组合与组合数公式及性质
☆☆☆☆组合与组合数公式解读

组合
abc abd acd bcd
排列
abc bac cab acb bca cba
abd bad dab adb bda dba
acd cad dac adc cda dca
(2)平面内有 10 个点,以其中每 2 个点为端 点的有向线段共有多少条?
解:(1) (2)
C
2 10
45
A
2 10
90
例8.在 100 件产品中,有 98 件合格品,2 件 次品.从这 100 件产品中任意抽出 3 件 .
(1)有多少种不同的抽法?
(2)抽出的 3 件中恰好有 1 件是次品的抽法有 多少种?
(1)甲、乙、丙三人必须当选;
(2)甲、乙、丙三人不能当选;
(3)甲必须当选,乙、丙不能当选; (4)甲、乙、丙三人只有一人当选;
(5)甲、乙、丙三人至多2人当选; (6)甲、乙、丙三人至少1人当选;
组合数的两个性质
定理1:
Cmn
Cnm n
.
证明:
C
m n
m(! nn!m)!,
Cnm n
(n
n! m)
巩固练习
3.6人同时被邀请参加一项活动,必须有人去,去几人自 行决定,共有多少种不同的去法?
解:有6类办法,第1类去1人,第2类去2人,第3类去3 人,第4类去4人,第5类去5人,第6类去6人,所以共 有不同的去法
C61 C62 C63 C64 C65 C66 63
小结
1.组合数公式:
2
n
C C (2)当m n时,公式 m nm变形为
n
n
C C n 0
n
n
C C 又 n 1,所以规定: 0 1即0! 1
n
n
即从n个不同的元素中取出m个元素的组
合数,等于从这n个元素中取出n-m个元素的组
C C 合数 性质1
m
nm
n
n
证明: 根据组合数的公式有:
Cm
Cnm
Anm Amm
n(n 1)(n 2) m!
(n m 1)
Cnm
n! m!(n
m)!
新课引入
引例1:利用组合数公式考察:
C C 与 9 11
2;
11
C C 7 与 10
3 10
;
的关系,并发现什么规律?
C 9 11
11! 1110 9!2! 2!
C7 10
共有多少条不同的路线
?
B A
将一条路经抽象为如下的一个
排法(5-1)+(8-1)=11格:
→↑ →↑ ↑ →→→↑ →→
A
1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
组合与组合数公式

解:(1) C83 56 ⑵
⑶
C
3 7
35
C72 21
我们发现:
C83
C72
C
3 7
为什么呢
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
从a1, a2 , a3,, an1这n 1个不同元素中, 每次取出m个元素。 (1)可以有多少个不同的组合? (2)在这些组合里有多少个是含有a1的? (3)在这些组合里有多少个是不含有a1的? (4)从上面的结果可以得到一个怎样的公式?
推广:
从 n个不同元素中取出 m个元素的每一个 组合,与剩下的n-m个元素的每一个组合一一 对应,所以从 n个不同元素中取出 m个元素 的组合数,等于从这n 个元素中取出n-m 个元 素的组合数,即
c c m n
nm n
组合数的两个性质
定理1:
Cmn
Cnm n
.
证明: Cmn m(! nn!m)!,
例5、6本不同的书,按下列要求各有多少种不同的分 法:
(1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本; (3)分为三份,一份1本,一份2本,一份3本: (4)分给甲、乙、丙三人,一人1本,一人2 本,一人 3本。
例6、某省的福利彩票中,不考虑次序的7个数码组 成一注,7个数码中没有重复,每一个数码都选自 数码1,2,…,36,如果电视直播公开摇奖时只有 一个大奖,计算:
a a a 推广:从
1,
2,
n1这n+1个不同的元素中,
a c a a a a a 取出m个元素的组合数
一类含 ,一1类不含
组合和组合数公式

组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。
组合数公式是用来计算组合数的公式。
本文将详细介绍组合和组合数公式,并说明其应用和性质。
1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。
组合中的元素是无序的,即选取的元素的顺序对组合没有影响。
2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。
例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。
组合数公式用于计算从n个元素中选取r个元素的方式数。
常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。
这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。
递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。
组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。
这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。
4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。
这使得计算大规模组合数变得更加高效。
4.3性质的递推公式组合数的性质也可以通过递推公式计算。
例如,根据乘法法则和递推公式可以推导出组合数的对称性。
5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。
以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。
排列是组合的一种特殊情况,它要求选取的元素有序。
组合与组合数公式

