分类型解二元一次方程组
二元一次方程组格式_概述说明以及解释

二元一次方程组格式概述说明以及解释1. 引言1.1 概述二元一次方程组是数学中常见的基本代数方程组之一。
它由两个未知数和两个等式组成,其中每个等式都是未知数的一次项与常数项的和。
解决二元一次方程组可以帮助我们在现实生活、商业领域以及工程问题中找到解决方案。
1.2 二元一次方程组定义二元一次方程组通常表示为:```ax + by = cdx + ey = f```其中a、b、c、d、e和f分别代表系数,x和y代表未知数。
此类方程组有两个未知数x和y,并且每个方程的最高次幂为1,因此称为一次方程组。
1.3 解法方法介绍解决二元一次方程组可以使用多种解法方法,例如消元法、代入法和矩阵法等。
消元法通过逐步变换原方程组,将其转化为更简单的形式来求解。
代入法则先求得一个未知数的值,再将其代入另一个方程中求得第二个未知数的值。
矩阵法则通过矩阵运算来求得未知数的值。
在接下来的文章中,我们将详细介绍二元一次方程组的格式说明、解题步骤以及在实际问题中的应用场景分析。
同时,我们也会总结要点回顾,并探讨学习启示、拓展延伸思考以及未来发展趋势的展望。
通过本文的阅读,相信您将对二元一次方程组有更加深入的理解,并能够灵活运用于各种问题的求解中。
2. 二元一次方程组格式说明2.1 标准形式与一般形式对比二元一次方程组可以有不同的表示形式,其中最常见的是标准形式和一般形式。
标准形式的方程组可以写为:```ax + by = cdx + ey = f```其中,a、b、c、d、e、f是已知的实数系数,x和y是未知数。
一般形式的方程组可以写为:```Ax + By + C = 0Dx + Ey + F = 0其中,A、B、C、D、E、F是已知的实数系数。
标准形式和一般形式之间存在着对应关系。
通过对标准形式适当变换,我们可以得到等价的一般形式方程组,反之亦然。
2.2 系数与未知数的关系解析二元一次方程组中的未知数通常用x和y表示。
在标准形式中,每个未知数都会带上一个系数。
七年级数学下册第1章二元一次方程组知识点梳理

第一章 二元一次方程组一、二元一次方程组1、概念:①二元一次方程:含有两个未知数,且未知数的指数(即次数)都是1的方程,叫二元一次方程.②二元一次方程组:两个二元一次方程(或一个是一元一次方程,另一个是二元一次方程;或两个都是一元一次方程;但未知数个数仍为两个)合在一起,就组成了二元一次方程组。
2、二元一次方程的解和二元一次方程组的解:使二元一次方程左右两边的值相等(即等式成立)的两个未知数的值,叫二元一次方程的解。
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫二元一次方程组的解。
注:①、因为二元一次方程含有两个未知数,所以,二元一次方程的解是一组(对)数,用大括号联立;②、一个二元一次方程的解往往不是唯一的,而是有许多组;③、而二元一次方程组的解是其中两个二元一次方程的公共解,一般地,只有唯一的一组,但也可能有无数组或无解(即无公共解)。
二元一次方程组的解的讨论:已知二元一次方程组①、当a1/a2 ≠ b1/b2 时,有唯一解; ②、 当a1/a2 = b1/b2 ≠ c1/c2时,无解;a1x + b1y = c1 a2x + b2y = c2③、 当a1/a2 = b1/b2 = c1/c2时,有无数解。
例如:对应方程组:①、 ②、 ③、例:判断下列方程组是否为二元一次方程组:①、 ②、 ③、 ④、3、用含一个未知数的代数式表示另一个未知数:用含X 的代数式表示Y ,就是先把X 看成已知数,把Y 看成未知数;用含Y 的代数式表示X ,则相当于把Y 看成已知数,把X 看成未知数。
例:在方程 2x + 3y = 18 中,用含x 的代数式表示y 为:___________,用含y 的代数式表示x 为:____________。
4、根据二元一次方程的定义求字母系数的值:要抓住两个方面:①、未知数的指数为1,②、未知数前的系数不能为0例:已知方程 (a —2)x^(/a/—1) – (b+5)y^(b^2-24) = 3 是关于x 、y 的二元一次方程,求a 、b 的值。
二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。
(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。
【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。
解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。
14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。
类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。
x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。
设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。
a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。
人教版七年级下册 8.3 二元一次方程组应用题常见类型及解法

