初中数学八年级第20章数据的初步分析单元测试卷

合集下载

(完整版)八年级下册第二十章数据的分析测试题及答案(人教版)及答案

(完整版)八年级下册第二十章数据的分析测试题及答案(人教版)及答案

八年级数学第二十章数据的分析测试题(人教版)及答案 A(时限:100分钟 满分;100分)一、细心选一选(在每小题给出的四个答案中,只有一个是符合题目要求,请把 正确答案的代号填入题后的括号内,每小题 3分,共30分)1 •为了了解参加某运动会的 200名运动员的年龄情况, 从中抽查了 20名运动员的年龄, 就 这个问题来说,下面说法正确的是( )A . 200名运动员是总体B .每个运动员是总体 C. 20名运动员是所抽取的一个样本D .样本容量是202. 已知一组数据-2,-2,3,-2,-x ,-1的平均数是-0.5,?那么这组数据的众数与中位数 分别是() A . -2 和 3 B . -2 和 0.5 C . -2 和-1 D . -2 和-1.53.一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化,?有四个苗圃生产基地投标(单株树的价格都一样).?采购小组从四个苗圃中都任意抽查了 20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购( )A .甲苗圃的树苗B .乙苗圃的树苗;C.丙苗圃的树苗4 .将一组数据中的每一个数减去50后,所得新的一组数据的平均数是据的平均数是( )A . 50B . 52C. 48D . 25、某服装销售商在进行市场占有率的调查时,他最应该关注的是( 的平均数;B .服装型号的众数;C .服装型号的中位数;D .最小的服装型号D. 丁苗圃的树苗 2, ?则原来那组数)A .服装型号 6 .一组数据— 1, 0, 3, 5,x 的极差是7,那么x 的值可能有( ). (A )1 个7•样本数据3, 6, a,(B )2 个(C )4 个2的平均数是4,则这个样本的方差是((D)6 个A. 2C. 3D.&关于数据—4, 1, 2, —1, 2,下面结果中,错误的是((A )中位数为1(B )方差为26(C )众数为2(D )平均数为09 .已知样本X 1、X 2,,x n 的方差是2,则样本3x 1 + 2, 3x 2 + 2, •-3X n + 2的方差是((A)6 (B)— 2(C)6 或一2(D )不能确定10. 某工厂共有50名员工,他们的月工资方差是s2,现在给每个员工的月工资增加200元,那么他们的新工资的方差().二、耐心填一填(本大题共分10小题,每小题3分共30分)11. _______________________________________________ 一组数据100, 97, 99, 103, 101中,极差是 ____________________________________________ ,方差是 _____ . 12. 一组数据-1 , 0, 1, 2, 3的方差是__ .13.一个样本的方差 S 2 —,则样本容量是 ,样本平均数是1214•在一组数据中,受最大的一个数据值影响最大的数据代表是 ___________ .15、 5个数据分别减去100后所得新数据为8, 6,— 2, 3, 0,则原数据的平均数为 ____________ . 16.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3 , 9.5 , 9.9 , 9.4 , 9.3 , 8.9 ,9.2 , 9.6 ,若去掉一个最高分和一个最低分后的平均分为得分, 则这名歌手最后得分约为 17. 一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是18. _________________________________________________________________ 若X 1, X 2 , X 3的平均数为7 ,贝y X 1+ 3 , X 2 + 2 , X 3 + 4的平均数为 _________________________ . 19•为了估计湖里有多少鱼, 我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,?则估计湖里约有鱼 ______ 条太稳定,那么根据图的信息,估计小张和小李两人中新手是三、、解答题仔细想一想,(本大题共40 分)21 (本小题6分)某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有 1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1) 求出样本平均数、中位数和众数; (2) 估计全年级的平均分.22. (6分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表(A)变为 s 2 + 200 (B)不变 (C)变大了 (D)变小了20、小张和小李去练习射击, 第一轮10枪打完后两人的成绩如图所示,?通常新手的成绩不■小张▲小李(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.23(本小题7分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:⑴你根据图中的数据填写下表:⑵从平均数和方差相结合看,分析谁的成绩好些24. (本小题7分某乡镇企业生产部有技术工人15人,?生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260 (件),?你认为这个定额是否合理,为什么?25、(本小题7分•为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛):544457335566366(1) __________________________________ 这批橡胶制品的抗拉伸程度的极差为牛;(2)若生产产品的抗拉伸程度的波动方差大于 1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.26 (本小题7分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)?班这三个班中推荐一个班为市级先进班集体的候选班,?现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)(1)请问各班五项考评分的平均数、?中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,?设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),?按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.八年级数学第二十章数据的分析测试题(人教版)答案A .选择题1 . D2. D3.D4.B 5. B6 .B. 7.A;&B.9. B. 10. B. 、填空题1 1 . 6;4. 12. 213.12;3. 14. 平均数. 15.1031 6 .9.4分.17. 10318.10 ;19. 1500. 20.小李三、解答题解21. (1)样本平均数是8分,中位数是80分,众数是85分;(2)估计全年级平均80分.解:22. (1) x=5, y=7; (2) a=90, b=80.解23.⑴甲:6, 6, 0.4 乙:6, 6, 2.8⑵甲、乙成绩的平均数都是6,且打<3 ,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些•解:24. (1 )平均数:260 (件)中位数:240 (件)众数:240 (件);(2)不合理,?因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,?尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.解25. (1)4 ;⑵方差约是1.5,大于1.3,说明应该对机器进行检修.26. 解:(1)(1)设P1, P4, P8顺次为3个班考评分的平均数;W1, W4, W8顺次为三个班考评分的中位数;乙,Z4, Z8顺次为三个班考评分的众数.1贝P1= (10+10+6+10+7)=8.6 (分).51 1F4=—(8+8+8+9+10)=8.6 (分),P8=(9+10+9+6+9)=8.6 (分);5 5W1=10 (分),W4=8 (分),W8=9 (?分);乙=10 (分),Z4=8 (分),Z8=9 (分)•••平均数不能反映这三个班的考评结果的差异,而用中位数(或众数)?能反映差异,且W1>W8>W4 (Z1 >Z8>乙)(2)给出一种参考答案,选定行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3: 2 : 1:1设K1、K4、K8顺次为3个班的考评分,贝K1=0.3 X 10+0.3 X 10+0.2 X 6+0.1 X 10+0.1 X 7=8.9K4=0.3 X 10+0.3 X 8+0.2 X 8+0.1 X 9+0.1 X 8=8.7K8=0.3 X 9+0.3 X 10+0.2 X 9+0.1 X 6+0.1 X 9=9.0T K8>K1>K4,•••推荐初三(8)班为市级先进班集体的候选班较合适.。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。

