X- 3(K- 1) >516. 417.19.汨>-3Si - 12<2 (4x - 3)K - 3 (K- 2) <4蝶>_r l - 2 (x- 1) <5_ 2L2^>0 ①2 (s+5) >6 &-1)9<3 (x- 1)11. *2 (x - 3)盂5疋+54x<3x+lX.20.f5x+2>3 (x- 1),①73 -1.②22.3(K- 2) <41+2区、=[—>X - 1[2 (r+2) <x+413⑵30. 已知:2a -3x+ 仁0, 3b -2x - 16=0,且 a 詔< b ,求 爷〉斗⑴40. • 2 3,并把它的解集在5-2 (x- 3) <x- 1 (2)数轴上表示出来.sr+42x " 7号33.已知:a= , b=,并且2b < v a .请求出342x 的取值范围.2<3 (x+1)23. 24. 25. 26. 27. 28. 29. r 2x+5<3 (x+2) r3 (x+2) >x+4© r 2- x>0 5^十1」-」1 ,. ■f - 3Z <4(K +5) 6 b 2 (x+19)- 9x>5[x- 2 (x- 3)] - 2<x+6 Rv - 9 r 2x+2>3x+3®宁诗―② 忌+3 (x- 2) <10 号〉小35.5x - 1<3 (x+1)(3(X- 2) +4<5K37. if - 1—-—_ 耳>3計]fx - 3 (x- 2) >438. 2s- 1 ^.K +i,并把解集在数轴上表示出.5来.一 一: __ •一 -39.已知关于x 、y 的方程组 广 尸亘"的解满足x > yL2x+y=5a> 0,化简 |a|+|3- a|.1 _ 3 (y _ 2) <9- x ②f5K-2>3 (i+l),① 32. r5i - 2<3i+441. x+8\ K >_sflO-4 (x- 3) >2 (x- 1)©- 10<0 34. ' 5x+2>3虽 11 - 2x>l+3x43. ” X - 2~2~^2x+331.x 的取值范围.45.3 (1 - x) A2 (x+9)x- 314I 0.5f2- x>05s±l• 21 .3~-3 (x+l) - (x- 3)<846. ' 2 泄1I 347.关于x、y的二元一次方程组:'-"■,当^2x+y=5ir- 2m为何值时,x> 0, yO.2<3 (x+1)53.54.55.56.48.并将解集表示在数轴上. 57.49.已知关于y的方程组x+y=m+24蜀+5y=6m -3的解是58.对正数,求m的取值范围.x+2y=5a50.已知方程组n cl2x~ 2=5的解满足-x>0y<0化简59.I(x+1) >x (x+3)②- 1 _ 5^+j.52.- 1<3 (x+1)f5x+4<3 (x+1)x - 1 - 1A 52x+7>3x - 1x- 2.br>0r l-2 (x-1) <53x- 2「2r2 (K+2)<3X+3r3x- 1<2 (x+1)x+3、r3x- 2>x+2>-1<743x- l<2x+l1 - 2(K- 1) <3 (K+1)+5解不等式组60题参考答案:fx+3>0®由①得x >- 3;由②得x <1故此不等式组的解集为:2 (x- 1) +3>3x@- 3<5x ①6 _医+ +口<4②,解不等式 ①得x >- 3;解不等式 ②得x <3.所以-3<x <315. 解:由(1)得:x+4 v 4, x v 0 由(2)得:x - 3x+3 > 5, x v - 1「.不等式组解集是: x v - 1x —臂>「3 (1)16.解:'2 ,解不等式(1),得x v 5,解不等式(2),得x 》-2 ,12<2(4K - 3)(2)因此,原不等式组的解集为- 2<v 5.17. 解:由① 得:去括号得,x - 3x+6詔,移项、合并同类项得,- 2x <- 2,化系数为1得,X 》.由② 得:去分母得,1+2x > 3x - 3,移项、合并同类项得,- x >- 4, 化系数为1得,x v 4•••原不等式组的解集为:1<cv 4.1、 解:2 (x+1) - ①4+x<7 ② ,由①得2x 支,即x 昌;由②得x v 3;故不等式组的解集为:1強v 3.2. 解:11^3 (x _ 2) I -2i<4 ②…,由①得:x <5,由②得:x >- 2,不等式组的解集为-2v x <3. 解:触解不等式①,得x > 1.解不等式②,得x v 2.故不等式组的解集为:1v x v 2. 2x- l<x+l ②4. 解:x+f>:D ,解不等式 ①得,x > 1,解不等式 ②得,x v 3,故不等式的解集为:1v x v 3, 曲<6②5. 6. 解不等式 ①,得x<- 2,解不等式 ②,得x >- 3,故原不等式组的解集为- 3v x<- 2,x<2x+l ①,解不等式 ①得:x >- 1,解不等式②得:x <2,不等式组的解集为:-1v x 电, 3x- 2 (s-1) <4@解:7. 