干货丨方程组应用的七大常考题型一、实际问题与二元一次方程组的思路1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。
一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:① 方程两边表示的是同类量;② 同类量的单位要统一;③ 方程两边的数要相等。
2.列二元一次方程组解应用题的一般步骤 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值; 答:写出答案。
3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。
二、典型题型分析 类型1 和差倍分问题知识梳理:和差问题是已知两个量的和或这两个量的差,以及这两个量之间的倍数关系,求这两个量各是多少.例1:被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342 km ,隧道累计长度的2倍比桥梁累计长度多36 km .求隧道累计长度与桥梁累计长度.分析:设隧道累计长度为x km ,桥梁累计长度为y km.由“隧道累计长度与桥梁累计长度之和为342 km ”可以得到第一个等量关系式x+y=342,再由“隧道累计长度的2倍比桥梁累计长度多36 km ”可以得到第二个等量关系2x=y+36. 解:设隧道累计长度为x km ,桥梁累计长度为y km .根据题意,得⎩⎪⎨⎪⎧x +y =342,2x =y +36.解得⎩⎪⎨⎪⎧x =126,y =216. 答:隧道累计长度为126 km ,桥梁累计长度为216 km .针对训练 1.学校的篮球比排球的2倍少3个,篮球数与排球数的比是3∶2,求两种球各有多少个.若设篮球有x 个,排球有y 个,根据题意列方程组为(D )A .⎩⎪⎨⎪⎧x =2y -33x =2yB .⎩⎪⎨⎪⎧x =2y +33x =2yC .⎩⎪⎨⎪⎧x =2y +32x =3yD .⎩⎪⎨⎪⎧x =2y -32x =3y类型2 配套问题例2:现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子。
计算达人:解二元一次方程三元一次方程组(含参考答案)

类型一、用代入法解二元一次方程组1.用代入法解方程组:5341x y x y =+⎧⎨+=⎩.∴ 原方程组的解为:32x y =⎧⎨=-⎩【变式】若方程y =1-x 的解也是方程3x +2y =5的解,则x =____,y =____.【答案】3,﹣2.2. 用代入法解二元一次方程组:524050x y x y --=⎧⎨+-=⎩①②所以原方程组的解为23x y =⎧⎨=⎩.【变式1】与方程组2020x y x y +-=⎧⎨+=⎩有完全相同的解的是( )【答案】DA .x+y -2=0B .x+2y=0C .(x+y -2)(x+2y)=0D .22(2)0x y x y +-++=【变式2】若∣x-2y +1∣+(x +y -5)2=0,则 x=, y=.【答案】3,2类型二、由解确定方程组中的相关量3.方程组43235x y k x y -=⎧⎨+=⎩的解x y 与的值相等,则k 的值是.1k =.举一反三:【变式】若方程组231(1)(1)4x y k x k y +=⎧⎨-++=⎩的解x 与y 相等,求k.10k =4. 若方程组ax+by=11(5-a)x-2by+14=0⎧⎨⎩的解为14xy=⎧⎨=⎩,试求a b、的值.解得a=3b=2⎧⎨⎩.5.用代入法解下列方程组:(1)52233x yx y-=-⎧⎨+=⎩①②(2)233511x yx y+=⎧⎨-=⎩①②6.小明在解方程组时,遇到了困难,你能根据他的解题过程,帮他找出原因吗?并求出原方程组的解.解方程组123761x yx y-=⎧⎨+=⎩①②解:由②,得y=1-6x ③将③代入②,得6x+(1-6x)=1(由于x消元,无法继续)解:无法继续的原因是变形所得的③应该代入①,不可代入②.由②,得y=1-6x ③,将③代入①,得12x-3(1-6x)=7.解得13x=,将13x=代入③,得y=-1.所以原方程组的解为131xy⎧=⎪⎨⎪=-⎩7.m为何值,方程组522312x y mx y m-=⎧⎨+=-⎩的解互为相反数?m=9.【典型例题】8.直接加减:(芜湖)解方程组2374311x yx y+=⎧⎨-=⎩①②所以原方程组的解为313xy=⎧⎪⎨=⎪⎩9.先变系数后加减:25214323x yx y-=-⎧⎨+=⎩①②所以原方程组的解为25xy=⎧⎨=⎩.【变式】解方程组:257(1)325(2)x yx y+=⎧⎨+=⎩∴11xy=⎧⎨=⎩10.建立新方程组后巧加减:解方程组2511524x yx y+=⎧⎨+=-⎩①②原方程组的解为23.xy=-⎧⎨=⎩11.先化简再加减:解方程组0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩①②所以原方程组的解为4,3.x y =⎧⎨=⎩类型二、用适当方法解二元一次方程组12.(1)323112x y x y -=⎧⎨=-⎩ (2)5(1)2(3)2(1)3(3)m n m n -=+⎧⎨+=-⎩∴原方程组的解为:533x y ⎧=⎪⎨⎪=⎩.∴原方程组的解为:57m n =⎧⎨=⎩.举一反三:【变式】用两种方法解方程组29(1)321(2)x y x y +=⎧⎨-=-⎩ ∴原方程组的解为:272x y =⎧⎪⎨=⎪⎩13.