八年级下册图形的平移与旋转

合集下载

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

八年级数学下册(北师大版)3.2.2图形的平移与旋转(旋转作图)课件

后作这两部分关于GH的轴
对称图形,这样就可以得
到整个图形。
G
F
旋转图案设计欣赏
课后任务:
1、旋转作图的步骤 : (1)明确题目要求:弄清旋转中心、方向和角度; (2)分析所作图形:找出构成图形的关键点; (3)旋转关键点:沿一定的方向和角度分别作出
各关键点的对应点; (4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
2、“旋转”作图的条件 : (1)图形原来的位置; (2)旋转中心; (3)旋转方向; (4)旋转角度.
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转90°后的 图案应该是( )
各关键点的对应点;
(4)作出新图形: 顺次连接作出的各点;
(5)写出结论: 说明所作出的图形.
目标检测1:
目标检测1:
3、如图,在方格纸上,△DEF是由△ABC绕定 点P顺时针旋转得到的,如果用(2,1)表示方格 纸上A点的位置,(1,2)表示B点的位置,那么 点P的位置为( A ) A.(5,2) B.(2,5) C.(2,1) D.(1,2)
第三章 图形的平移与旋转
3.2 图形的旋转(第二课时)
3.2.2 旋转作图
课前学习——知识回顾
1、“旋转”的定义: 在平面内,将一个图形绕着_一__个_定_点__沿_某_个_方__向_转动
_一_个__角_度__,这样的图形运动称为__旋_转__(变_换__) ___. 2、“旋转”的基本性质: (1)经过旋转,图形的___形_状__和_大_小_____不变; (2)经过旋转,图形上的每一点都绕_旋__转_中_心_沿相同 的方向转动了相同的__角__度__; (3)任意一对_对__应_点__与_旋_转__中_心__的连线所成的角都是 ___旋_转_角___,对应点到__旋_转__中_心___的距离相等.

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

图形的平移和旋转(经典)

图形的平移和旋转(经典)

DCFE CBA第四讲 图形的平移与旋转【基础知识精讲】一、平移:1.平移的定义——在平面内,把一个图形沿某一个方向移动一定的距离,这样的图形运动叫图形的平移。

说明:(1)平移是图形的一种运动(变换)(2)平移的要素:①平移方向;②平移距离。

2.平移的性质:①平移前后图形的大小、形状都不改变。

即:平移前后的图形全等形。

②平移前后对应点的连线段平行(或在同一直线上)且相等;对应线段平行(或在同一直线上)且相等;对应角相等。

二、旋转1.旋转的定义——在平面内,把一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫图形的旋转。

说明:(1)旋转是图形的一种运动(变换)(2)旋转的要素: ①旋转中心 ②旋转方向 ③旋转角2.旋转的性质①旋转前后图形的大小、形状都不改变。

即:旋转前后的图形全等形。

②图形上任意点都绕中心沿相同方向转动相同的角度(旋转角); ③对应点到旋转中心的距离相等。

【重难点高效突破】例1.如图,经过平移△ABC 的边AB 移到了EF ,作出平移后的三角形.例2.如图,△ABC 绕C 点旋转后,B 转到了D 处,作出旋转后的三角形。

例3.如图,在长32m 宽20m 的土地上要修筑同样宽的两条“之”字路,路宽2m ,则剩余耕地的面积为 . 例4、如图,E 为正方形ABCD 的边AB 上一点,AE=3,BE=1,P 为AC 上的动点,则PB+PE 的最小值是_________.例5、如图,△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,E 、F 分别是AB 、AC 边上的点,且DE ⊥DF ,若BC=12,CF=5,则△DEF 的面积为______________。

例6、如图,在△ABC 中,AB 2=32,∠BAC=45°, ∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,求BM+MN 的最小值。