8. 解:9. 解: 10•解:r3i+l<2 (a+2;••由①得,x >- 1 ;由②得,x <4,•此不等式组的解集为:(- 9<3 (x- 1)①—V ,(1'解不等式①,得x v 3,解不等式 ②,得x1 .所以原不等式的解集为-1<<v 3. ②解不等式 ① 得:x v 3,解不等式 ② 得:X 》,不等式组的解集是1 < v 311 .解: 12.解: XA 「;由②得,x V 1,故此不等式组的解集为: ■丿• ••此不等式组的解集为: 0 v x <3,13.解:2心-引5+5①,由①得, \^<3i+l ②•••由①得,x <,由②得x >0,(-3 (y- 2) <4- x ①]1+2》:、_ 1②解不等式①,得X 》;解不等式 ②,得x v 4. • 1« v 4.解:14.解: 原不等式组可化为18•解:解不等式 ①,得x>- 1,解不等式 ②,得x v 3 ,•••原不等式组的解集为-1 <x < 3.23•解:解不等式2x+5 <3 (x+2 ),得xA 1解不等式x - 1 <- x ,得x < 3.所以,原不等式组的解集是-324.解:解不等式 ①,得x>- 1,解不等式 ②,得x < 3,•原不等式组的解是-1強< 3. [2- …①,.解不等式①,得x <2,解不等式②,得x I,•不等式组的解集是-1 $ < 2.26. :由不等式 ①得:X%由不等式②得:x < 4原不等式组的解集为 0纟< 427. 解:由不等式①得:2x<8, x<4 .由不等式②得:5x - 2+2 > 2x , 3x > 0, x > 0. •••原不等式组的解集为:0< x <4.31. 解:由① 得:x 电.由② 得:x >- 1.A 不等式组的解集为-1< X 电.5532.解:解不等式 ①,得x >「解不等式②,得x 詔.•••不等式的解集是,< x 詔.33. 解:把a , b 代入得:2严「匕|<¥.化简得:6x - 21<15< 2x+8 .解集为:3.5< x 詬.42 334. 解:解不等式①,得x<2.5,解不等式②,得x >- 1,解不等式③,得x <所以这个不等式组的解集是-1<x 电.35 .解:解不等式①,得x>- 1.解不等式②,得x < 2 .所以不等式组的解集是-1 «< 2.36 .解:由①,得x < 2 .由②,得x A 1 .-•这个不等式组的解集为-1 <« 2. 37.解:由①得:x >- 1由②得:x G -所以解集为-1<x ;'.38. 解:由① 得:-2x>- 2,即 x <,由② 得:4x - 2 < 5x+5,即 x >- 7,所以-7 < x < .19. 解: 解不等式 20. 解: 解不等式 21 . 解:(1)得x < 1解不等式(2)得x A 2所以不等式组的解集为-2纟< 1 . ①,得x >-'.解不等式②,得.所以,不等式组的解集是-2(x- 2) <4®①的解集为X 》②的解集为x < 4原不等式的解集为22. 解: \-3'孚S - 1®解不等式(1),得2x+4 < x+4 , x < 0,不等式(2),得4x 绍x+3 , x 為.•••原不等式无解.1$< 4.25.解:由题意,28. 29. 解: 解: 解不等式①,得 解不等式①,得30. 解: 2< x <- 1. 所以原不等式组的解集为x€.-2/+16b=,x<- 1,解不等式②,得x >- 2,所以不等式组的解集为- x 电.解不等式②,由 2a - 3x+仁0, 3b - 2x - 16=0,可得得 x >-3. 3x - 1a=,•/ a <4< b , /3x - 1 .<4 ,由(1),得 x <3.3 >42 2x+16 由(2),得 x >- 2 .•x 的取值范围是-2< x W .x - y=a+3 ” + x=2a+l,/口39.解:由方程组‘ ,解得- .由 x >y > 0,得,y=a- 2在数轴上表示为:2a+l>a - 2a _ 戈〉0 •解得a >2当 2v a<3 时,|a|+|3- a|=a+3 - a=3; 当 a > 3 时,|a|+|3- a|=a+a - 3=2a - 3. 40.解:由(1 )得x V 8由(2)得,x 羽故原不等式组的解集为 4纟V & 41 •解:由①得2x V 6,即X V 3,由② 得x+8 >- 3x ,即x >- 2,所以解集为-2 V x V 3. 42. 解:(1)去括号得,10 -4x+12丝x -2,移项、合并同类项得,- 6x A 24,解得,x 詔; (2)去分母得,3 (x - 1)> 1 - 2x ,去括号得,3x - 3> 1 - 2x ,移项、合并同类项得, 5x > 4, 化系数为1得,x >'.•••不等式组的解集为: V x 詔.5 5 5 5 43. 解:解第一个不等式得: x V —;解第二个不等式得:xA 12.