各形状物体体积计算公式

合集下载

各种形状体积计算公式

各种形状体积计算公式

各种形状体积计算公式在几何学中,体积是三维物体所占据的空间大小。

不同形状的物体有不同的体积计算公式。

下面我将介绍几种常见形状的体积计算公式。

1.立方体的体积计算公式:立方体是所有边长相等的六个平面的多面体。

其体积可通过边长的立方来计算。

公式:体积=边长^32.直方体的体积计算公式:直方体是六个面都是矩形的多面体。

其体积可通过底面积乘以高来计算。

公式:体积=底面积×高3.圆柱体的体积计算公式:圆柱体由一个圆形底面和一个平行于底面的圆形顶面连接而成。

其体积可通过底面积乘以高来计算。

公式:体积=底面积×高注意:底面积一般是指底面圆的面积。

4.圆锥体的体积计算公式:圆锥体由一个圆形底面和一个连接底面到顶点的侧面锥形组成,其体积可通过底面积乘以高再除以3来计算。

公式:体积=(底面积×高)/35.球体的体积计算公式:球体是一个完全由曲线包围的立体形状,其体积可通过四分之三乘以球的半径的立方来计算。

公式:体积=(4/3)×π×半径^36.圆环体的体积计算公式:圆环体由一个圆柱体和一个外部与之共轴的圆台形组成。

其体积可通过外圆台体积减去内圆台体积来计算。

公式:体积=(π×高×(外半径^2+内半径^2+外半径×内半径))/37.圆锥台体的体积计算公式:圆锥台体由一个圆锥体和一个与之底面平行的圆台积组成。

其体积可通过底面积乘以高再除以3来计算。

公式:体积=(π×高×(上底半径^2+下底半径^2+上底半径×下底半径))/38.带截头圆锥体的体积计算公式:带截头圆锥体由一个截头圆锥和一个与之底面平行的圆台积组成,其中截头圆锥的顶点位于圆台积上。

其体积可通过底面积乘以高再除以3来计算。

公式:体积=(π×高×(上底半径^2+上底半径×下底半径+下底半径^2))/3除了上述形状的体积计算公式,还有许多其他的形状体积公式,如多面体、棱柱、棱台、椭球等等。

体积与容量的关系知识点

体积与容量的关系知识点

体积与容量的关系知识点体积和容量是物理学中常用的概念和计量单位,它们之间存在一定的关系。

本文将介绍体积和容量的定义、计算方法以及它们之间的数学关系,以帮助读者更好地理解这两个概念。

一、体积的定义和计算方法体积是指物体占据的空间大小,通常用“立方米”(m³)作为单位进行计量。

体积的计算方法与物体的形状有关,下面将分别介绍几种常见形状物体的体积计算方法。

1. 立方体:立方体是最简单的形状,它的长、宽、高相等。

立方体的体积计算公式为:V = a³,其中V表示体积,a表示边长。

2. 长方体:长方体是另一种常见的形状,它的长、宽、高可以不相等。

长方体的体积计算公式为:V = lwh,其中V表示体积,l、w、h分别表示长、宽、高。

3. 圆柱体:圆柱体是由两个平行圆盘和连接两个圆盘的侧面构成的。

圆柱体的体积计算公式为:V = πr²h,其中V表示体积,r表示圆柱底面的半径,h表示圆柱的高。

二、容量的定义和计算方法容量是指物体能够容纳的物质的量或容积大小。

容量通常用“升”(L)作为单位进行计量。

容量的计算方法与容器的形状有关,下面将介绍几种常见容器的容量计算方法。

1. 直立圆筒形容器:直立圆筒形容器是最常见的容器形状之一,比如水杯、桶等。

直立圆筒形容器的容量计算公式为:V = πr²h,其中V表示容量,r表示圆筒底面半径,h表示圆筒的高。

2. 矩形容器:矩形容器是另一种常见的容器形状,比如长方形沙盘、长方形水池等。

矩形容器的容量计算公式为:V = lwh,其中V表示容量,l、w、h分别表示容器的长、宽、高。

3. 球形容器:球形容器是由一个球体构成的容器,比如篮球、足球等。

球形容器的容量计算公式为:V = (4/3)πr³,其中V表示容量,r表示球体的半径。

三、体积和容量的数学关系体积和容量之间存在一定的数学关系。

一般情况下,体积和容量具有相等的数值,即一个物体的体积等于其容量。

几何体的表面积和体积计算

几何体的表面积和体积计算

几何体的表面积和体积计算几何体是指由空间中的点、线、面构成的实体形状,包括常见的球体、立方体、圆柱体等。

在几何学中,表面积和体积是表征几何体大小和形状的重要指标。

本文将介绍几何体表面积和体积的计算方法。

一、球体的表面积和体积计算球体是一种具有无限个相同半径的曲面,其表面积和体积的计算公式如下:表面积公式:S = 4πr²体积公式:V = (4/3)πr³其中,r表示球体的半径,π是一个数学常数(约等于3.14159)。