【3套】人教版八年级下册数学 第20章 数据的分析 单元测试(含答案)

【3套】人教版八年级下册数学 第20章 数据的分析 单元测试(含答案)

人教版八年级下册数学第20章数据的分析单元测试(含答案)一、选择题1.数据2、3、2、3、5、3的众数是()A. 2B. 2.5C. 3D. 52.已知一组数据:1,2,6,3,3,下列说法正确的是()A. 中位数是6B. 平均数是4C. 众数是3D. 方差是53.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高为1.65米,而小华的身高为1.66米.下列说法错误的是().A. 1.65米是该班学生身高的平均水平B. 班上比小华高的学生不会超过25人C. 这组身高的中位数不一定是1.65米D. 这组身高的众数不一定是1.65米4.在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A. 138B. 183C. 90D. 935.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A. 100B. 90C. 80D. 706.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是( )A. 甲B. 乙C. 丙D. 丁7.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A. 众数是20岁,中位数是19岁B. 众数是19岁,中位数是19岁C. 众数是19岁,中位数是20.5岁D. 众数是19岁,中位数是20岁9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的方差是()A. B. 10 C. D.10.某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是()A. 1.60,1.56B. 1.59,1.58C. 1.60,1.58D. 1.60,1.6011.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数为()A. 2B. 2.75C. 3D. 512.一名学生军训时连续射靶10次,命中环数分别为7,8,6,8,5,9,10,7,6,4.则这名学生射击环数的方差是()A. 3B. 2.9C. 2.8D. 2.7二、填空题13.用计算器计算平均数时,必须先清除________中的数值.14.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的中位数为________ .15.已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为________.16.一组数据x1,x2,…x n的平均数为,另一组数据y1,y2,…y n的平均数为,则第三组数据x1+y1,x2+y2,…x n+y n的平均数为________(用,表示)17.若一组数据3,3,4,x,8的平均数是4,则这组数据的中位数是________18.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是________元.19. 在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是 ________.20.小颖使用计算器求30个数据的平均数时,错将其中一个数据15输入为105,那么由此求出的平均数与实际平均数的差是________21.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.三、解答题22.某校九年级甲班学生中,有5人13岁,30人14岁,5人15岁,求这个班级学生的平均年龄.23.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?24.为了解某学校初三男生1000米长跑,女生800米长跑的成绩情况,从该校初三学生中随机抽取了10名男生和10名女生进行测试,将所得的成绩分别制成如下的表1和图1,并根据男生成绩绘制成了不完整的频率分布直方图(图2).表1(1)根据表1,补全图片2;(2)根据图1,10名女生成绩的中位数是多少?众数是多少?(3)按规定,初三女生800米长跑成绩不超过3′19″就可以得满分.该校初三学生共490人,其中男生比女生少70人.如果该校初三女生全部参加800米长跑测试,请你估计可获得满分的人数约为多少?25.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:(1)观察条形统计图,可以发现:八年级成绩的标准差________,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=________,n=________;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.参考答案一、选择题C C B C B B BD D C D A二、填空题13.统计存储器14.115.916.17.318.1519.9.520.321.小林三、解答题22.解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁.23.解:(1)==260(件),中位数是:240件,众数是:240件;(2)240合适.24.