图形的平移、旋转、轴对称

合集下载

图形的平移、旋转和轴对称 教案苏教版四年级下册

图形的平移、旋转和轴对称 教案苏教版四年级下册

图形的平移、旋转和轴对称教案(苏教版四年级下册)图形的平移、旋转和轴对称教案(苏教版四年级下册)「篇一」教学目标:1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

教学重、难点:1、认识图形的对称轴,并能画出轴对称图形。

2、能画出平移后的图形。

教学建议:1、注意让学生真正地、充分地进行活动和探究。

2、恰当把握教学目标。

3、注意知识的科学性。

章节名称图形的运动(二)课时课标要求教学目标1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

内容分析学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。

学情分析在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。

本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。

教学重点1、认识图形的对称轴,并能画出轴对称图形。

2、能画出平移后的图形。

教学难点1、认识图形的对称轴,并能画出轴对称图形。

2、能画出平移后的图形。

学生课前需要做的准备工作教学策略轴对称教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。

教学重难点:认识图形的对称轴,并能画出轴对称图形。

图形的平移、旋转和轴对称ppt 冀教版

图形的平移、旋转和轴对称ppt 冀教版

对称,这条直线就是对称轴。
2.轴对称 如果一个图形沿一条直线折叠,直线两旁能 图形的定 够互相重合,这个图形叫做轴对称图形,这 义: 条直线是它的对称轴。
提示:轴对称图形是针对一个图形而言,轴对称是对
两个图形而言。
知识要点五:轴对称和轴对称图形
(1)关于某条直线对称的两个图形是全等的; (2)对称点的连线段被对称轴垂直平分; 3.特征: (3)对应线段所在的直线如果相交,则交点在 对称轴上。
将△BCE绕点C顺时针方向旋转900得△DCF,连结EF,
若∠BEC=600,则∠EFD的度数为(
A、100
A E

B
B、150
D
C、200
D、250
BCF源自 达标演练演练1:下列图形中是轴对称图形的有( C ) ①角 ②线段 ③等腰三角形 ④等边三角形 ⑤扇形 ⑥圆 ⑦平行四边形 A.4个 B.5个 C.6个 D.7个
基本图形平移
基本图形旋转
基本图形平移+旋转
先 平 移 后 旋 转
基本图形轴对称+旋转
先 轴 对 称 后 旋 转
图案赏析:
图案的设计至少用一种图形变换
平移 图形变换 旋转 中心对称
轴对称
达标演练
演练1、将以下图案(1)通过平移可以得到图案(
C)
演练2、如图:ΔDEF可以看作ΔABC平移得到 1)AB∥ DE ; AC ∥ DF . 2)若BC=5cm, CE =3cm,则平移的 距离是____cm ,EF=____cm. 2 5
达标演练
演练2:如图,正方形的边长为4cm,则图中阴影部分
2. 的面积为_______cm 8
A
D
B

图形旋转、平移、轴对称

图形旋转、平移、轴对称

图形旋转定义:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

图形旋转性质:(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转对称中心把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。

(旋转角大于0°小于360°)平移定义:将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移是图形变换的一种基本形式。

平移不改变图形的形状和大小,平移可以不是水平的。

平移基本性质:经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等(3)多次连续平移相当于一次平移。

(4)偶数次对称后的图形等于平移后的图形。

(5)平移是由方向和距离决定的。

这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移平移的条件:确定一个平移运动的条件是平移的方向和距离。

平移的三个要点1 原来的图形的形状和大小和平移后的图形是全等的。

2 平移的方向。

(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)3 平移的距离。

(长度,如7厘米,8毫米等)平移作用:1.通过简单的平移可以构造精美的图形。

也就是花边,通常用于装饰,过程就是复制-平移-粘贴。

2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

轴对称平移与旋转轴对称轴对称的再认识

轴对称平移与旋转轴对称轴对称的再认识

2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。

定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。

性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。

晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。

图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。

实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。

螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。

雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。

02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。

性质旋转轴对称具有旋转不变性和对称性。

定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。

艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。

自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。

计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。

螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。

雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。

圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。

轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。

轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。

轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。

自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。

第一轮复习图形的位置变换(平移、旋转、轴对称)

第一轮复习图形的位置变换(平移、旋转、轴对称)