二、立方体的表面积和体积计算立方体是一种六个面都相等且相互垂直的立方体形状,其表面积和体积的计算公式如下:表面积公式:S = 6a²体积公式:V = a³其中,a表示立方体的边长。

三、圆柱体的表面积和体积计算圆柱体由两个平行且相等的圆面和一个侧面组成,其表面积和体积的计算公式如下:表面积公式:S = 2πr² + 2πrh体积公式:V = πr²h其中,r表示圆柱的底面半径,h表示圆柱的高。

四、其他除了球体、立方体和圆柱体外,还存在许多其他形状的几何体,如圆锥体、棱柱体、正四面体等。

它们的表面积和体积计算方法各不相同,具体的计算公式可以通过几何学原理来推导得到,或者通过公式手册查询获得。

在实际应用中,计算几何体的表面积和体积可以帮助我们求解一些实际问题,例如建筑设计、制造工程、容器容积计算等等。

掌握几何体的计算方法,对于解决各种几何问题非常重要。

总结:几何体的表面积和体积计算是几何学中的重要概念,不同几何体有不同的计算公式。

通过熟练掌握这些计算方法,我们可以准确地计算各种几何体的表面积和体积。

这不仅有助于我们理解几何体的特性和形状,也能够应用到实际问题中。

(详细版)封闭容器体积计算方法总结

(详细版)封闭容器体积计算方法总结

(详细版)封闭容器体积计算方法总结封闭的体积计算在各个领域都有广泛的应用,比如在工程设计、物料储存和流体传输等方面。

本文将总结几种常见的封闭体积计算方法。

1. 矩形体积计算方法矩形常见于储罐、货箱等场景。

其体积可以通过以下公式计算:体积 = 长 ×宽 ×高2. 圆柱形体积计算方法圆柱形常见于储罐、管道等场景。

其体积可以通过以下公式计算:体积= π × 半径^2 ×高3. 球形体积计算方法球形常见于气球、球形储罐等场景。

其体积可以通过以下公式计算:体积 = (4/3) ×π × 半径^34. 锥形体积计算方法锥形常见于喷嘴、漏斗等场景。

其体积可以通过以下公式计算:体积= (1/3) × π × 半径^2 ×高5. 复杂形状体积计算方法对于复杂形状的,无法使用简单的几何体积公式计算。

此时,可以通过三维建模软件进行计算,或者将分解为多个简单几何体进行计算。

总结:封闭的体积计算方法因形状不同而有所差异。

对于常见的矩形、圆柱、球形和锥形,我们可以使用相应的几何体积公式进行计算。

对于复杂形状的,我们可以利用三维建模软件或分解为简单几何体来进行计算。

在实际应用中,必须对的形状和尺寸进行准确测量,以得到准确的体积计算结果。

请注意:本文提供的封闭体积计算方法仅供参考。

在实际应用中,应根据具体情况选择合适的计算方法,并注意测量的准确性和精度。

以上为对封闭容器体积计算方法的总结。

体积与表面积的计算

体积与表面积的计算

体积与表面积的计算在日常生活中,我们经常会涉及到物体的体积和表面积计算。

无论是在建筑设计中确定材料用量,还是在烹饪中计算容器的容积,准确计算体积和表面积都是必不可少的。

本文将介绍如何计算物体的体积和表面积,同时提供了一些常见物体的计算实例。

一、体积的计算方法体积是物体所占据的三维空间的大小。

在计算中,我们常用的物体形状包括立方体、圆柱体和球体。

下面将详细介绍这些物体的体积计算方法。

1. 立方体的体积计算公式为:V = 边长的立方。

例如,一个边长为10厘米的立方体的体积可以使用公式V = 10^3 = 1000立方厘米来计算。

2. 圆柱体的体积计算公式为:V = 圆柱的底面积 ×高。

圆柱的底面积可以根据形状不同而有所不同,常见的有圆形、矩形等。

例如,一个底面半径为5厘米、高为12厘米的圆柱体的体积可以使用公式V = π × 5^2 × 12 ≈ 942.48立方厘米来计算(π取近似值3.14)。

3. 球体的体积计算公式为:V = 球的半径的立方× (4/3) × π。

例如,一个半径为6厘米的球体的体积可以使用公式V = (4/3) ×3.14 × 6^3 ≈ 904.32立方厘米来计算。

二、表面积的计算方法表面积是物体外部各个面积之和。

在计算中,我们同样会遇到立方体、圆柱体和球体这些常见物体。

下面将介绍这些物体的表面积计算方法。

1. 立方体的表面积计算公式为:S = 6 ×边长的平方。

例如,一个边长为10厘米的立方体的表面积可以使用公式S = 6 ×10^2 = 600平方厘米来计算。

2. 圆柱体的表面积计算公式为:S = 圆柱侧面积 + 2 ×圆柱底面积。

圆柱侧面积计算公式为:圆柱的高 ×圆柱的底周长。

例如,一个底面半径为5厘米、高为12厘米的圆柱体的表面积计算步骤如下:首先,计算圆柱侧面积:12 × 2 × 3.14 × 5 = 376.8平方厘米;其次,计算圆柱底面积:3.14 × 5^2 = 78.5平方厘米;最后,计算总表面积:376.8 + 2 × 78.5 ≈ 533.8平方厘米。

