1.射频基础知识
无线射频识别(RFID)技术---第1章RFID概述选编

© willtg. All rights reserved.
1.3 射频识别技术的应用
1.2004年开始,全球最大零售商沃尔玛开始采 用RFID技术,每年可节省83.5亿美元。 2.2005年底美国国防部开始大规模应用RFID 技术。 3.飞利浦公司为2006年世界杯提供320万张 RFID门票。 4. SAP、英特尔共同开发RFID技术并大力推 广应用。
无线射频识别(RFID)
第1章 射频识别技术概论 本章重点:掌握射频识别技术的概念和基本原理;
了解射频识别技术的应用; 了解射频识别技术的现状和前景。 1.1 射频识别技术简介 1.2 射频识别技术的基本原理 1.3 射频识别技术的应用
2019/7/24
© willtg. All rights reserved.
2019/7/24
© willtg. All rights reserved.
RFID的分类
半有源RFID,结合有源RFID和无源RFID的优势, 在低频125KHZ频率的触发下,让微波2.45G发挥优 势。半有源RFID技术,也可以叫做低频激活触发技 术,利用低频近距离精确定位,微波远距离识别和上 传数据,来解决单纯的有源RFID和无源RFID没有办 法实现的功能。简单的说,就是近距离激活定位,远 距离识别及上传数据。
1.1 射频识别技术简介
RFID是Radio Frequency Identification的缩写,即射 频识别。 RFID是一种非接触式的自动识别技术,它通过射频信号 自动识别目标对象并获取相关数据。
射频识别系统的组成: – 电子标签(Tag) – 阅读器 (Reader) – 天线 (Antenna)
行李包裹自动识别 非接触电子钥匙 集装箱自动分类管理
单极射频和双极射频的区别

射频(RF)基础知识:
一、基础知识
射频能量由发射器(或正极)至天线(或负极)的闭合回路,能量遇到组织中的阻抗而产生热量,依据电极形状不同,电流大小和靶组织的阻抗不同所产生的热量有所不同。
皮肤是富含电解质及其他化合物的人体组织,这些物质属于导体,电流经过时产生热量,作用的射频能量可以依据靶组织特点进行调节,此外,皮肤中的水分会因诸多因素产生变化,如身体部位不同每天时间不同,环境湿度不同,局部使用的导电介质不同等等。
因此,在不同的治疗中通过皮肤的射频电流会因为不同的因素而产生变化。
双极射频持续均匀完全贯通作用于皮肤组织,遇到皮肤阻抗产生热量,并作用于真皮深层,表皮不受影响。
胶原受热超过68-72摄氏度时,胶原纤维收缩变紧,在对真皮的刺激中会引发一系列的修复过程,在治疗后的一个月,机体自身修复过程促使真皮纤维细胞形成新胶原,新胶原以一种紧密方式沉积,因此皱纹减少,皮肤看起来更紧致坚实和年轻,明显改善皱纹和皮肤松弛。
单极射频:在治疗头释放很多的能量一小部分流经组织,最后经过身体流向地极,效果明显,客户感觉较强烈。
射频工程师知识大纲

射频工程师知识大纲射频工程师知识大纲通常包括以下主题:1. 射频基础知识:- 基本电磁理论、麦克斯韦方程组- 频率、周期、波长等基本概念- 传输线理论,如平衡传输线和非平衡传输线- 射频信号的传播和衰减- 射频连接器和电缆2. 无线通信系统:- 无线通信系统的基本概念和架构- 无线信号调制和解调技术,如振幅调制(AM)、频率调制(FM)、相位调制(PM)等- 无线信号传播和衰减的影响因素,如损耗、阻尼、多径效应等- 基础天线理论和射频功率放大器(PA)设计3. 射频电路设计:- 射频放大器设计,包括低噪声放大器(LNA)、功率放大器(PA)等- 信号发生和混频器设计,如震荡器和频率合成器- 射频滤波器设计,如带通滤波器、带阻滤波器等- 调制和解调电路设计,如射频调制解调器(RF Modem)4. 