故不等式组的解集是:-12纟V — 2 244.解:原方程组可化为: 3 - 3xZ>2x+18 -5 (xK) <-14,由("得,x V-3 由(2)得,x » 4根据 小大大小中间找”原则,不等式组的解集为-4$V- 3. 45 •由①得:x V 2,由②得: '-4K <846.整理不等式组得* x A 1 •- 1 纟V 2 . 解之得,x >- 2, x <1 2V x <1 47.解:①+②X 2得,7x=13m - 3,即x=一: --------- ③,把 ③代入②得,2X ; +y=5m - 3, 解得, 9m - 8尸丁 ,48. 49. 50. '13^-379m- 8因为x > 0, y 切,所以,解得 ②,得 -8-7-6-5-4-3-2-10 1 2 3 4 5 解不等式①,得x <:,解不等式 解: 解: (1)当(3)当XA 8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为-8«< :.nri 13朗〉丄丄,故号V mV 13由2x - 2=5得x=£,代入第一个方程得 4+2y=5a ;贝卩y=T a -「,由于y V 0,贝U a v —: a v- 2 时,原式=-(a+2)- [ -( a - ) ]= - 2 ; (2)当-2V a v 时,原式=a+2 - [ -( a- ) ]=2a+ '; 2 2 2 2 2 1 7 1 1< a v —时,原式=a+2-( a - [) =2 ,;由题意可解得 -时13>0 I 一,解得51.解不等式(1)得:2 - x - 1€x+4- 3x<3 xA 1 2 2解不等式(2),得:x +x > x +3x - 2x > 0x v 0二原不等式组的解集为:-1 <x < 0.52•解不等式(1)得:x > -1解不等式(2),得:x<2 •••原不等式组的解集为:-1 << 2.53. 解①得x < •解②得x 绍,•不等式组的解集为无解.254. 解第一个不等式得 x < 8解第二个不等式得 x 呈■ ! r .: .••原不等式组的解集为:2$< 8.55•解:由 ①得:1 - 2x+2<5「. 2x>- 2 即 x A 1 由②得:3x - 2< 2x+1 • x < 3. •原不等式组的解集为:-1$ < 3.r2K+4<3x+3£59 .解:解不等式 ①,得x < 2 . (2分)解不等式②,得x >- 1. (4 分) 所以,不等式组的解集是-1纟< 2 . ( 5分),一----------- 4 ------- A 11 1>解集在数轴上表示为::5560.解:由①,得x A ,由②,得x < 3,所以不等式组的解集为-強< 3.57•解: r3x- 1<2 (x+1)①弯②,解不等式 ①,得x < 3,解不等式②,得x A 1 ,把不等式的解集在数轴上表示出来, 不等式组的解集是 如图所示. 58.解:由题意,I 2K•原不等式组的解集为1纟< 3〔如-2〉x+2…① 、小 3 金解不等式①得x >2,不等式②X 2得x -2胡4-3X 解得x 詔, —1=S*T -尹■② 56•解:原不等式可化为:即< 4X. _在数轴上可表示为:门•不等式的解集为:1$< 34 4。
不等式试题带答案

高一数学测试题一、选择题:1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是( D )A .c b c a -≥+B .bc ac >C .02>-ba cD .0)(2≥-c b a 2.若实数a 、b 满足a +b =2,是3a+3b的最小值是( B )A .18B .6C .23D .2433.函数y =3x 2+162+x 的最小值是(D ) A.32-3` B.-3 C.62 D.62-34.已知x>1,y>1,且lgx+lgy =4,则lgxlgy 的最大值是( A )A.4B.2C.1D.415.若角α,β满足-2π<α<β<2π,则2αβ-的取值范围是( C )A .(-π,0)B .(-π,π)C .(-23π,2π) D .(-π23,23π) 6.在的条件下,,00>>b a 三个结论:①22b a b a ab +≤+,②,2222b a b a +≤+ ③b a b a a b +≥+22, 其中正确的个数是( D )A .0B .1C .2D .37. 数列a n =1n(n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( B )A .-10B .-9C .10D .98. 已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为( B )A 、11{|}32x x -<<B 、11{|}32x x x <->或C 、{|32}x x -<<D 、{|32}x x x <->或9. 