各形状物体体积计算公式

各形状物体体积计算公式

各形状物体体积计算公式⼀些数学的体积和表⾯积计算公式3 ⽴⽅图形名称符号⾯积S和体积V正⽅体 a-边长 S=6a2 V=a3长⽅体 a-长 b-宽 c-⾼ S=2(ab+ac+bc)V=abc棱柱 S-底⾯积 h-⾼ V=Sh棱锥 S-底⾯积 h-⾼ V=Sh/3棱台 S1和S2-上、下底⾯积h-⾼ V=h[S1+S2+(S1S2)1/2]/3正棱台拟柱体 S1-上底⾯积 S2-下底⾯积 S0-中截⾯积 h-⾼V=h(S1+S2+4S0)/6圆柱 r-底半径 h-⾼ C—底⾯周长 S底—底⾯积 S侧—侧⾯积S表—表⾯积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底V=S底h=πr2h空⼼圆柱 R-外圆半径 r-内圆半径 h-⾼V=πh(R2-r2)直圆锥 r-底半径 h-⾼V=πr2h/3圆台 r-上底半径 R-下底半径 h-⾼V=πh(R2+Rr+r2)/3球 r-半径 d-直径V=4/3πr3=πd2/6球缺 h-球缺⾼ r-球半径 a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台 r1和r2-球台上、下底半径 h-⾼V=πh[3(r12+r22)+h2]/6圆环体 R-环体半径 D-环体直径 r-环体截⾯半径 d-环体截⾯直径V=2π2Rr2=π2Dd2/4桶状体 D-桶腹直径 d-桶底直径 h-桶⾼V=πh(2D2+d2)/12 (母线是圆弧形,圆⼼是桶的中⼼)V=πh(2D2+Dd+3d2/4)/15 (母线是抛物、、长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积=底×⾼÷2平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的⾯积=圆周率×半径×半径长⽅体的表⾯积=(长×宽+长×⾼+宽×⾼)×2长⽅体的体积=长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3长⽅体(正⽅体、圆柱体)的体积=底⾯积×⾼平⾯图形名称符号周长C和⾯积S正⽅形a—边长C=4aS=a2长⽅形a和b-边长C=2(a+b)S=ab三⾓形a,b,c-三边长h-a边上的⾼s-周长的⼀半其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对⾓线长α-对⾓线夹⾓S=dD/2·sinα平⾏四边形a,b-边长h-a边的⾼α-两边夹⾓S=ah=absinα菱形a-边长α-夹⾓D-长对⾓线长d-短对⾓线长S=Dd/2=a2sinα梯形a和b-上、下底长h-⾼m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆⼼⾓度数C=2r+2πr×(a/360)S=πr2×(a/360)⼸形l-弧长b-弦长h-⽮⾼r-半径α-圆⼼⾓的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4⽴⽅图形名称符号⾯积S和体积V正⽅体a-边长S=6a2V=a3长⽅体a-长b-宽c-⾼S=2(ab+ac+bc)V=abc棱柱S-底⾯积h-⾼V=Sh棱锥S-底⾯积h-⾼V=Sh/3棱台S1和S2-上、下底⾯积h-⾼V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底⾯积S0-中截⾯积h-⾼V=h(S1+S2+4S0)/6圆柱r-底半径h-⾼C—底⾯周长S底—底⾯积S侧—侧⾯积S表—表⾯积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空⼼圆柱R-外圆半径r-内圆半径h-⾼V=πh(R2-r2)直圆锥r-底半径h-⾼V=πr2h/3圆台r-上底半径R-下底半径h-⾼V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺⾼a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-⾼V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截⾯半径d-环体截⾯直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶⾼V=πh(2D2+d2)/12(母线是圆弧形,圆⼼是桶的中⼼)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)棱台体体积计算公式:V=(1/3)H(S上+S下+√[S上×S下])H是⾼,S上和S下分别是上下底⾯的⾯积。