射频测试和测量:- 射频测量概念和基本原理- 射频测试设备和仪器的使用,如频谱分析仪、网络分析仪等- 射频参数的测量和分析,如增益、功率、带宽、频率等- 无线信号质量评估和干扰分析技术5. 射频系统集成与优化:- 射频系统的整体设计和优化方法- 射频系统性能分析和改进技术- 射频系统的天线和信号传输线的布局和优化- 射频系统与其他模块(如数字信号处理、微处理器、传感器等)的集成6. 射频安全和合规:- 射频设备安全标准和规范,如 FCC、IC、欧洲 CE 等- 射频设备的电磁兼容性(EMC)和电磁干扰(EMI)问题 - 射频设备的无线电频率分配和合规要求这是一个基本的射频工程师知识大纲,不同的公司和行业可能会根据实际需求有所不同,还需要根据具体情况进行深入学习和研究。
1.射频系统

WCDMA、TD–SCDMA手机还可工作于GSM系统,所以二者 均为双模手机。 WCDMA手机中包含有WCDMA、GSM两个射频系统,一般 采用两种不同的射频结构形式:一种是由超外差一次变频接 收电路与带发射上变频器发射电路组成;另一种是由直接变 频的线性接收电路与直接调制的发射电路组成。
(1)射频接收部分 接收射频信号经由天线开关、双工器、低噪声放大器、射 频滤波器送至接收混频电路;在接收混频电路中,接收射频 信号与WCDMA接收本振(射频VCO)信号进行混频,得到 190MHz的WCDMA接收中频信号。 WCDMA接收中频信号经中频滤波器滤波中频放大器放大 后送至RXI/Q解调电路,与RXI/Q解调本振信号混频得到接收 基带信号。接收基带信号再经放大、滤波后,被送至基带电 路作进一步处理得到模拟音频信号 。
(2)射频发射部分 基带系统处理得到的发射基带信号经滤波器滤波后被送至发 射I/Q调制电路进行调制,得到380MHz的发射已调中频信号。 发射已调中频信号经放大、滤波后,被送到发射上变频器与 射频VCO电路输出的发射本振信号进行混频,得到WCDMA发 射射频信号并被功率放大器放大,再经隔离器、双工器、天 线开关送到天线,由天线辐射出去。
第2章 射频识别技术(1)

(1)低频段电子标签
• 低频段电子标签,简称为低频标签,其工作频率范围为30kHz~ 300kHz。典型工作频率有:125KHz、133KHz(也有接近的其它频率的, 如TI公司使用134.2KHz)。低频标签一般为无源标签,其工作能量通 过电感耦合方式从读写器耦合线圈的辐射近场中获得。低频标签与读 写器之间传送数据时,低频标签需位于读写器天线辐射的近场区内。 低频标签的阅读距离一般情况下小于1m。 • 低频标签的典型应用有:动物识别、容器识别、工具识别、电子闭锁 防盗(带有内置应答器的汽车钥匙)等。与低频标签相关的国际标准 有:ISO 11784/11785(用于动物识别)、ISO 18000-2(125~ 135kHz)。低频标签有多种外观形式,应用于动物识别的低频标签外 观有:项圈式、耳牌式、注射式、药丸式等。 • 低频标签的主要优势体现在标签芯片一般采用普通的CMOS工艺,具 有省电、廉价的特点;工作频率不受无线电频率管制约束;可以穿透 水、有机组织、木材等;非常适合近距离、低速度、数据量要求较少 的识别应用等。低频标签的劣势主要体现在:标签存贮数据量较少; 只能适合低速、近距离识别应用。
射频识别技术21射频识别技术概述22rfid系统的组成23rfid系统的工作原理24rfid中间件技术25rfid系统的安全26rfid应用系统开发示例21射频识别技术概述211何谓射频识别212rfid技术分类213rfid技术应用214rfid技术标准简介211何谓射频识别随着高科技的蓬勃发展智能化管理已经走进了人们的社会生活一些门禁卡第二代身份证公交卡超市的物品标签等这些卡片正在改变人们的生活方式