解:(1)如图2所示:(2)∵10名女生的成绩分别是:3′10〞,3′10〞,3′10〞,3′16〞,3′21〞,3′21〞,3′27〞,3′33〞,3′43〞,3′49〞,∴这10名女生成绩的中位数是:(3′21〞+3′21〞)÷2=3′21〞,众数是:3′10〞;故答案为:3′21″;3′10″;(3)设女生有x人,男生有(x﹣70)人,由题意得:x+x﹣70=490,x=280,∵这10名同学有4名同学成绩达满分,∴估计该校女生的满分率为×100%=40%,∴280×40%=112(人).答:女生得满分的人数是112人25.(1)<;6;7.5(2)解:七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7(3)解:①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好人教八年级数学下册 第二十章 数据的分析 单元测试(含答案)一、相信你的选择1、 若数据8,4,,2x 的平均数是4,则这组数据的中位数和众数是( )A 、3和2B 、2和3C 、2和2D 、2和42、数学老师对小明在参加高考前5次数学模拟考试的成绩进行统计分析,判断小明的数学成绩是否稳定,于是老师需要知道小明这5次数学成绩的( ) A 、平均数或中位数 B 、方差或频率 C 、频数或众数 D 、方差或极差3、已知一组数据5,15,75,45,25,75,45,35,45,35,那么40是这组数据的( ) A 、平均数但不是中位数 B 、平均数也是中位数 C 、众数 D 、中位数但不是平均数4、小亮所在学习小组的同学们响应“为国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷奶奶们学习英语日常用语,他们记录的各社区参加其中一次活动的人数如下:32,26,28,31,32,32,33,那么这组数据的众数和中位数分别是( )A 、31,32B 、32,32C 、31,3D 、32,35、若54321,,,,x x x x x 的平均数为-x ,方差为2s ,则3,3,3,3,354321+++++x x x x x 的平均数和方差分别是 ( )A 、2+-x ,32+s B 、3+-x ,2s C 、-x ,32+s D 、-x ,2s6、已知一组数据1,2,,0,1--x 的平均数是0,那么这组数据的标准差( ) A 、2 B 、2 C 、4 D 、2-7、一组数据n x x x x ,,,,321 的极差是8,另一组数据12,,12,12,12321++++n x x x x 的极差是( )A 、8B 、9C 、16D 、178、某中学人数相等的甲、乙两班学生参加同一次数学测验,两班成绩的方差分别是2452=甲s ,1902=乙s ,那么成绩比较整齐的是( )A 、甲班B 、乙班C 、两班一样整齐D 、无法确定二、试试你的身手1、根据天气预报可知,我国某城市一年中的最高气温为C ︒37,最低气温是C ︒-8,那么这个城市一年中温度的极差为2、航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除了甲以外的5名同学的平均分是 分.3、数据9,10,8,10,9,10,7,9的方差是________,标准差是_____.4、甲、乙两种产品进行对比试验,得知乙产品比甲产品的性能更稳定,如果甲、乙两种产品的方差分别是甲2s,乙2s ,则它们的大小关系是在15,5,16,16,28这组数据中,众数、中位数分别是6、甲、乙两人比赛飞镖,两人所得环数甲的方差是15,乙所得环数如下:0,1,5,9,10,那么,成绩比较稳定的是7、八年级上学期期中质量检测之后,甲、乙两班的数学成绩的统计情况如下表所示:(单位:分)从成绩的波动情况来看, 班学生的成绩波动较大. 8、若一个样本是3,3,1,,1,3--a ,它们的平均数-x 是a 的31,则这个样本的标准差是 三、挑战你的技能1、甲、乙两台编织机同时编织一种毛衣,在5天中,两台编织机每天出的合格品数量如下(单位:件):甲:10 , 8 , 7 , 7 ,8; 乙:9 , 8 , 7 , 7, 9.在这5天中,哪台编织机出合格品的波动较小?2、甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析(1)请你填上表中乙进行射击练习的相关数据;(2)根据你所学的统计知识,利用上面提供的数据评价甲、乙两人的射击水平.3、一次实习作业课中,甲、乙两组学生各自对学校旗杆进行了5次测量,所得数据如下表所示.现已算得乙组所测得数据的平均数为,00.12=-乙x ,方差002.02=乙s . (1)求甲组所测得数据的中位数与平均数;(2)问哪一组学生所测得的旗杆高度比较一致.四、拓广探究1、某电信局对计算机拨号上网用户提供三种付费方式供用户选择(每个用户只能选择其中一种付费方式):甲种方式是按实际用时付费,每小时付信息费4元,另加付电话费,每小时1.2元;乙种方式是包月制,每月付信息费100元,同时加付电话费每小时1.2元;丙种方式也是包月制,每月付信息费150元,但不必再付电话费.某用户为选择合适的付费方式,连续记录7天中每天的上网所花的时间(单位:分钟):1、A2、A3、B4、B5、B6、B7、D8、D 二、1、45℃2、713、1,14、乙甲22s s 〉 5、16,166、甲7、甲8、5.33 三、1、解:这20名学生成绩的众数是80分,中位数是70分,平均数是()()分72290780670360250201=⨯+⨯+⨯+⨯+⨯. 2、解:该用户一个月上网总时间约为:()h t 276030780602774354062=÷⨯++++++=。

人教版八年级下册数学《第20章 数据的分析》单元测试卷03(含答案)