例7、如图,设P 为等边△ABC 内的一点,且PA=3,PB=4,PC=5,能否确定∠APB 的大小?请说明理由。

八年级数学学案图形平移与旋转知识点考点

八年级数学学案图形平移与旋转知识点考点

第三讲:图形的平移与旋转【知识精讲】知识点1 平移、旋转和轴对称的区别和联系(1)区别。

①三者概念的区别:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移;在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转;在平面内,将一个图形沿着某条直线折叠。

如果它能够与另一个图形重合,则这两个图形成轴对称。

②三者运动方式不同:平移是将图形沿某个方向移动一定的距离。

旋转是将一个图形绕一个定点沿某个方向转动一个角度;轴对称是将图形沿着某一条直线折叠。

③对应线段、对应角之间的关系不同:平移变换前后图形的对应线段平行(或共线)且相等;对应点所连的线段平行且相等;对应角的两边分别平行且对应角的方向一致。

轴对称的对应线段或延长线相交,交点在对称轴上:对应点的连线被对称轴垂直平分。

旋转变换前后图形的任意一对对应点与旋转中心的距离相等、与旋转中心的连线所成的角是旋转角。

④三者作图所需的条件不同:平移要有平移的方向和平移的距离,旋转要有旋转中心、旋转方向和旋转角:轴对称要有对称轴。

(2)联系。

①它们都在平面内进行图形变换②它们都只改变图形的位置不改变图形的形状和大小,因此变换前后的两个图形全等。

③都要借助尺规作图及全等三角形的知识作图。

知识点2 组合图案的形成(1)确定图案中的“基本图案”。

(2)发现该图案各组成部分之间的内在联系。

(3)探索该图案的形成过程:运用平移、旋转、轴对称分析各个组成部分如何通过“基本图案”演变成“形”的。

要用运动的观点、整体的思想分析“组合图案”的形成过程。

运动的观点就是要求我们不能静止地挖掘“基本图案”与“组合图案”的内在联系,头脑中应想象、再现图案形成的过程,做到心中有数,特别是有的图案含有不同的“基本图案”其形成的方式也多种多样,可以通过平移、旋转、轴对称变换中的一种或两种变换方式来实现,也可以通过同一种变换方式的重复使用来实现。

整体的思想包括整体的构思和“基本图案”的组合。

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
D.图形的平移由平移的方向和距离决定
2.如图,大长方形的长是10 cm,宽是8 cm,阴影部分的宽均为2 cm,则空白部
分的面积是( D )
A.36cm2 B.40cm2
C.32cm2
D.48cm2
课堂检测,巩固新知
3.如果△ABC沿着北偏东30°的方向移动了2 cm,那么△ABC的边AB上的一点P
课堂检测,巩固新知
5.如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置. (1)写出图中所有平行的直线; (2)写出图中与AD相等的线段,并直接写出其长度; (3)若∠ABC=65°,求∠EFC的度数.
解:(1)AE∥CF,AC∥DF,BC∥EF (2)AD=CF=BE=2 cm (3)∵AE∥CF,∠ABC=65° ∴∠BCF=∠ABC=65° ∵BC∥EF ∴∠EFC+∠BCF=180° ∴∠EFC=115°
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习难点
探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT精品课件