设a 、b ∈R +,且a +b =4,则有( B )A.1ab ≥12B.1a +1b ≥1C.ab ≥2D.1a 2+b 2≥1410. 在如图所示的坐标平面的可行域内(阴影部分且包括边界),若目标函数z =x +ay 取得最小值的最优解有无数个,则yx -a的最大值是(B )A.23B.25C.16D.14二、填空题:11.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于__ n 2+1-12n ___.12. 若,x y 为非负整数,则满足4x y +≤的点(),x y 共有___15____ 个 .13. 已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 4 .14.已知点(-3,-1)和(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为 -7<a <24. . 15. 0,0,a b >>则a b +的最小值为 2 . 三、解答题:16. 若ABC ∆中,a ,b ,c 分别是C B A ∠∠∠,,的对边,且272cos 2sin 42=-+A C B .(Ⅰ)求A ∠;(Ⅱ)若7=a ,ABC ∆的面积为310,求b c +的值.解. (Ⅰ)由272cos 2sin42=-+A C B 得:72[1cos()]cos22B C A -+-=,可得:01cos 4cos 42=+-A A ,21cos =A ,3π=∠∴A .(Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-+=3sin 213103cos 27222ππbc bc c b 169)(2=+∴c b ,13=+∴c b .17.设2()f x ax bx =+,1(1)2f ≤-≤,2(1)4f ≤≤,(2)f -的取值范围.解:[]5,1018.解关于x 的不等式)0( 12)1(>>--a x x a解. 当01a <<时, 2{|2}1a x x a -<<-, 当 1a =时, x ∈∞(2,+),当1a >时,2(,)(2,)1a a --∞⋃+∞- 19.已知不等式111112log (1)1232123a a n n n n ++++>-++++ 对一切大于1的正整数n 都成立,求实数a 的取值范围。
解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
不等式经典题型专题练习含答案

不等式经典题型专题练习(含答案)姓名: ___________ 班级: _________________________________一、解答题1 -3x 2x 11 {2 5 1.解不等式组: 2x3 _^x,并在数轴上表示不等式组的解集. 3.已知关于x , y 的方程组 的解为非负数,求整数 m 的值. x 2y =14•由方程组 x-2y=a 得到的%、y 的值都不大于1,求a 的取值范围.2 •若不等式组2x - a :: 1 {x-2b 3的解集为-1<x<1,求(a+1)(b-1)的值.5 •解不等式组: 并写出它的所有的整数解.5x 2y = 11a 18x 、y 的方程组.2x -3y =12a -8的解满足x >0, y > 0,求实数a 的取x -20 卜 +1 3x-3 6 .求不等式组 2的最小整数解. 7 .求适合不等式-11 v- 2a - 5<3的a 的整数解.8 .已知关于x 的不等式组x-a > 03-2x>-1的整数解共有5个,求a 的取值范围.6 .已知关于值范围.x -2y = k { °—9•若二元一次方程组 x • 2y =4的解x y ,求k 的取值范围10 •解不等式组 并求它的整数解的和.2x 5 乞 3(x 2)不等式组的非负整数集2x y =m 214 .若方程组x - y = 2m - 5的解是一对正数,则:(1) 求m 的取值范围11.已知x , y 均为负数且满足: 2x y = m- 3 ①x-y =2m ② 求m 的取值范围.2x - 1 3x ::112 .解不等式组 ,把不等式组的解集在数轴上表示出来,并写出(2)化简:1m -4 -|m 2|15 •我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房•如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?16 •某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人•如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?17 • 3个小组计划在10天内生产500件产品(计划生产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产一件产品,就能提前完成任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式基本性质练习