2.1 射频识别技术概述
• • • • 2.1.1 2.1.2 2.1.3 2.1.4 何谓射频识别 RFID技术分类 RFID技术应用 RFID技术标准简介
射频与微波工程实践入门第1章用hfss仿真微波传输线和元件

第一章用HFSS仿真微波传输线和元件 01.1 Ansoft HFSS概述 01.1.1 HFSS简介 01.1.2 HFSS的应用领域 (1)1.2 HFSS软件的求解原理 (1)1.3 HFSS的基本操作介绍 (3)1.3.1 HFSS的操作界面和菜单功能介绍 (3)1.3.2 HFSS仿真分析基本步骤 (4)1.3.3 HFSS的建模操作 (5)1.4 HFSS设计实例1——矩形波导的设计 (10)1.4.1 工程设置 (10)1.4.2 建立矩形波导模型 (11)1.4.3 设置边界条件 (12)1.4.4 设置激励源wave port (14)1.4.5 设置求解频率 (15)1.4.6 计算及后处理 (15)1.4.7 添加电抗膜片 (17)1.5 HFSS设计实例2——E-T型波导的设计 (23)1.5.1 初始设置 (23)1.5.2 建立三维模型 (24)1.5.3 分析设置 (27)1.5.4 保存工程 (27)1.5.5 分析 (27)1.5.6 生成报告 (28)1.6 HFSS设计实例3——H-T型波导的设计 (31)1.6.1 创建工程 (31)1.6.2 创建模型 (32)1.6.3 仿真求解设置 (36)1.6.4 比较结果 (37)1.7 HFSS设计实例4——双T型波导的设计 (39)1.7.1 初始设置 (39)1.7.2 建立三维模型 (40)1.7.3 分析设置 (43)1.7.4 保存工程 (44)1.7.5 分析 (44)1.7.6 生成报告 (45)1.8 HFSS设计实例5——魔T型波导的设计 (47)1.8.1 建立匹配膜片与金属杆 (48)1.8.2 分析设置 (48)1.9 HFSS设计实例6——圆波导的设计 (52)1.9.1 初始设置 (52)1.9.2 建立三维模型 (53)1.9.3 分析设置 (55)1.9.4 保存工程 (56)1.9.5 分析 (56)1.9.6 生成报告 (57)1.10 HFSS设计实例7——同轴线的设计 (64)1.10.1 初始设置 (64)1.10.2 建立三维模型 (65)1.10.3 分析设置 (68)1.10.4 保存工程 (69)1.10.5 分析 (69)1.10.6 生成报告 (70)1.11 HFSS设计实例8——微带线的设计 (77)1.11.1 初始设置 (77)1.11.2 建立三维模型 (78)1.11.3 建立波导端口激励 (79)1.11.4 分析设置 (80)1.11.5 保存工程 (80)1.11.6 分析 (81)1.11.7 生成报告 (82)1.11.8 产生场覆盖图 (82)1.12 HFSS设计实例9——单极子天线的设计 (85)1.12.1 创建工程 (85)1.12.2 创建模型 (85)1.12.3 设置变量 (89)1.12.4 设置模型材料和边界参数 (90)1.12.5 设置求解频率和扫描范围 (93)1.12.6 设置辐射场 (93)1.12.7 确认设置并分析 (93)1.12.8 显示结果 (94)1.13 HFSS设计实例10——方形切角圆极化贴片天线的设计 (98)1.13.1 设计原理及基本公式 (99)1.13.2 创建工程和运行环境设定 (99)1.13.3 创建模型 (99)1.13.4 求解设置 (100)1.13.5 有效性验证和仿真 (100)1.13.6 输出结果 (100)1.13.7 设置变量与参数建模 (102)1.13.8 创建参数分析并求解 (102)1.13.9 优化求解 (104)1.13.10 输出优化后的结果 (105)1.14 参考文献 (108)资料收集于网络如有侵权请联系网站删除谢谢第一章用HFSS仿真微波传输线和元件1.1 Ansoft HFSS概述1.1.1 HFSS简介Ansoft HFSS (全称High Frequency Structure Simulator, 高频结构仿真器)是Ansoft公司推出的基于电磁场有限元方法(FEM)的分析微波工程问题的三维电磁仿真软件,可以对任意的三维模型进行全波分析求解,先进的材料类型,边界条件及求解技术,使其以无以伦比的仿真精度和可靠性,快捷的仿真速度,方便易用的操作界面,稳定成熟的自适应网格剖分技术使其成为高频结构设计的首选工具和行业标准,已经广泛地应用于航空、航天、电子、半导体、计算机、通信等多个领域,帮助工程师们高效地设计各种高频结构,包括:射频和微波部件、天线和天线阵及天线罩,高速互连结构、电真空器件,研究目标特性和系统/部件的电磁兼容/电磁干扰特性,从而降低设计成本,减少设计周期,增强竞争力。
第一章 射频电路导论
开始的室外电磁波通信实验, 最初的目的是实现无 线电报。 经过100多年的发展, 无线电远程通信从无 线电报发展到无线电广播、 电视、 移动通信等, 逐步覆盖了陆地、 海洋和太空, 从固定通信发展到移动通信, 从模拟通信发展到数 字通信。 无线电广播、电视和移动通信使用的无线 电频率为300kHz~3000 MHz。 图1.1.2给出了无
第一章 射频电路导论
1.1 虽然射频电路系统的具体设备多种多样, 组成和复杂程度不同, 但系统的最基本结构相 同, 如图1.1.1所示, 包括发射机和接收机两 个主要部分。
第一章 射频电路导论
图1.1.1 射频电路系统的最基本结构
第一章 射频电路导论
图1.1.1中, 信道即无线电波的传输媒质, 如空气、 真空、 海水、 地表。
iC=a0+a1(u1+u2)
第一章 射频电路导论
上式是转移特性曲线以Q为中心, 在Q附近的一阶泰勒级数展 开式。 其中, a0是ICQ, a1是晶体管在Q处的交流跨导gm。 上 式可写为
iC a0 a1 (u1 u2 ) a0 a1u1 a1u2
a0 a1U1m cos1t a1U 2m cos2t
第一章 射频电路导论
1.1.3 蓝牙工作在全球通用的2.4 GHz工业、 科学和医
学(ISM) 频段, 采用高斯频移键控(GFSK)调制, 利用时分 双工传输方案, 最大数据传输速率为1 Mb/s, 最大 传输距离为10m, 支持点对点及点对多点通信, 通过 采用跳频、 短数据包和自适应发射功率来进行调节 以提高抗干扰能力, 系统最大跳频速率为1600跳/s, 在2.402~2.480 GHz之间采用79个间隔1 MHz的频点。
射频同轴连接器知识培训[1]
镇江通达电子有限公司 地址:江苏镇江黄墟经济开发区 电话:0511-83511505 83516699 传真:0511-83516677 网址: : 第 3 页 共 14 页
镇江通达电子有限公司
波段名称 毫米波 微波 厘米波 分米波 米波(超短波) 短波 中波 长波 超长波 极长波 频率名称 极高频(EHF) 超高频(SHF) 特高频 (UHF) 甚高频(VHF) 高频 (HF) 中频 (MF) 低频 (LF) 甚低频(VLF) 极低频(ELF) 波长范围 10-1 毫米 10-1 厘米 10-1 分米 10-1 米 100-10 米 1000-100 米 10-1 公里 100-10 公里 长于 100 公里 频率范围 30-3000 KMHz 3-30 KMHz 300-3000 MHz 30-300 MHz 3-30 MHz 300-3000 KHz 30-300 KHz 3-30 KHz >3 KHz