人教版八年级下册数学《第20章 数据的分析》单元测试卷03(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分40分)1.一组数据5,3,3,2,5,7的中位数是()A .2B .2.5C .3D .42.一组数据x 、0、1、﹣2、3的平均数是1,则x 的值是()A .3B .1C .2.5D .03.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A .中位数B .众数C .平均数D .方差4.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S 甲2=1.4,S 乙2=0.6,则两人射击成绩波动情况是()A .甲波动大B .乙波动大C .甲、乙波动一样D .无法比较5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A .平均数是7B .众数是7C .极差是5D .中位数8.56.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A .100分,95分B .98分.95分C .98分,98分D .97分,98分7.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁8.已知一组数据x1,x2,…,x n的平均数x=2,则数据3x1+2,3x2+2,…,3x n+2的平均数是()A.8B.6C.4D.2二、填空题(共8小题,满分40分)9.一组数据1,6,3,﹣4,5的极差是.10.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.11.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.12.某校有31名同学参加某比赛,预赛成绩各不同,要取前16名参加决赛,小红已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这31名同学成绩的.13.某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是元.14.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)15.已知一组数据a,b,c的方差为4,那么数据3a﹣2,3b﹣2,3c﹣2的方差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.三、解答题(共6小题,满分40分)17.某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)1660,1540,1510,1670,1620,1580,1580,1600,1620,1620(1)全厂员工的月平均收入是多少?(2)平均每名员工的年薪是多少?(3)财务科本月应准备多少钱发工资?18.近日,“复旦学霸图书馆”新闻引发网友热议,其中,“风雨无阻爱学习”的潘同学一年时间图书馆打卡301次,更是成为众多学子膜拜的对象.某大学图书馆为了更好服务学子,对某周来馆人数进行统计,统计数据如下(单位:人):时间周一周二周三周四周五周六周日人数65055071042065023203100(1)该周到馆人数的平均数为人、众数为人、中位数为人;(2)周一至周五到馆人数相差不多,用这五天的数据估算该周的平均数合适吗?为什么?(3)选择合适的数据,估算该校一个月的到馆人数(一个月按30天计).19.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生 1.9987女生7.92 1.99368根据以上信息,解答下列问题:(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)20.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848721.在学校组织的社会实践活动中,甲、乙两人参加了射击比赛,每人射击七次,命中的环数如表:序号一二三四五六七甲命中的环数(环)78869810乙命中的环数(环)5106781010根据以上信息,解决以下问题:(1)写出甲、乙两人命中环数的众数;(2)已知通过计算器求得甲x=8,s甲2≈1.43,试比较甲、乙两人谁的成绩更稳定?22.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.参考答案一、选择题(共8小题,满分40分)1.D2.A3.A4.A5.D6.C7.B8.A二、填空题(共8小题,满分40分)9.10.10.46.11.﹣3.12.中位数.13.9.55.14.众数.15.36.16.86.三、解答题(共6小题,满分40分)17.解:(1)员工的月平均收入为:1600(元);(2)平均每名员工的年薪是1600×12=19200(元);(3)从(2)得到员工的月平均收入为1600元,工厂共有220名员工,所以,财务科本月应准备1600×220=35.2(万元).18.解:(1)该周到馆人数平均数为:´71(650+550+710+420+650+2320+3100)=1200(人),众数为650人,中位数为650人,故答案为:1200,650,650;(2)由于周六、周日比周一至周五到馆人数多得多,所以用周一至周五这五天的数据估算该周的平均数不合适;(3)估算该校一个月的到馆人数为:1200×30=36000(人).19.解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人),故答案为:20、25;(2)男生的平均分为´201(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:平均分方差中位数众数男生7.9 1.9987女生7.921.993688(3)我认为女生队表现更突出.理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.20.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:87.4(分),乙班的平均分为:87.6(分),∵87.4<87.6,∴乙班将获胜.21.解:(1)由题意可知:甲的众数为8,乙的众数为10;(2)乙的平均数:8,乙的方差为:S乙271=[(5﹣8)2+(10﹣8)2+…+(10﹣8)2]»3.71.∵得甲x=8,s甲2≈1.43,∴甲乙的平均成绩一样,而甲的方差小于乙的方差,∴甲的成绩更稳定.22.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.。