步骤2
假设n=k时公式成立,推导n=k+1时的公式。
步骤3
由数学归纳法,得出结论对于所有正整数n, 组合数公式成立。
利用二项式定理的证明
步骤1
将组合数公式重写为与二项式定理形式相似的形式。
步骤2
利用二项式定理展开式中的系数与组合数公式中的系 数进行比较。
02
加密算法
组合数公式可以用于设计加密算法,通过计算不同字符或符号的组合数
量,增强信息的安全性。
03
信息传输
在无线通信和网络传输中,利用组合数公式可以优化信息的传输效率和
可靠性。通过对信号的不同组合方式进行编码和解码,可以提高通信系
统的性能。
感谢您的观看
THANKS
组合数表示从n个不同元素中取出m个 元素的组合的个数,记作C(n, m)或C(n, m),其中C(n, m) = n! / (m!(n-m)!)。
组合的特性
无序性
组合只考虑元素的排列顺序,不考虑元素的具体 位置。
可重复性
在组合中,可以重复选取同一个元素。
独立性
组合数不受元素数量的影响,只与选取的元素个 数有关。
01
概率分析
利用组合数公式,可以对彩票的概率进 行分析,帮助彩民更好地理解彩票的随 机性和公平性。
02
03
优化投注
通过计算不同组合下的中奖概率,彩 民可以优化自己的投注策略,提高中 奖的可能性。
在遗传学中的应用
基因组合
在遗传学中,基因的组合方式可以用组合数公式来表示。通过计算 基因组合的数量,可以了解生物体的遗传多样性。
组合数的上标和下标规则
上标和下标规则
组合与组合数公式及组合数的两个性质 课件

[例3] (10分)在一次数学竞赛中,某学校有12人通过 了初试,学校要从中选出5人参加市级培训.在下列条件下, 有多少种不同的选法?
(1)任意选5人; (2)甲、乙、丙三人必需参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.
[思路点拨] 本题属于组合问题中的最基本的问题, 可根据题意分别对不同问题中的“含”与“不含”作出正 确分析和判断.
(7 分)
(4)甲、乙、丙三人只能有 1 人参加,可分两步:先从甲、
乙、丙中选 1 人,有 C13=3 种选法;再从另外 9 人中选 4 人,
有 C49种选法.共有 C13C49=378 种不同的选法.
(10 分)
[一点通] 解简单的组合应用题时,要先判断它是 不是组合问题,只有当该问题能构成组合模型时,才能运 用组合数公式求解.解题时还应注意两个计数原理的运用, 在分类和分步时,应注意有无重复或遗漏.
组合数公式
组合 数公
式 性质 备注
乘积形式 Cmn =AAmnmm=nn-1n-m2!…n-m+1
阶乘形式
Cmn =
n! m!n-m!
Cmn = Cnn-m ;Cnm+1= Cmn +Cmn -1
①n,m∈N+,m≤n;②规定 C0n= 1 .Cnn= 1
1.组合的特点 组合要求n个元素是不同的,被取出的m个元素也是 不同的,即从n个不同的元素中进行m次不放回地取出. 2.组合的特性 元素的无序性,即取出的m个元素不讲究顺序,亦即 元素没有位置的要求. 3.相同的组合 根据组合的定义,只要两个组合中的元素完全相同, 不管顺序如何,就是相同的组合.
107C7m=7×71-0×m7!!m!,
∴m!55!-m!-m!6-6×m5!5-m! =7×m!170-×m7×66-×m5!5-m!, ∴1-6-6 m=7-m606-m, 即 m2-23m+42=0,解得 m=2 或 21. 而 0≤m≤5,∴m=2. ∴C8m+C58-m=C28+C38=C93=84.
组合数的相关公式