横坐标减4,纵坐标减4,
所以点P的对应点P′的坐标是(m-4,n-4).
(3)△ABC的面积为
3×5-1×1×5- 1×2×2- 1×3×3=6
2
2
2
例3、如图,在平面直角坐标系中,点A,B的坐标分别是(-2,0),(4,0), 现同时将点A,B分别向上平移2个单位长度,再向右平移2个单位长度, 得到A,B的对应点C,D.连接AC,BD,CD. (1)点C的坐标为______,点D的坐标为______, 四边形ABDC的面积为________;
图形的平移
学习目标
1.掌握平面直角坐标系中图形的两次平移与一次平移的转 化,以及平移引起的点的坐标的变化规律; 2.了解平面直角坐标系是数与形之间的桥梁,感受代数与 几何的相互转化,初步建立空间观念.
新课导入
在坐标系中,将坐标作如下变化时,图形将怎样变化?
1. (x,y)(x,y+4) 2. (x,y)(x,y -2)
(1)分别写出下列各点的坐标:A′_______;B′______;C′_______;
(2)若点P(m,n)是△ABC内一点,求平移后△A′B′C′内的对应点P′的坐标;
(3)求△ABC的面积.
解:(1)由题图可知A′(-3,-4),B′(0,-1),C′(2,-3).
(2)点A(1,0)的对应点A′的坐标是(-3,-4),
,-1),则a,b的值为(A
)
A.a=-2,b=-3 C.a=2,b=-3
B.a=-2,b=3 D.a=2,b=3
3.在平面直角坐标系中,点A′(2,-3)可以由点A(-2,3)通过两次平移得到 ,正确的是(D )
A.先向左平移4个单位长度,再向上平移6个单位长度 B.先向右平移4个单位长度,再向上平移6个单位长度 C.先向左平移4个单位长度,再向下平移6个单位长度 D.先向右平移4个单位长度,再向下平移6个单位长度

八年级数学《图形的平移、旋转(中心对称)》【同步+复习+名师课堂=通用课件】

八年级数学《图形的平移、旋转(中心对称)》【同步+复习+名师课堂=通用课件】

金鱼图向(
)平移了(
)格


金鱼图向(
)平移了(
)格


金鱼图向(
)平移了(
)格


金鱼图向(
)平移了(
)格
① ② ③ ③
① ②
金鱼图向(左)平移了( 7 )格
火箭图向(上 )平移了( 4 )格
小房图向( 下 )平移了( 5 )格
• 1.认识图形的平移 • 2.探索平移的性质 • 3.平移的性质的应用
平移的方向和平移的距离
3.平移的性质:
1 .图形平移后,对应点之间的连线平行(或在同一 条直线上)且相等。 2.经过平移所得的图形与平移前的图形全等 图形平移后,图形的大小、形状都不变。
如图,原来是重叠的两个直角三角形,将其 中一个三角形沿着BC方向平移BE的距离,就 得到此图形,求阴影部分面积(单位:厘米).
14m 18m
12m 16m
2m
求出图中绿地的面积 将绿地平移在一起即可求得
还有其它的平移方案吗?
18m
2m
16m 12m
14m
30m
4m
4m
20m
22m
能否用平移的方法求出绿地的面积?
如图所示的矩形,水平方向边 长为a,竖直方向边长为b,将线段 A1A2向右平移一个单位得到B1B2, 得到封闭图形A1A2 B2B1(即阴影部 分),求除去阴影部分后剩余部分 的面积?
C (C`)
A(A`)
B (B`)
L(L`)
(3)由此你发现将⊿ABC移动到⊿A`B`C`的位置是由 哪些因素确定的?
平移的两要素: L` 图形平移后的位置由平移的方向与平移 的距离确定。 L(L`) C`
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册图形的平移与旋转
A B D E F 例1 如图,已知Rt △ABC 中,∠C=90°,BC=4,AC=4,现将△ABC 沿CB 方向平移到如图所示位置:
(1)若平移距离为3,求
△ABC 与△/
//C B A 的重叠 部分的面积;
(2)若平移位置为x (0≤
x
≤4),求△ABC 与△
///C B A 的重叠部分的面积 解:(1)由题意得CC ´=3,BC=4,所以BC ´=1; 重叠部分是一个等腰直角三角形,所以其面积为:2
11121=⨯⨯ (2)2
)4(21x y -=
【方法技巧】
平移要注意起点和终点,平移的方向和距离。