一、选择题(本大题共10小题,每小题5分,共50分) 1.若a >0, b >0,则)11)((b
a b a ++ 的最小值是 ( )
A .2
B .22
C .24
D .4
2.分析法证明不等式中所说的“执果索因”是指寻求使不等式成立的
( )
A .必要条件
B .充分条件
C .充要条件
D .必要或充分条件
3.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是
( )
A .
111<+b
a B .
111≥+b
a C .
21
1<+b a D .21
1≥+b
a 4.已知a 、
b 均大于1,且log a C ·log b C=4,则下列各式中,一定正确的是
( )
A .a c ≥b
B .a b ≥c
C .bc ≥a
D .a b ≤c
5.设a =2,b=37-,26-=
c ,则a 、b 、c 间的大小关系是
( )
A .a >b>c
B .b>a >c
C .b>c>a
D .a >c>b 6.已知a 、b 、m 为正实数,则不等式
b
a
m b m a >++
( )
A .当a < b 时成立
B .当a > b 时成立
C .是否成立与m 无关
D .一定成立
7.设x 为实数,P=e x +e -x ,Q=(sin x +cos x )2,则P 、Q 之间的大小关系是
( )
A .P ≥Q
B .P ≤Q
C .P>Q
D . P<Q 8.已知a > b 且a + b <0,则下列不等式成立的是
( )
A .
1>b
a B .
1≥b
a C .
1<b
a D .
1≤b
a 9.设a 、
b 为正实数,P=a a b b ,Q=a b b a ,则P 、Q 的大小关系是
( )
A .P ≥Q
B .P ≤Q
C .P=Q
D .不能确定
10.甲、乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以
速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走,若m ≠n ,则甲、乙两人到达指定地点的情况是
( )
A .甲先到
B .乙先到
C .甲乙同时到
D .不能确定
二、填空题(本大题共4小题,每小题6分,共24分)
11.若正数a 、b 满足a b=a +b+3,则a b 的取值范围是 . 12.已知a >1,a lgb =100,则lg(a b)的最小值是 . 13.使不等式a 2>b 2,
1>b
a
,lg(a -b )>0, 2a >2b-1同时成立的a 、b 、
1的大小关系是 . 14.建造一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为
120元和80元,则水池的最低总造价为 元. 三、解答题(本大题共6题,共76分)
15.若a 、b 、c 都是正数,且a +b+c=1,求证: (1–a )(1–b)(1–c)≥8a bc .(12分)
16.设2
1
log log 21,0,1,0+>≠>t t t a a a a 与试比较的大小.(12分)
17.已知a ,b ,c 都是正数,且a ,b ,c 成等比数列,求证:2
2
2
2
)(c b a c b a +->++(12分)
18.已知x 2 = a 2 + b 2,y 2 = c 2 + d 2,且所有字母均为正,求证:xy ≥ac + bd .(12分)
19.设计一幅宣传画,要求画面面积为4840cm 2
,画面的宽与高的比为λ(λ<1),画面的上下各
留8cm 空白,左、右各留5cm 空白,怎样确定画面的高与宽尺寸,能使宣传画所用纸张面积最小?(14分)
20.数列{x n }由下列条件确定:N n x a
x x a x n
n n ∈+=
>=+),(21,011. (Ⅰ)证明:对n ≥2,总有x n ≥a ;(Ⅱ)证明:对n ≥2,总有x n ≥1+n x . (14分)
参考答案
一.选择题(本大题共10小题,每小题5分,共50分)
二.填空题(本大题共4小题,每小题6分,共24分) 11.x ≥9 12.22 13.a >b>1 14.1760 三、解答题(本大题共6题,共76分) 15.(12分)
[证明]:因为a 、b 、c 都是正数,且a +b+c=1,
所以(1–a )(1–b)(1–c)=(b+c)( a +c)( a +b)≥2
bc ·2ac ·2ab =8a bc .