当然电压驻波比是 RF 连接器的关键电气指标,越低越理想,但盲目地追求 低驻波,会大大提高生产成本。
镇江通达电子有限公司 地址:江苏镇江黄墟经济开发区 电话:0511-83511505 83516699 传真:0511-83516677 网址: : 第 4 页 共 14 页
3.2 与电缆连接处结构
通常 RF 连接器有两种使用形式: 一是直接安装在仪器面板或印刷电路板上, 另一种是连接射频同轴电缆作为电信号传输用。 连接电缆处的结构也分为以下几 种: a. 内导体采用压接、外导体采用压接 b. 内导体采用焊接、外导体采用压接 c. 内导体采用压接、外导体采用焊接 d. 内导体采用焊接、外导体采用螺纹压紧 e. 内导体采用焊接、外导体采用螺纹压紧 f. 内导体采用压接、外导体采用螺纹压紧,等等 总之 RF 连接器与电缆连接处的要求是连接可靠、反射要小,必须进行一定 的补偿来保证性能。
射频电路设计--第1章 引言
分贝表示法
• 绝对电压的分贝表示
⎛ V ⎞ V ( dBμV ) = 20 log10 ⎜ ⎟ ⎝ 1μV ⎠
表 2-3 使用 dBμV 表示的一些典型电压值 V V(dBμV) 0.01μV -40dBμV 0.1μV -20dBμV 1μV 0dBμV 10μV 20dBμV 100μV 40dBμV 1mV 60dBμV
λ /8 设计准则
例1
例 1-3:某 CPU 的内部核心电路尺寸为 5mm 左 右,时钟频率达到了 2GHz。请判断 CPU 内部电路设 计是否需按照传输线理论进行分析和设计。 解:2GHz 信号对应的波长为
c λ = = 0.15 ( m ) f
计算得到
l = 5mm <
λ
8
≈ 19mm 。 按 照 λ/8 的 设 计 准 则 ,
BW ( Hz ) = f H − f L
以频率作为单位表示的带宽是指绝对带宽。 例如: 射频放大电路的工作频率范围为1GHz— 2GHz,则带宽为1GHz PAL制式的电视广播的图像信号带宽为 6MHz
相对带宽
– 百分比法
• 定义为绝对带宽占中心频率的百分数
– 倍数法(又称覆盖比法) – 定义为高端截止频率fH与低端截止频率fL的比 值
mw和dbm换算表以及射频知识
mw和dbm换算表以及射频知识mw和dbm换算表以及射频知识功率单位mw和dbm的换算表射频知识功率/电平(dBm):放⼤器的输出能⼒,⼀般单位为w、mw、dBm。
dBm 是取1mw作基准值,以分贝表⽰的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000 = 37dBm10W → 10lg10000 = 40dBm20W → 10lg20000 = 43dBm从上不难看出,功率每增加⼀倍,电平值增加3dBm增益是指:在输⼊功率相等的条件下,实际天线与理想的辐射单元在空间同⼀点处所产⽣的信号的功率密度之⽐。
它定量地描述⼀个天线把输⼊功率集中辐射的程度。
增益显然与天线⽅向图有密切的关系,⽅向图主瓣越窄,副瓣越⼩,增益越⾼。
可以这样来理解增益的物理含义 ------ 为在⼀定的距离上的某点处产⽣⼀定⼤⼩的信号,如果⽤理想的⽆⽅向性点源作为发射天线,需要 100W 的输⼊功率,⽽⽤增益为 G = 13 dB = 20 的某定向天线作为发射天线时,输⼊功率只需 100 / 20 = 5W 。
换⾔之,某天线的增益,就其最⼤辐射⽅向上的辐射效果来说,与⽆⽅向性的理想点源相⽐,把输⼊功率放⼤的倍数。
半波对称振⼦的增益为 G=2.15dBi。