体积重量的计算公式

体积重量的计算公式

体积重量的计算公式体积重量计算公式一、引言在物理学中,体积和重量是两个常用的物理量。

体积是指物体所占据的空间大小,而重量是指物体受到的地球引力的作用力大小。

在许多实际问题中,我们需要计算物体的体积重量,以便进行相关的应用和研究。

本文将介绍体积和重量的计算公式,并给出一些实际应用的例子。

二、体积的计算公式1. 立方体体积计算公式立方体是一个具有六个相等的正方形面的几何体,它的体积计算公式为:V = a^3,其中a为边长。

例如,一个边长为3cm的立方体的体积为27cm³。

2. 球体体积计算公式球体是一个具有无限个点到一个给定点的距离相等的几何体,它的体积计算公式为:V = (4/3)πr^3,其中r为半径,π取近似值3.14。

例如,一个半径为5cm的球体的体积约为523.33cm³。

3. 圆柱体体积计算公式圆柱体是一个由底面和高所围成的几何体,它的体积计算公式为:V = πr^2h,其中r为底面半径,h为高。

例如,一个底面半径为2cm,高为6cm的圆柱体的体积约为75.4cm³。

4. 圆锥体体积计算公式圆锥体是一个由底面、侧面和顶点所围成的几何体,它的体积计算公式为:V = (1/3)πr^2h,其中r为底面半径,h为高。

例如,一个底面半径为3cm,高为8cm的圆锥体的体积约为75.4cm³。

三、重量的计算公式1. 物体重量计算公式物体的重量可以通过其质量和重力加速度来计算,公式为:W = mg,其中W为重量,m为质量,g为重力加速度。

在地球上,重力加速度约为9.8m/s²。

例如,一个质量为10kg的物体在地球上的重量约为98N。

2. 液体重量计算公式液体的重量可以通过其密度、体积和重力加速度来计算,公式为:W = ρVg,其中W为重量,ρ为密度,V为体积,g为重力加速度。

例如,一个密度为1g/cm³,体积为100cm³的液体在地球上的重量约为980N。

不规则物体的体积计算公式

不规则物体的体积计算公式

不规则物体的体积计算公式
对于不规则物体的体积计算,一种常见的方法是利用离散点的体积累加法。

具体步骤如下:
1. 将不规则物体分割成若干小的区域或体素。

2. 对每个小区域或体素进行体积计算。

3. 将所有小区域或体素的体积进行累加得到整个不规则物体的体积。

具体的体积计算公式将根据不同的不规则物体而有所不同。

下面是一些常见不规则物体的体积计算公式的例子:
1. 球体:
- 半径为 r 的球体的体积公式为V = 4/3πr^3。

2. 圆柱体:
- 底面半径为 r,高度为 h 的圆柱体的体积公式为V = πr^2h。

3. 锥体:
- 底面半径为 r,高度为 h 的锥体的体积公式为V = 1/3πr^2h。

4. 圆锥台(棱锥台):
- 上底面半径为 R,下底面半径为 r,高度为 h 的圆锥台(棱
锥台)的体积公式为V = 1/3π(R^2 + Rr + r^2)h。