完整版八年级下册第二十章数据的分析测试题及答案人教版及答案

完整版八年级下册第二十章数据的分析测试题及答案人教版及答案

A八年级数学第二十章数据的分析测试题(人教版)及答案分)满分;100(时限:100分钟在每小题给出的四个答案中,只有一个是符合题目要求,请把(一、细心选一选) 分正确答案的代号填入题后的括号内,每小题3分,共30就名运动员的年龄,200名运动员的年龄情况,从中抽查了201.为了了解参加某运动会的)这个问题来说,下面说法正确的是(.每个运动员是总体 B A.200名运动员是总体20.样本容量是 D C.20名运动员是所抽取的一个样本那么这组数据的众数与中位数?的平均数是-0.5,3,-2,-x,-12.已知一组数据-2,-2,)分别是(-1.5和-1 D.-2-2和0.5 C.-2和 A.-2和3 B.有四个苗圃生产?一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,3.株树苗的高20.?采购小组从四个苗圃中都任意抽查了基地投标(单株树的价格都一样)度,得到的数据如下:树苗平均高度(单位:m)标准差1.8 0.2 甲苗圃 1.8 0.6 乙苗圃0.62.0 丙苗圃 2.0 0.2丁苗圃请你帮采购小组出谋划策,应选购()A.甲苗圃的树苗B.乙苗圃的树苗; C.丙苗圃的树苗D.丁苗圃的树苗4.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,?则原来那组数据的平均数是()A.50 B.52 C.48 D.25、某服装销售商在进行市场占有率的调查时,他最应该关注的是() A.服装型号的平均数;B.服装型号的众数;C.服装型号的中位数;D.最小的服装型号6.一组数据-1,0,3,5,x的极差是7,那么x的值可能有( ).(A)1个(B)2个(C)4个(D)6个7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 2B.C. 3D. 28.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26(D)2(C)众数为平均数为09.已知样本x、x,…,x的方差是2,则样本3x+2,3x+2,…,3x+2的方差是( )nn1122 (A)6(B)-2(C)6或-2(D)不能确定2,现在给每个员工的月工资增加200名员工,50他们的月工资方差是s元,某工厂共有10..) ( 那么他们的新工资的方差2 (B)不变变小了(D) (C)(A)变为s变大了+200二、耐心填一填分)分共30(本大题共分10小题,每小题3 ______.101中,极差是______,方差是11.一组数据100,97,99,103,的方差是,3.__ ___12、一组数据-1,0,1,212?s,则样本容量是______,样本平均数是13.一个样本的方差______.1214.在一组数据中,受最大的一个数据值影响最大的数据代表是______.15、5个数据分别减去100后所得新数据为8,6,-2,3,0,则原数据的平均数为. 16.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.17.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________18.若x,x,x的平均数为7,则x+3,x+2,x+4的平均数为.32211319.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,?则估计湖里约有鱼_______条20、小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,?通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.三、仔细想一想,(本大题共40分)、解答题21(本小题6分)某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.22.(6分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表60 70 80 90 100 成绩(分)15xy2人数(人)(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.23(本小题7分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:⑴你根据图中的数据填写下表:姓名平均数(环)众数(环)方差甲乙⑵从平均数和方差相结合看,分析谁的成绩好些.24.(本小题7分某乡镇企业生产部有技术工人15人,?生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:540 450 300 240 210 120每人加工件数1 1 2 6 3 2 人数(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),?你认为这个定额是否合理,为什么?25、(本小题7分.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛):5 4 4 4 5 7 3 3 5 56 6 3 6 6(1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.26(本小题7分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)?班这三个班中推荐一个班为市级先进班集体的候选班,?现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)班级行为规范学习成绩校运动会艺术获奖劳动卫生10 6 10 7 10)班九年级(1 8 8 9 8 10 九年级(4)班9109698)班九年级((1)请问各班五项考评分的平均数、?中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,?设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),?按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高的班作为市级先进班集体的候选班.....A八年级数学第二十章数据的分析测试题(人教版)答案一.选择题5. B4.B .D 3.D D 1.2.B.10B.B.9..6.B.7.A;8 一、填空题15.103 .平均数..12;3.141311.6;4.12. 220.小李19.1500.16.9.4分.17.103 18.10;三、解答题分.85分;(2)估计全年级平均80.解21(1)样本平均数是80分,中位数是80分,众数是a=90,b=80.1)x=5,y=7;(2).解:22(2.8 ,乙:6,6,6,0.4 解23. ⑴甲:6,所以,甲的成绩较为稳定,甲成绩比<,且6 ⑵甲、乙成绩的平均数都是.乙成绩要好些(件)众数:240(件);解:24.(1)平均数:260(件)中位数:240人不11?2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有(既240能达到此定额,?尽管260是平均数,但不利于调动多数员工的积极性,因为是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.,说明应该对机器进行检修.;(2)方差约是1.5,大于1.3解25.(1)4 P,P顺次为3个班考评分的平均数;26.解:(1)(1)设P,814,W,W顺次为三个班考评分的中位数;W841顺次为三个班考评分的众数.Z,Z,Z8141(分).10+10+6+10+7则:P)==8.6(1511=(9+10+9+6+9)=8.6(分);(=8+8+8+9+10)=8.6(分),PP 8455W=10(分),W=8(分),W=9(?分);Z=10(分),Z=8(分),Z=9(分)841184∴平均数不能反映这三个班的考评结果的差异,而用中位数(或众数)?能反映差异,且W>W>W(Z>Z>Z)418814(2)给出一种参考答案,选定行为规范:学习成绩:校运动会:艺术获奖:劳动卫生=3:3:2:1:1设K、K、K顺次为3个班的考评分,841则:K=0.3×10+0.3×10+0.2×6+0.1×10+0.1×7=8.9 1K=0.3×10+0.3×8+0.2×8+0.1×9+0.1×8=8.7 4K=0.3×9+0.3×10+0.2×9+0.1×6+0.1×9=9.08.∵K>K>K,418∴推荐初三(8)班为市级先进班集体的候选班较合适.。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。

(完整版)人教版八年级数学第二十章数据的分析测试题

(完整版)人教版八年级数学第二十章数据的分析测试题

三、 21. ⑴由 1+2+3+a =3 得 a= 6;由 4+5+a+b = 5 得 b= 5
4
4
0, 1, 2, 3,4, 6, 5 的平均数为 3,∴ S2= 4.
⑶ 设七个数为 a, b, c, d, e, f, g, a< b< c< d< e< f< g
依题意得 a+b+c+d+f+g =38 ①,

A. 2
B. 3
C. 4
D. 5
3.已知样本 x1, x2, x3, x4 的平均数是 2,则 x1+ 3,x2+ 3, x3+ 3, x4+ 3 的平均数是 ()
A. 2
B. 2.75
C. 3
D. 5
4.学校食堂有 2 元, 3 元, 4 元三种价格的饭菜供师生选择(每人限购一份) 某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是(
分为 100 分)如下表所示:
年级
决赛成绩(单位:分)
七年级
80 86 88 80 88 99 80
74
八年级
85 85 87 97 85 76 88
77
九年级
82 80 78 78 81 96 97
88
91
89
87
88
89
86
⑴ 请你填写下表: ⑵ 请从以下两个不 同的角度对三个年级 的决赛成绩进行分析: ① 从平均数和众数
环数
8 7 6
5
5
4
4
3
3
2
2
1
1
0
12 3 4 5