4 个半波对称振⼦沿垂线上下排列,构成⼀个垂直四元阵,其增益约为 G=8.15dBi( dBi这个单位表⽰⽐较对象是各向均匀辐射的理想点源 )。
如果以半波对称振⼦作⽐较对象,其增益的单位是 dBd 。
半波对称振⼦的增益为 G=0dBd (因为是⾃⼰跟⾃⼰⽐,⽐值为 1 ,取对数得零值。
)垂直四元阵,其增益约为 G=8.15 –2.15=6dBd 。
天线增益的若⼲计算公式1)天线主瓣宽度越窄,增益越⾼。
对于⼀般天线,可⽤下式估算其增益:G(dBi)=10Lg{32000/(2θ3dB,E×2θ3dB,H)}式中, 2θ3dB,E与2θ3dB,H分别为天线在两个主平⾯上的波瓣宽度;32000 是统计出来的经验数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部分射频基础知识目录第一章与移动通信相关的射频知识简介 (1)1.1 何谓射频 (1)1.1.1长线和分布参数的概念 (1)1.1.2射频传输线终端短路 (3)1.1.3射频传输线终端开路 (4)1.1.4射频传输线终端完全匹配 (4)1.1.5射频传输线终端不完全匹配 (5)1.1.6电压驻波分布 (5)1.1.7射频各种馈线 (6)1.1.8从低频的集中参数的谐振回路向射频圆柱形谐振腔过渡 (9)1.2 无线电频段和波段命名 (9)1.3 移动通信系统使用频段 (9)1.4 第一代移动通信系统及其主要特点 (12)1.5 第二代移动通信系统及其主要特点 (12)1.6 第三代移动通信系统及其主要特点 (12)1.7 何谓“双工”方式?何谓“多址”方式 (12)1.8 发信功率及其单位换算 (13)1.9 接收机的热噪声功率电平 (13)1.10 接收机底噪及接收灵敏度 (13)1.11 电场强度、电压及功率电平的换算 (14)1.12 G网的全速率和半速率信道 (14)1.13 G网设计中选用哪个信道的发射功率作为参考功率 (15)1.14 G网的传输时延,时间提前量和最大小区半径的限制 (15)1.15 GPRS的基本概念 (15)1.16 EDGE的基本概念 (16)第二章天线 (16)2.1天线概述 (16)2.1.1天线 (16)2.1.2天线的起源和发展 (17)2.1.3天线在移动通信中的应用 (17)2.1.4无线电波 (17)2.1.5 无线电波的频率与波长 (17)2.1.6偶极子 (18)2.1.7频率范围 (19)2.1.8天线如何控制无线辐射能量走向 (19)2.2天线的基本特性 (21)2.2.1增益 (21)2.2.2波瓣宽度 (22)2.2.3下倾角 (23)2.2.4前后比 (24)2.2.5阻抗 (24)2.2.6回波损耗 (25)2.2.7隔离度 (27)2.2.8极化 (28)2.2.9交调 (30)2.2.10天线参数在无线组网中的作用 (30)2.2.11通信方程式 (31)2.3.网络优化中天线 (32)2.3.1网络优化中天线的作用 (32)2.3.2天线分集技术 (33)2.3.3遥控电调电下倾天线 (1)第三章电波传播 (3)3.1 陆地移动通信中无线电波传播的主要特点 (3)3.2 快衰落遵循什么分布规律,基本特征和克服方法 (4)3.3 慢衰落遵循什么分布规律,基本特征及对工程设计参数的影响 (4)3.4 什么是自由空间的传播模式 (5)3.5 2G系统的宏小区传播模式 (5)3.6 3G系统的宏小区传播模式 (6)3.7 微小区传播模式 (6)3.8 室内传播模式 (9)3.9 接收灵敏度、最低功率电平和无线覆盖区位置百分比的关系 (10)3.10 全链路平衡和最大允许路径损耗 (11)第四章电磁干扰 (12)4.1 电磁兼容(EMC)与电磁干扰(EMI) (12)4.2 同频干扰和同频干扰保护比 (13)4.3 邻道干扰和邻道选择性 (14)4.4 发信机的(三阶)互调干扰辐射 (15)4.5 收信机的互调干扰响应 (15)4.6 收信机的杂散响应和强干扰阻塞 (15)4.7 dBc与dBm (16)4.8 宽带噪声电平及归一化噪声功率电平 (16)4.9 关于噪声增量和系统容量 (17)4.10 直放站对基站的噪声增量 (17)4.11 IS-95 CDMA 对 GSM 基站的干扰 (19)4.12 G网与PHS网的相互干扰 (20)4.13 3G系统电磁干扰 (22)4.14 PHS系统与3G系统之间的互干扰 (24)4.15 GSM系统与3G系统之间的互干扰 (25)第五章室内覆盖交流问题应答 (12)5.1、目前GSM室内覆盖无线直放站作信源站点数量达60%,WCDMA的建设中,此类站点太多将导致网络上行噪声被直放站抬高,请问怎么考虑?5.2、高层窗边的室内覆盖信号场强难以做到主导,而室内窗边将是数据业务需求的高发区域,室内窗边的高速速率如何保证?5.3、有厂家建议室内覆盖不用干放,全用无源覆盖分布,我们如何考虑?5.4、室内覆盖中,HSDPA引入后,有何新要求?5.5、系统引入多载频对室内覆盖的影响?5.6、上、下行噪声受限如何考虑?5.7、室内覆盖时延分集增益。
第一章与移动通信相关的射频知识简介1.1 何谓射频射频是指该频率的载波功率能通过天线发射出去(反之亦然),以交变的电磁场形式在自由空间以光速传播,碰到不同介质时传播速率发生变化,也会发生电磁波反射、折射、绕射、穿透等,引起各种损耗。
在金属线传输时具有趋肤效应现象。
该频率在各种无源和有源电路中R、L、C各参数反映出是分布参数。
因此说所谓射频RF(Radio Frequency)是指频率较高,可用于发射无线电频率,一般常指几十到几百兆赫的频段,即VHF-UHF频段。
而更高的频率,则称为微波。
广义地说,在无线电频谱上微波是指频率为300MHz-300GHz的无线电波,其相应的波长范围是在1m~0.1mm;一般更具体的指1~30GHz频段,即波长在厘米范围的厘米波。
频率更高的则称之为毫米波、亚毫米波段。
因而,移动通信中的CDMA、GSM等系统所采用的800 MHz、900 MHz频段属于射频RF范畴,也即UHF频段(也可看作微波的低端);而第三代移动通信3G的工作频段就是在微波范围内。
综观无线电频谱,频率从极低一直到非常高,波长从超长波一直到亚毫米波段再到光波、紫外,不同频段的无线电波其特性也截然不同。
我们必须了解这一点,并学会用不同的概念、技术和方法来处理问题。
在移动通信所工作的射频和微波频段,如果只沿用低频的概念和技术来研究和处理问题,必然是行不通。
众所周知,室内分布系统大多采用同轴电缆来传输移动通信信号或能量。
那么,人们为什么不继续采用工频50 Hz的双绞电源线或以前VHF频段电视机常用的扁平双线馈线?同轴电缆又具有那些优点?这里,首先介绍一下射频和微波传输线的概念。
用来传输电磁能量的线路统称为传输系统,由传输系统引导向一定方向传输的电磁波称为导行波。
1.1.1长线和分布参数的概念在低频电路中,导线(或说是低频率传输线)只起连接的作用。
在同一导线(例如长为60cm)的两端,都认为它们是同电位的,电流也相等,也就是属于同一点。
但是,如果线上传输的是射频比如GSM下行942MHz的电信号(相应的波长大约为32cm),这时还能认为导线的两端是同电位的吗?显然就不行了。
这里存在两个概念问题,一是线的“长度”如何准确描述,二是集中参数和分布参数的概念。
图1-1所示为线上的电流或电压随空间位置的分布情况,图1-1(a)表示的是半波长的波形图,AB 是线上的一小段,它比波长小得多。
由图可见,线段AB上各点的电流或电压的幅度和相位几乎不变,此时的线段AB是一段“短线”。