(1, 3) . 则点 C′的坐标是_______
典型习题
五、变换作图 如图, 在平面直角坐标系中, △ABC 的三个顶点都在格 点上,点 A 的坐标为(2,4),请解答下列问题: (1)画出△ABC 关于 x 轴对称的 △A1B1C1,并写出点 A1 的坐标; (2)画出△A1B1C1 绕原点 O 旋转 180° 后得到的△A2B2C2,并写出 点 A2 的坐标.
达标检测
8.下列图形中,既是轴对称图形,又是中心对称图形 的是( C )
达标检测
9.线段 MN 在直角坐标系中的位置如图所示,若线段 M′N′与 MN 关于 y 轴对称, 则点 M 的对应点 M′的坐标 为( D ) A.(4,2) B.(-4,2) C.(-4,-2) D.(4,-2)
达标检测
典型习题
解:(1)△A1B1C1 如图所示,A1(2,-4). (2)△A2B2C2 如图所示,A2(-2,4).
达标检测
1. 如图, 点 A, B, C, D 都在方格纸的格点上, 若△AOB 绕点 O 按逆时针方向旋转到△COD 的位置,则旋转的 角度为( C ) A.30° B.45° C.90° D.135°
典型习题
二、旋转的性质 如图,在直角△OAB 中,∠AOB=30° ,将△OAB 绕点 O 按逆时针方向旋转 100° 得到△OA1B1,则∠A1OB 的
70° . 度数为_______
典型习题
三、识别轴对称图形与中心对称图形
下图中,既是中心对称图形又是轴对称图形的是( B )
典型习题
四、轴对称的性质 如图,在平面直角坐标系中△ABC 的两个顶点 A,B 的 坐标分别为(-2,0),(-1,0),BC⊥x 轴.将△ABC 以 y 轴为对称轴对称变换,得到△A′B′C′(A 和 A′,B 和 B′, C 和 C′分别是对应顶点). 直线 y=x+b 经过点 A, C′,

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)

第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。

平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。

知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。

旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。

注意:旋转分为顺时针旋转和逆时针旋转。

知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。

轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。

三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。

A.B.C.D.2.在括号中填“平移”或“旋转”。

(1)小明进教室开门时,门的运动是()。

(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。

(3)小红拉开窗帘,窗帘的运动是()。

(4)老师将课桌拖到最后一排,桌子的运动是()。

3.观察下面的图形,然后填空。

(1)小汽车向()平移了()格。

(2)小船向()平移了()格。

(3)飞机向()平移了()格。

4.如图所示。

(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。

(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。

A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。

7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。

用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。

观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。

《图形的平移》平移旋转和轴对称

《图形的平移》平移旋转和轴对称

04
平移、旋转和轴对称的对比与 联系
对比
平移
图形在平面内沿某一方向 等距移动,不改变形状和 大小。
旋转
图形围绕某一点旋转一定 的角度,不改变形状和大 小。
轴对称
图形关于某一直线对称, 不改变形状和大小。
联系
01
02
03
04
平移和旋转都是图形在平面内 的运动,但方向和中心点不同
。ቤተ መጻሕፍቲ ባይዱ
平移和轴对称都可以视为一种 特殊的旋转,其中旋转中心是
《图形的平移》平移旋转和 轴对称
汇报人: 2024-01-09
目录
• 平移 • 旋转 • 轴对称 • 平移、旋转和轴对称的对比与
联系 • 生活中的平移、旋转和轴对称
01
平移
平移的定义
平移是指在平面内,将一个图形沿某 一方向移动一定的距离,而图形本身 不发生旋转或翻转,只是位置发生了 变化。
平移的距离可以是固定的,也可以是 变化的。
03
轴对称
轴对称的定义
轴对称
如果一个图形关于某条直线(对称轴)对称,那 么这个图形被称为轴对称图形。
对称轴
将图形分为两个完全相同的部分的直线。
对称点
关于对称轴的对称点。
轴对称的性质
对称性
轴对称图形关于对称轴对称,即 如果图形上有一个点,那么在对 称轴的另一侧存在一个与其完全
相同的点。
稳定性
轴对称图形在平衡状态下是稳定的 ,即不会发生旋转或倾斜。
个美丽例子。
建筑物
02
许多建筑物,如中国的天坛、美国的自由女神像等,都是轴对
称的。
雪花
03
雪花的形状常常是六边形的,并且具有轴对称性。