0

八年级数学下第二十章数据的分析单元测试卷人教版带答案

八年级数学下第二十章数据的分析单元测试卷人教版带答案

适用精选文件资料分享八年级数学下第二十章数据的解析单元测试卷(人教版带答案)人教版数学八年级下册第二十章数据的解析单元测试卷一、选择题 1 .某校在体育健康测试中,有 8 名男生“引体向上”的成绩 ( 单位:次 ) 分别是: 14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是( ) A.10,12 B.12,11 C.11,12 D.12,12 2.某校有 25 名同学参加某比赛,初赛成绩各不同样,取前 13 名参加决赛,此中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这 25 名同学成绩的 () A .最高分 B .中位数 C.方差D.均匀数 3 .某次歌唱比赛,最后三名选手的成绩统计以下:若唱功、音乐知识、综合知识按6∶3∶1的加权均匀分排出冠军、亚军、季军,则冠军、亚军、季军分别是 () 测试项目测试成绩王飞李真林杨唱功 98 95 80 音乐知识 80 90 100综合知识 8090 100 A.王飞、李真、林杨 B .王飞、林杨、李真 C .李真、王飞、林杨 D.李真、林杨、王飞 4 .若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9 的方差相等,则x 的值为 ()A.1B.6C.1 或6D.5 或 6 5 .某电脑公司销售部为了制定下个月的销售计划,对20位销售员本月的销售量进行了统计,绘制成以以下图的统计图,则这 20 位销售人员本月销售量的均匀数、中位数、众数分别是 () A.19,20,14 B.19,20,20 C.18.4 ,20,20 D.18.4 ,25,20 6.下表是某校合唱团成员的年龄分布:年龄( 岁) 13 14 15 16 频数 5 15x 10 -x 关于不一样的 x,以下关于年龄的统计量不会发生改变的是() A.均匀数、中位数 B .众数、中位数 C.均匀数、方差 D.中位数、方差二、填空题 7 .某学习小组有 8 人,在一次数学测试中的成绩分别是:102,115,100,105,92,105,85,104,则他们成绩的均匀数是____. 8 .某水晶商店一段时间内销售了各种不一样价格的水晶项链75 条,其价格和销售数目以下表:价格(元) 20 25 30 35 40 50 70 80100150 数目(条下次进货时,你建议商店应多进价格为 ____元的水晶项链. 9 .在某次公益活动中,小明对本班同学的捐款状况进行了统计,绘制成以下不完好的统计图.此中捐 100 元的人数占全班总人数的 25%,则本次捐款的中位数是 ____元. 10 .一组数据 2,3,x,y,12 中,独一众数是 12,均匀数是 6,这组数据的中位数是 ____. 11 .已知 2,3,5,m,n 五个数据的方差是 2,那么 3,4,6,m+1,n+1 五个数据的方差是 ____. 12 .甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数经统计计算后填入下表:班级参赛人数均匀字数中位数方差甲 55135 149 191 乙 55 135 151 110 某同学依据上表解析得出以下结论:①甲、乙两班学生成绩的均匀水平同样;②乙班优秀人数多于甲班优秀人数 ( 每分钟输入汉字数≥ 150 个为优秀 ) ;③甲班的成绩颠簸比乙班的成绩颠簸大.上述结论正确的选项是 _________.三、解答题 13 .某餐厅共有 10 名员工,全部员工薪资的状况以下表:请解答以下问题: (1) 餐厅全部员工的均匀薪资是多少?(2) 全部员工薪资的中位数是多少?(3) 用均匀数还是中位数描述该餐厅员工薪资的一般水平比较合适?(4) 去掉经理和厨师甲的薪资后,其余员工的均匀薪资是多少?它能否能反响餐厅员工薪资的一般水平?14.某校组织了一次环保知识比赛,每班选 25 名同学参加比赛,成绩分为 A,B,C,D四个等级,此中相应等级的得分挨次记为 100 分、90分、80 分、 70 分,学校将某年级的一班和二班的成绩整理并绘制成以下的统计图:请依据以上供给的信息解答以下问题: (1) 把一班比赛成绩统计图增补完好; (2) 均匀数 ( 分) 中位数 ( 分) 众数 ( 分)一班 a _________ b _________ 90二班87.6 80 c _______(3)请从以下给出的三个方面中任选一个对此次比赛成绩的结果进行解析:①从均匀数和中位数方面来比较一班和二班的成绩;②从均匀数和众数方面来比较一班和二班的成绩;③从 B 级以上 ( 包含 B 级)的人数方面来比较一班和二班的成绩.15.甲、乙两名队员参加射击训练,成绩分别绘制成以下两个统计图:依据以上信息,整理解析数据以下:均匀成绩 ( 环) 中位数 ( 环) 众数( 环) 方差甲 a 7 7 1.2 乙 7 b 8 c (1) 写出表格中 a,b,c 的值; (2) 分别运用表中的四个统计量,简要解析这两名队员的射击成绩,若选派此中一名参赛,你以为应选哪名队员?答案:一、1---6CBCCCB二、 7. 101 8. 50 9. 20 10. 3 11. 2 12.①②③三、 13. (1)均匀薪资为4350元(2) 薪资的中位数为2000元 (3) 由(1)(2) 可知,用中位数描述该餐厅员工薪资的一般水平比较合适 (4) 去掉经理和厨师甲的薪资后,其余员工的均匀薪资是2062.5 元,和(3) 的结果对比较,能反响餐厅员工薪资的一般水平14.