如果频率很高,虽然线段AB的长度相同,但在某一瞬时线上各点电流或电压的幅度和相位均有很大变化,如图1-1(b)所示,此时的线段AB即应视为“长线”。
(b )图1-1电流电压沿线分布图(a)短线情况;(b)长线情况其实,“长度”有绝对长度和相对长度两种概念。
对于传输线的“长”或“短”,并不是以其绝对长度而是以其相对长度,即以它与波长比值的相对大小来区分的。
我们把传输线的几何长度(l )与其上传输电信号的波长(λ)之比l /λ ,称为传输线的相对长度或者叫电长度。
在射频和微波领域,波长λ通常以cm 计。
比如一根传输3G 移动通信信号(如WCDMA )的同轴电缆,虽然只有30cm 长,但它已大约是工作波长的两倍,当然属于“长线”;相反,输送工频市电的电力线即使仅有2km 长,但与其波长(6000km )相比就是非常短的了,因此只能称之为“短线”。
微波传输线基本上都属于“长线”的范畴,因此描述传输线特性和电压或电流沿线传输规律的传输线理论又称为长线理论。
一般的说,只要线的几何长度l 与其传输电信号的波长λ可以比拟时(通常为十分之一左右或以上),即可视为长线。
电压和电流在传输线上是以波的形式传输并将信号或能量从电源传送至负载,这样就可以理解线上各点的电压或电流不相同的道理。
同一时刻各点电压或电流的幅度不相同,同一点上的电压或电流的幅度又随着时间而改变,这就是波的概念。
用数学术语来说就是电压和电流即是位置的函数,又是时间的函数,即u(z,t)和i(z ,t)。
为什么呢?这是因为传输线上处处存在分布电阻、分布电感,线间处处存在分布电容和漏电导。
电磁场理论告诉我们,当电信号通过传输线时将产生如下分布参数效应:电流流过导线时发热,表明导线本身具有分布电阻;由于导线中通过电流,周围将有磁场,因而导线存在分布电感效应;由于导线间有电压,导线间便有电场,于是导线间存在分布电容效应;由于导线间绝缘不完善而存在漏电流,表明导线间处处有分布电导。
频率低时,这些分布参数效应完全可以忽略不计,所以低频只考虑时间因子而忽略空间效应,因而把低频电路当作集中参数电路来处理是允许的。
但是,频率升高后,分布参数引起的效应不能再忽视了;传输线不能仅当作连接线,它将形成分布参数电路,参与并影响电压和电流的传输。
因而传输线在电路中所引起的效应必须用传输线理论来研究和表述。
我们用R 1,L 1,C 1,G 1分别表示传输线单位长度的电阻,电感,电容和电导,它们的数值与传输线类型、截面尺寸、导体材料、填充介质等有关。
假设均匀传输线上取任一无限小线元dz(dz<<λ),则线元上都分布有一定大小的电阻R 1dz 和电感L 1dz;此线元间都分布有一定大小的电容C 1dz 和电导G 1dz 。
在此无限小线元上,我们可以把它看成一集中参数电路,其集中电阻、电感、电容和电导,分别为R 1dz ,L 1dz ,C 1dz 和G 1dz ,可用Г形网络来等效(也可用T 形或π形网络来等效),如图1-2(a )所示。
整个传输线则可看成是有许多线元的四端网络链联而成的分布参数电路,如图1-2(b )所示。
对于无耗线(R 1=0,G 1=0),其等效电路,如图1-2(c )所示。
Z 1Z 1R gR g(a )b '(b )(c )图1-2 传输线的等效电路(a )等效电路;(b )分布参数电路;(c )无耗线等效电路有了上述等效电路,就容易解释传输线上的电压、电流不相同的现象。
参看图1-2(b ),由于aa '和bb '之间有串联电阻存在,两处的阻抗不相等,因而两处的电压也不想等;由于线间并联回路的存在,通过a 和b 点的电流也不相同。
同时还可以看出,当接通电源后,电源通过分布电感逐次向分布电容充电,并形成向负载传输的电压波和电流波。