《轴对称图形》平移、旋转和轴对称

《轴对称图形》平移、旋转和轴对称

旋转对称性
旋转对称图形具有旋转对称性 ,即经过一定角度的旋转后,
图形可以与自身重合。
旋转应用
建筑设计
建筑师可以利用旋转对称 性来设计优美的建筑外形 ,如旋转餐厅、圆形剧场 等。
图案设计
旋转对称图形在图案设计 中有广泛的应用,如地毯 、壁纸、纺织品等。
艺术创作
艺术家可以利用旋转对称 性创作出独特的艺术作品 ,如旋转雕塑、水墨画等 。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。
02 旋转对称图形
《轴对称图形》平移、旋转和轴对 称
汇报人: 2023-12-02
contents
目录
• 平移对称图形 • 旋转对称图形 • 轴对称图形 • 总结与展望
01 平移对称图形
平移定义
01
02
03
平移
在平面内,将一个图形沿 某个方向移动一定的距离 ,这样的图形运动称为平 移。
平移变换
把一个图形经过平移变换 后得到的图形称为平移变 换图形。
通过本节课的学习,学生可以培养 空间观念和几何直觉,提高解决几 何问题的能力。
THANKS FOR WATCHING
感谢您的观看
03 轴对称图形
轴对称定义
轴对称定义
一个图形如果能够经过一条直线分割 成两个部分,其中一部分与另一部分 的图形关于这条直线对称,那么这个 图形就叫做轴对称图形。
轴对称图形的特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形得平移、旋转与对称
一、填空。

1、下面得现象中就就是平移得画“△”,就就是旋转得画“□”。

(12分)
(1)索道上运行得观光缆车。

( ) (2)推拉窗得移动。

( )
(3)钟面上得分针。

( )(4)飞机得螺旋桨。

( )
(5)工作中得电风扇。

( ) (6)拉动抽屉。

( )
2、瞧右图填空。

(12分)
(1)指针从“12”绕点A顺时针旋转600到“2”;
(2)指针从“12”绕点A顺时针旋转( )到“3”;
(3)指针从“1”绕点A顺时针旋转( )到“6”;
A
(4)指针从“3”绕点A顺时针旋转300到“()”;
(5)指针从“5”绕点A顺时针旋转600到“( )”;
(6)指针从“7”绕点A顺时针旋转( )到“12”。

3、先观察右图,再填空。

(12分)
(1)图1绕点“O”逆时针旋转900到达图( )得位置;
(2)图1绕点“O”逆时针旋转1800到达图( )
(4)图2绕点“O”顺时针旋转( )到达图4得位置
(5)图2绕点“O”顺时针旋转900到达图( )得位置;
(6)图4绕点“O” 逆时针旋转900到达图( )得位置;
4、想好了再填。

(5分)
①、封闭得电梯得上上下下属于()现象。

②、正在拧动水龙头开关属于( )现象。

③、开动汽车时方向盘得转动,属于( )现象。

④、飞机降落到机场跑道到机身静止这一过程,对于整个机身而言,属于( )现象,而
对于滚动得轮胎而言,它就就是( )现象。

二、判断题。

正确得在题后得括号里画“√”,错得画“×”。

(1)正方形就就是轴对称图形,它有4条对称轴。

…………………………………( )
(2)圆不就就是轴对称图形。

…………………………………………………………( )
(3)利用平移、对称与旋转变换可以设计许多美丽得镶嵌图案。

……………()
(4)风吹动得小风车就就是旋转现象。

………………………………………………( ) 三、画出下列轴对称图形得一条对称轴。

四、1、写出镜子中得这段话。

2、仔细观察,再填一填。

小鱼先向( )平移( )格,再向( )平移( )格,又向()平移( )格,最后向( )平移( )格。

五、分别画出将向上平移3格、向右平移8格后得到得图形。

六、画出绕点“O”顺时针旋转90度后得图形。

画出绕点“A”逆时针旋转90度后得图形。

七、画出下面图形得轴对称图形。

A
O
八、勉勉说以下得图形隐藏着她家得电话号码,请您找出来写在下面。


勉家得电
话号码就
就是( )。

九、按规律接着画下去。

(1) ( )
(2)
()
2,您有几种分法(至少画出三种),试试瞧。

相关文档
最新文档