(1)25 -6-12-5=2( 人) ,补图略(2)a =87.6 ,b=90,c=100 (3)①一班和二班均匀数同样,一班的中位数大于二班的中位数,故一班的成绩好于二班;②一班和二班均匀数同样,一班的众数小于二班的众数,故二班的成绩好于一班;③B 级以上 ( 包含 B 级) 一班 18 人,二班 12 人,故一班的成绩好于二班 15. (1)a =7,b=7.5 ,c=4.2 (2) 从均匀成绩看甲、乙二人的成绩相等均为7 环,从中位数看甲射中7 环以上的次数小于乙,从众数看甲射中 7 环的次数最多而乙射中 8 环的次数最多,从方差看甲的成绩比乙的成绩稳固,综合以上各要素,若选派一名学生参赛的话,可选择乙参赛,由于乙获取高分的可能更大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章数据的初步分析单元测试卷一、选择题(每题3分,共30分),√,√3,π,-2.其中无理数出现的频率为( )1.已知数据:13A.20%B.40%C.60%D.80%2.已知10个数据如下:63,65,67,69,66,64,66,64,65,68,对这些数据编制频率分布表,其中64.5~66.5这组的频率是( )A.0.4B.0.5C.4D.53.一组数据2,3,5,4,4,6的中位数和平均数分别是( )A.4.5和4B.4和4C.4和4.8D.5和44.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( )A.80分B.82分C.84分D.86分5.如果2,2,5和x的平均数为5,而3,4,5,x和y的平均数也是5,那么x-y=( )A.8B.9C.10D.116.某中学随机调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间/小时 5 6 7 8人数10 15 20 5则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时7.某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是( )A.90,80B.70,100C.80,80D.100,808.把一组数据中的每一个数据都减去80,得到一组新数据,若求得新数据的平均数是1.2,方差是4.4,则原来数据的平均数和方差分别是( )A.78.8,75.6B.78.8,4.4C.81.2,84.4D.81.2,4.49.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是( )A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小10.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个方面进行分析,甲、乙、丙的成绩分析如下表所示,丁的成绩如图所示.甲 乙 丙 平均数/环7.9 7.9 8 方差 3.29 0.49 1.8根据以上图表信息,参赛选手应选( )A.甲B.乙C.丙D.丁二、填空题(每题4分,共16分)11.某校女子排球队队员的年龄分布如下表:年龄/岁13 14 15 人数 4 7 4则该校女子排球队队员的平均年龄是_____________岁.12. 为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:平均成绩都为9.3环;方差分别为s 甲2=1.22,s 乙2=1.68,s 丙2=0.44,则应该选_____________参加全运会.13.两组数据:3,a,2b,5与a,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为_____________.14.已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,以此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=_____________ (用只含有k的代数式表示). 三、解答题(15~18题每题7分,19~21题每题8分,其余每题11分,共74分)15.在“心系灾区”自愿捐款活动中,某班30名同学的捐款情况如下表: 捐款数/5 10 15 20 25 30元人数11 9 6 2 1 1(1)这个班捐款总数是多少元?(2)求这30名同学捐款的平均数.16.为了宣传节约用水,小明随机调查了某小区家庭5月份的用水情况,并将收集的数据整理成如图所示的统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的众数、平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.17.下表是光明中学七(5)班全班40名学生的出生月份的调查记录:2 8 9 6 5 43 3 11 1011 2 12 7 2 9 12 8 1 1212 10 12 3 4 9 12 3 5 1011 4 12 10 5 3 2 8 10 12(1)请你重新设计一张统计表,使全班学生在每个月份出生人数情况一目了然;(2)求出10月份出生的学生的频数和频率;(3)现在是1月份,如果你准备为下个月生日的每一名学生送一份礼物,那么你应该准备多少份礼物?18.我市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了了解学生们的劳动情况,学校随机调查了部分学生的劳动时间,并用得到的数据绘制了如图所示不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整.(2)扇形图中的“1.5时”部分的圆心角是多少度?(3)求抽查的学生劳动时间的众数和中位数.19.嘉兴市~社会消费品零售总额及增速统计图如图:请根据图中信息,解答下列问题:(1)求嘉兴市~社会消费品零售总额增速..这组数据的中位数.(2)求嘉兴市近三年(~)的社会消费品零售总额....这组数据的平均数. (3)用适当的方法预测嘉兴市社会消费品零售总额(只要求列出算式,不必计算出结果).20.某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有_____________名同学参加这次测验;(2)这次测验成绩的中位数落在哪个分数段内?