对于其他不规则形状的物体,常常需要更复杂的计算方法,如使用三维坐标系下的积分等。

具体计算方法需要根据不规则物体的形状特点进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一些数学的体积和表面积计算公式3 立方图形名称符号面积S和体积V正方体 a-边长 S=6a2 V=a3长方体 a-长 b-宽 c-高 S=2(ab+ac+bc)V=abc棱柱 S-底面积 h-高 V=Sh棱锥 S-底面积 h-高 V=Sh/3棱台 S1和S2-上、下底面积h-高 V=h[S1+S2+(S1S2)1/2]/3正棱台拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高V=h(S1+S2+4S0)/6圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底V=S底h=πr2h空心圆柱 R-外圆半径 r-内圆半径 h-高V=πh(R2-r2)直圆锥 r-底半径 h-高V=πr2h/3圆台 r-上底半径 R-下底半径 h-高V=πh(R2+Rr+r2)/3球 r-半径 d-直径V=4/3πr3=πd2/6球缺 h-球缺高 r-球半径 a-球缺底半径V=πh(3a2+h2)/6 =πh2(3r-h)/3a2=h(2r-h)球台 r1和r2-球台上、下底半径 h-高V=πh[3(r12+r22)+h2]/6圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体 D-桶腹直径 d-桶底直径 h-桶高V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15 (母线是抛物、、长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形d,D-对角线长α-对角线夹角S=dD/2·sinα平行四边形a,b-边长h-a边的高α-两边夹角S=ah=absinα菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh圆r-半径d-直径C=πd=2πrS=πr2=πd2/4扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形l-弧长b-弦长h-矢高r-半径α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环R-外圆半径r-内圆半径D-外圆直径d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆D-长轴d-短轴S=πDd/4立方图形名称符号面积S和体积V正方体a-边长S=6a2V=a3长方体a-长b-宽c-高S=2(ab+ac+bc)V=abc棱柱S-底面积h-高V=Sh棱锥S-底面积h-高V=Sh/3棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S1)1/2]/3 拟柱体S1-上底面积S2-下底面积S0-中截面积h-高V=h(S1+S2+4S0)/6圆柱r-底半径h-高C—底面周长S底—底面积S侧—侧面积S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱R-外圆半径r-内圆半径h-高V=πh(R2-r2)直圆锥r-底半径h-高V=πr2h/3圆台r-上底半径R-下底半径h-高V=πh(R2+Rr+r2)/3球r-半径d-直径V=4/3πr3=πd2/6球缺h-球缺高a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)棱台体体积计算公式:V=(1/3)H(S上+S下+√[S上×S下])H是高,S上和S下分别是上下底面的面积。

棱台体积V=(上底面积+下底面积+4×中截面面积)÷6×高V=(上口边长-0.025)(上口边宽-0.025)杯深=(下口边长+0.025)(下口边宽+0.025)杯深V=(h/3)(a2+ab+b2)﹝其中a,b,h分別为正四棱台的上、下底边及高的大小)棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注:V:体积;S1:上表面积;S2:下表面积;h:高。

关于不等边长的四梭台的与手工计算偏差的原因关于不等边长的四梭台的与手工计算偏差的原因鲁班算量2006在计算独立基础时,发现所有的正四棱台计算正确,而计算有长边与短边的四棱台时,就不对了,量都偏大的原因:独立基础体积正确的计算公式为:四棱台计算公式为(s1+s2+sqr(s1*s2))*h/3,sqr(x)对x求根或A*B*H+h/6*(AB+ab+(A+a)(B+b))其中A、B、H分别为独立基础下部长方体的长、宽、高;a、b、h分别为四棱台的长、宽、高,当然,A与a、B与b相对应。

用A*B*H+h/6*(AB+ab+(A+a)(B+b))是偏小实际工作中,这两种公式都有人用,结果有时是不一样.而使用鲁班算量计算结果偏大,计算不等边长的四梭台与计算公式算出结果不一样是因为我们预算中的四梭台计算公式是近似的计算方法,而鲁班用的是微积分算法,结果相差很小另外鲁班的带马牙槎的构造柱计算结果也与实际算法有差别,其实我们算构造柱时是按如果有两边有马牙槎的为边长上加6cm计算,鲁班算量考虑了层高的不同与马牙槎的高度位也考虑了(马牙槎在板底时正好为退时鲁班的计算结果就会小,但其实鲁班算的是实际的量)。

公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=π(R+r)l球的表面积S=4π*r2圆柱侧面积S=c*h=2π*h圆锥侧面积S=1/2*c*l=π*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*π*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=π*r2h声明:本资料由大家论坛公务员考试专区收集整理,转载请注明出自更多公务员考试信息,考试真题,模拟题:大家论坛,学习的天堂!数列问题1.关键提示:一般而言,公务员考试中的数列问题仅限于数列的简单求和及其变化形式,一般难度不大。

相关文档
最新文档