组合数的相关公式组合数是组合数学中的一个重要概念,也称为二项式系数。
它在组合学、概率论和数论等多个领域都有广泛的应用。
本文将全面介绍组合数的相关公式,以帮助读者更好地理解和应用这一概念。
1. 组合数的定义组合数是指从n个不同元素中选取r个元素的方式数,用C(n,r)或者表示。
其中n表示元素的个数,r表示选取的元素个数。
组合数的计算结果是一个非负整数。
2. 组合数的计算公式2.1. 基本公式组合数可以通过以下基本公式来计算:C(n,r) = n! / (r!(n-r)!)其中,"!"表示阶乘运算,即将一个正整数n与小于等于它的所有正整数相乘。
例如,5! = 5 × 4 × 3 × 2 × 1。
2.2. 递推公式组合数也可以通过递推公式来计算:C(n,r) = C(n-1,r-1) + C(n-1,r)递推公式的意思是,从n个元素中选取r个元素,可以分为两种情况:选取第n个元素和不选取第n个元素。
如果选取第n个元素,那么就需要从剩下的n-1个元素中选取r-1个元素;如果不选取第n 个元素,那么就需要从剩下的n-1个元素中选取r个元素。
将这两种情况的结果相加,就可以得到总的组合数。
递推公式的优点是可以利用已知的组合数计算出其他组合数,从而减少重复计算的次数。
3. 组合数的性质组合数具有一些有趣的性质,对于计算和理解组合数的应用非常有用。
3.1. 对称性组合数具有对称性,即C(n,r) = C(n,n-r)。
这是因为从n个元素中选取r个元素,等价于从n个元素中选取n-r个元素。
例如,从{1,2,3,4}中选取2个元素的方式数与从{1,2,3,4}中选取3个元素的方式数是相同的。
3.2. 组合数的加法如果有两个集合A和B,且A和B的元素个数分别为n和m,那么从A和B的元素中选取r个元素的方式数为C(n+m,r)。
这是因为可以将A和B的元素合并成一个集合,然后从合并后的集合中选取r个元素。
组合数学 常见结论

组合数学常见结论
组合数学是数学的一个分支,主要研究从给定的元素中抽取若干元素的组合方式,以及这些组合的性质和规律。
以下是一些常见的组合数学结论:
1. 组合恒等式:从n个元素抽取r个元素的组合数C(n,r)等于从n-1个元素抽取r-1个元素的组合数C(n-1,r-1)加上从n-1个元素抽取r个元素的组合数C(n-1,r)。
2. 组合计数公式:从n个元素中抽取r个元素的组合数C(n,r)等于
n!/(r!(n-r)!),其中"!"表示阶乘。
3. 乘法原理:如果有多个无放回的抽取过程,那么总的组合数等于各个过程中组合数的乘积。
4. 加法原理:如果有两个或多个独立的选取过程,那么总的组合数等于各个过程中组合数的和。
5. 二项式定理:对于任意实数x和q,(x+q)^n的展开式中,除首项和末项外,其余每一项都大于或等于0。
以上只是一些基本的组合数学结论,组合数学的研究还包括许多其他的问题,如排列组合、组合计数、组合设计等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.3组合与组合数公式及性质
达标要求
1.理解组合的概念.
2.掌握组合数公式.
3.理解排列与组合的区别和联系。
4.熟练掌握组合数的计算公式;掌握组合数的两个性质,并且能够运用它解决一些简单的 应用问题.
基础回顾
1.组合的概念:一般地,从n 个不同元素中取出m (m n ≤)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.
2.组合数的概念:从n 个不同元素中取出m (m n ≤)个元素的所有组合的个数,叫做 从n 个不同元素中取出m 个元素的组合数.用符号m
n C 表示..
3.组合数的公式:
(1)(2)(1)!m m
n n m m A n n n n m C A m ---+== 或()!!!
m n n C m n m =-(,n m N +∈且m n ≤) 4.组合数性质:
(1)m n m n n C C -=
(2)111m m m n n n C C C ++++=
典型例题
例题1 4名男生和6名女生选三人,组成三人实践活动小组。
(1) 共有多少种选法?
(2) 其中男生甲不能参加,有多少种选法?
(3) 若至少有1个男生,问组成方法共有多少种?
解:(1) 共有310120C =种。
(2) 共有3984C =种
(3) 解法一:(直接法)小组构成有三种情形:3男,2男1女,1男2女,
分别有34C ,2146C C ,1246C C ,
所以一共有3211244646100C C C C C ++=种方法.
解法二:(间接法)33106100C C -=
例题2 100件产品中有合格品90件,次品10件,现从中抽取4件检查.
(1) 都不是次品的取法有多少种?
(2) 至少有1件次品的取法有多少种?
(3) 不都是次品的取法有多少种?
解:(1)4
902555190
C=
(2)441322314 10090109010901090101366035
C C C C C C C C C
-=+++=
(3)441322314 10010109010901090903921015
C C C C C C C C C
-=+++=。