(3)若这次测验中,成绩在80分以上(不含80分)为优秀,则该班这次数学测验的优秀率是多少?21.学校为了了解九年级学生跳绳的训练情况,从九年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的次数)从低到高分成六段记为第一到六组,最后整理成下面的频数直方图.请根据直方图中样本数据提供的信息解答下列问题:(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校九年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数).22.为了了解学生参加家务劳动的情况,某中学随机抽取部分学生,统计他们双休日两天家务劳动的时间,将统计的劳动时间x(单位:分钟)分成5组:30≤x<60,60≤x<90,90≤x<120,120≤x<150,150≤x<180,绘制成频数直方图如图.请根据图中提供的信息,解答下列问题:(1)这次抽样调查的样本容量是_____________;(2)根据小组60≤x<90的组中值75,估计该组中所有数据的和为_____________;(3)该中学共有1 000名学生,估计双休日两天有多少名学生家务劳动的时间不少于90分钟?23.在创建“绿色环境城市”活动中,某城市发布了一份1月份至5月份空气质量抽样调查报告,随机抽查的30天中,空气质量的相关信息如图和表所示:空气污0~50 51~100 101~150 151~200 201~250 染指数空气质优良轻微污染轻度污染中度污染量级别天数 6 15 3 2请根据图表解答下列问题(结果取整数):(1)请将图表补充完整;(2)根据抽样数据,估计该城市的空气质量级别为_____________的天数最多;(3)请你根据抽样数据,通过计算,估计该城市一年(365天)中空气质量级别为优和良的天数共约有多少天?(4)请你根据数据显示,向有关部门提出一条..创建“绿色环境城市”的建议.参考答案一、1.【答案】C 2.【答案】A 3.【答案】B 4.【答案】D5.【答案】B解:∵2,2,5和x的平均数为5,∴2+2+5+x=4×5,∴x=11.∵3,4,5,x 和y的平均数也是5,∴3+4+5+11+y=5×5,∴y=2,∴x-y=9.6.【答案】B解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).7.【答案】C解:这组数据中80出现了3次,出现的次数最多,所以这组数据的众数是80.把这组数据按照从小到大的顺序排列为60,70,80,80,80,90,100,排在第四位的数据是80,所以这组数据的中位数是80.故选C.8.【答案】D解:原来一组数据的平均数是80+1.2=81.2,其方差不变,仍是4.4.9.【答案】C 10.【答案】D二、11.【答案】14解:(13×4+14×7+15×4)÷(4+7+4)=14(岁).12.【答案】丙解:因为三人10次比赛成绩的平均成绩都是9.3环,丙成绩的方差小于甲成绩的方差小于乙成绩的方差,所以丙的成绩最稳定,故选丙参加全运会.13.【答案】6解:由题意得{3+a+2b+54=6,a+6+b 3=6,解得{a =8,b =4.∴这组新数据从小到大排列为3,4,5,6,8,8,8,其中位数是6.14.【答案】2k 2-k三、15.解:(1)5×11+10×9+15×6+20×2+25×1+30×1=330(元). 答:这个班捐款总数是330元.(2)330÷30=11(元)答:这30名同学捐款的平均数是11元.16.解:(1)由题图可得:1+1+3+6+4+2+2+1=20(户).答:小明一共调查了20户家庭.(2)平均数为1+2+3×3+4×6+5×4+6×2+7×2+820=4.5(吨).众数是4吨;(3)4.5×400=1 800(吨)答:估计这个小区5月份的用水量约为1 800吨.17.解:(1)按出生月份重新分组可得统计表如下:月份 1 2 3 4 5 6 7 8 9 10 11 12人数 1 4 5 3 3 1 1 3 3 5 3 8(2)读表可得:10月份出生的学生的频数是5,频率为5=0.125.40(3)2月份有4名学生过生日,因此应准备4份礼物.18.解:(1)根据题意得30÷30%=100(人),∴学生劳动时间为“1.5时”的人数为100-(12+30+18)=40(人),补全条形统计图如图所示:(2)40÷100×100%=40%,40%×360°=144°,则扇形图中的“1.5时”部分的圆心角是144°.(3)抽查的学生劳动时间的众数为1.5时,中位数为1.5时.19.解:(1)数据从小到大排列为10.4%,12.5%,14.2%,15.1%,18.7%,则嘉兴市~社会消费品零售总额增速这组数据的中位数为14.2%; (2)嘉兴市近三年(~)的社会消费品零售总额这组数据的平均数是: (1 083.7+1 196.9+1 347.0)÷3=1 209.2(亿元);(3)从增速的数据的中位数分析,预测嘉兴市社会消费品零售总额为1 347.0×(1+14.2%)亿元.(方法不唯一)20.解:(1)40(2)这次测验成绩的中位数落在分数段70.5~80.5内.×100%=47.5%.(3)14+540答:该班这次数学测验的优秀率是47.5%.21.解:(1)中位数落在第四组.由此可以估计九年级学生60秒跳绳成绩在120次以上的人数达到一半以上.(2)这50名学生的60秒跳绳的平均成绩为2×70+10×90+12×110+13×130+10×150+3×170≈121(次).5022.解:(1)100 (2)1 500=750(名).(3)根据题意得:1 000×35+30+10100即估计该中学双休日两天大约有750名学生家务劳动的时间不少于90分钟.23. 解:(1)表中填4;扇形统计图中填10.补全条形统计图如图所示.(2)良(3)365×(20%+50%)≈256(天).答:估计该城市一年(365天)中空气质量级别为优和良的天数共约有256天.(4)略.。

相关文档
最新文档