16.(12分)
[解析 ]: t
t t t a
a
a 21log log 2
1log +=-+ t t t 21,0≥+> (当且仅当t=1时时等号成立) 121≥+∴
t t (1) 当t=1时,t t a a
log 2
1
log =+ (2) 当1≠t 时,
121>+t
t ,
若t t t
t a a
a a log 2
12
1log ,021log ,1>+>+>则
若t t t t a a
a a log 2
121log ,021log ,10<+<+<<则 17.(12分)
[证明]:左-右=2(ab +bc -ac ) ∵a ,b ,c 成等比数列,
ac b =2
又∵a ,b ,c 都是正数,所以ac b =
<0≤c a c a +<+2
∴b c a >+
∴0)(2)(2)(22>-+=-+=-+b c a b b bc ab ac bc ab ∴2222)(c b a c b a +->++
18.(12分)
[证法一]:(分析法)∵a , b , c , d , x , y 都是正数 ∴要证:xy ≥ac + bd
只需证:(xy )2≥(ac + bd )2 即:(a 2 + b 2)(c 2 + d 2)≥a 2c 2 + b 2d 2 + 2abcd
展开得:a 2c 2 + b 2d 2 + a 2d 2 + b 2c 2≥a 2c 2 + b 2d 2 + 2abcd 即:a 2d 2 + b 2c 2≥2abcd 由基本不等式,显然成立 ∴xy ≥ac + bd
[证法二]:(综合法)xy =222222222222d b d a c b c a d c b a +++=
++
≥bd ac bd ac d b abcd c a +=+=++22222)(2 [证法三]:(三角代换法)
∵x 2 = a 2 + b 2,∴不妨设a = x sin α, b = x cos α
y 2 = c 2 + d 2 c = y sin β, d = y cos β
∴ac + bd = xy sin αsin β + xy cos αcos β = xy cos(α - β)≤xy 19.(14分)
[解析]:设画面高为x cm ,宽为λx cm 则λx 2=4840.
设纸张面积为S ,有 S=(x +16)(λx +10) =λ x 2+(16λ+10) x +160, S=5000+44).5(10λ
λ+
当8
.)185
(85,5
取得最小值时即S <==
λλ
λ
此时,高:,884840cm x ==λ
宽:,558885cm x =⨯=λ 答:画面高为88cm ,宽为55cm 时,能使所用纸张面积最小. 20.(14分) (I )证明:由,01
>=a x 及),(2
11n
n n x a x x +=+可归纳证明0>n x (没有证明过程不扣分)
从而有).()(211
N a a x a
x x a x x
n
n n n n ∈=⋅≥+=
+ 所以,当a x n ≥≥,2时成立.
(II )证法一:当)(21,0,21n
n n n
x a
x x a x n +=
>≥≥+因为时 所以,021)(212
1≤-⋅=-+=-+n
n n n n n n x x a x x a x x x
故当.,21成立时+≥≥n n x x n 证法二:当)(2
1,0,21n
n
n x a x x a x n +=>≥≥+因为时
所以122)(212
22221
=+≤+=+=+n
n n n n n n n n
n x x x a x x x a
x x x 故当成立时1,2+≥≥n n x x n .。