【变式演练】
1、如图,将周长为8的△ABC 沿BC 方向平移1个单位得到
△DEF ,则四边形ABFD 的周长为
2、由图中左侧三角形仅经过一次平移、旋转或
轴对称变换,不能得到的图形是( )
考点二 平移和旋转的应用 例2 如图8,方格纸中的每个小方格都是边长为1个单位的正方形,Rt △ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为(-4,1),点B 的坐标为(-1,1).
(1)先将Rt △ABC 向右平移5个单位,再向下平移1个单位后得到Rt △A 1B 1C 1.试在图中画出图形Rt △A 1B 1C 1.,并写出A 1的坐标;
(2)将Rt △A 1B 1C 1.,绕点A 1顺时针旋转90°后得到Rt △A 2B 2C 2,试在图中画出图形Rt △A 2B 2C 2,并计算Rt △A 1B 1C 1在上述旋转过程中C 1.所经过的路程.
分析:(1)根据平移的性质画
出经过两次平移后的图形
Rt △A 1B 1C 1.即可写出A 1的坐
标;
(2)根据以点A 1为中
(A (C (D )
(B ) 第2题图
心,将Rt△A1B1C1.,绕点A1顺时针旋转90°后得到Rt△A2B2C2;根据图象旋转的性质可得出,C1.所经过的路程正好是以A1C1为半径的四分之一圆周长.
解答:解:(1)画出Rt△A1B1C1.的图形;A1的坐标为(1,0)
(2)画出Rt△A2B2C2.的图形;
A1C1=22
+=
2313
C1.所经过的路经为:
π⨯13.
9013
【变式演练】
1、如图,在方格纸中,△ABC经
过变换得到△DEF,正确的
变换是()
A. 把△ABC绕点C逆时针方
向旋转90°,再向下平移2格
B. 把△ABC绕点C顺时针方向旋转90°,再向下平移5格
C. 把△ABC向下平移4格,再绕点C逆时针方向旋转180°
D. 把△ABC向下平移5格,再绕点C顺时针方向旋转180°
2、如图,方格纸中的每个小方格是边长为1个单位长度的正方形。

①画出将Rt△ABC向右平移5个单位长度后的Rt△A1B1C1;
②再将Rt△A1B1C1绕点C1顺时针
...旋转90°,画出旋转后的Rt△A2B2C1,并求出旋转过程中线段A1C1所扫过的面积(结果保留π)。

课后作业
1、下列图形中,是中心对称图形的是( )
A.
B.C.D.2、下列图形即使轴对称图形又是中心对称图形的有:()
①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形
A.1个B.2个C.3个
D.4个
3、正方形绕其中心旋转一定的角度与原图形重
合,则这个角至少为度.
4、两块大小一样斜边为4且含有
30°角的三角板如图5水平放置.
将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了度.
5、下列图形中,既是轴对称图形又是.中心对称图形的共有()
A.1个B.2个C.3个D.4个
6、如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为
第7题图 A
C B A 1,点B 1的坐标为(0,2),在将线段A 1B 1绕远点O 顺时针旋转90°得到线段A 2B 2,点A 1的对应点为点A 2.
(1)画出线段A 1B 1、A 2B 2;
(2)直接写出在这两次变换过程中,点A 经过A 1到达A 2的路径长.
7、如图,Rt △ABC 中,∠C =90°,将△ABC 沿AB 向下翻折后,再绕点A 按顺时针方向旋转α度(α<∠BAC ),得到Rt △ADE ,其中斜边AE 交BC 于点F ,直角边DE 分别交AB 、BC 于点G 、H .
(1)请根据题意用实线补全
图形;
(2)求证:△AFB ≌△AGE .
8、如图1,在面积为3的正方形ABCD 中,E 、F 分别是BC 和CD 边上的两点,AE ⊥BF 于点G ,且BE =1.
(1)求证:△ABE ≌△BCF ;
(2)求出△ABE 和△BCF 重叠部分(即△BEG )的面积;
(3)现将△ABE 绕点A 逆时针方向旋转到△AB 'E '(如图2),使点E 落在CD 边上的点E '处,问△ABE 在旋转前后与△BCF 重叠部分的面积是否发生了变化?请说明理由.
A B A C D B G F D '
B C
F 'E E
图2图1。

相关文档
最新文档