解下列方程组:(1)2()1346()4(2)16x y x y x y x y -+⎧=-⎪⎨⎪+=-+⎩ (2)133623218y x y y x x +⎧-=⎪⎪⎨⎛⎫⎛⎫⎪-=+ ⎪ ⎪⎪⎝⎭⎝⎭⎩ 解:(1)将“x y +”看作整体:2()1346()4(2)16x y x y x y x y -+⎧=-⎪⎨⎪+=-+⎩①②由①得3()8()12x y x y +=-+, ③将③代入②得 8()122(2)8x y x y -+=-+,即312x y =-, ④ 将④代入③,化简得15115122y y =-+,即2y =,将2y =代入④得2x =,所以原方程组的解为22x y =⎧⎨=⎩ .(2)133623218yx y y x x +⎧-=⎪⎪⎨⎛⎫⎛⎫⎪-=+ ⎪ ⎪⎪⎝⎭⎝⎭⎩①②由①得219x y =-, ③ 将③代入②,整理得72196y y -=-,解得6y =,将6y =代入③得7x =-,所以原方程组的解为76x y =-⎧⎨=⎩.14.已知4330,30.x y z x y z --=⎧⎨--=⎩ (1)求x:z 的值;(2)求x:y:z 的值;(3)求2222xy yz x y z ++-的值.解:(1)解关于x ,z 的二元一次方程组4333x z y x z y -=⎧⎨-=⎩,得69x yz y =-⎧⎨=-⎩.∴ x:z =(-6y):y:(-9y)=2:3.(2)由(1)得x =-6y ,z =-9y,∴ x:y:z =(-6y):y:(-9y)=(-6):1:(-9).(3)由(1)得x =-6y ,z =-9y .∴ 222222222(6)2(9)246(6)(9)4411xy yz y y y y y x y z y y y y +-+--===+--+---15.阅读下列解方程组的方法,然后解决有关问题.解方程组191817171615x y x y +=⎧⎨+=⎩①②时,我们如果直接考虑消元,那将是非常麻烦的,而采用下面的解法则是轻而易举的.①-②,得2x+2y =2,所以x+y =1.③③×16,得16x+16y =16 ④,②-④,得x =-1,从而y =2.所以原方程组的解是12x y =-⎧⎨=⎩. 请你用上述方法解方程组200820072006200620052004x y x y +=⎧⎨+=⎩,并猜测关于x 、y 的方程组(2)(1)()(2)(1)a x a y a a b b x b y b +++=⎧≠⎨+++=⎩的解是什么?并加以验证.解:200820072006200620052004x y x y +=⎧⎨+=⎩①②,①-②,得2x+2y =2,即x+y =1 ③.③×2005,得2005x+2005y =2005 ④.②-④,得x =-1,把x =-1代入③得y =2.所以原方程组的解是12x y =-⎧⎨=⎩,可以猜测关于x ,y 的方程组(2)(1)()(2)(1)a x a y a a b b x b y b+++=⎧≠⎨+++=⎩的解是12x y =-⎧⎨=⎩. 验证如下:将x =-1,y =2,代入方程(a+2)x+(a+1)y =a 中满足方程左、右两边的值相等,将x =-1,y =2,代入方程(b+2)x+(b+1)y =b 中满足方程左、右两边的值相等,所以12x y =-⎧⎨=⎩是方程组(2)(1)()(2)(1)a x a y a a b b x b y b+++=⎧≠⎨+++=⎩的解.类型二、三元一次方程组的解法16.解方程组275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩①②③所以方程组的解为2312x y z ⎧⎪=⎪=-⎨⎪⎪=⎩.举一反三: 【变式】解方程组:所以方程组的解为:123x y z =⎧⎪=⎨⎪=⎩17. 解方程组23520x y z x y z ⎧==⎪⎨⎪++=⎩①②法一:原方程可化为:253520x z y z x y z ⎧=⎪⎪⎪=⎨⎪⎪++=⎪⎩①②③ 由①②得:25x z =,35y z = ④ 将④代入②得:232055z z z ++=,得:10z = ⑤ 2334823x y z x y z x y z -+=⎧⎪+-=⎨⎪+-=-⎩①②③将⑤代入④中两式,得:2210455x z ==⨯=,3310655y z ==⨯= 所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩解法二:设235x y z t ===,则2,3,5x t y t z t ===③ 将③代入②得:23520t t t ++=,2t =将2t =代入③得:2224x t ==⨯=,3326,55210y t z t ==⨯===⨯=所以方程组的解为:4610x y z =⎧⎪=⎨⎪=⎩【变式】方程组329a b b c c a +=⎧⎪+=-⎨⎪+=⎩的解为.742a b c =⎧⎪=-⎨⎪=⎩18.解方程组:(1):3:2:5:466x y y z x y z =⎧⎪=⎨⎪++=⎩ (2)3222311410x y x x y z x y z ++=⎧⎪++=⎨⎪--=-⎩所以原方程组的解为30,20,16.x y z =⎧⎪=⎨⎪=⎩所以原方程组的解为5,41,14.x y z =⎧⎪=-⎨⎪=⎩19.黄冈市在国庆节前夕举办了庆祝建国六十一周年足球联赛活动,这次足球联赛共赛11轮,胜一场记3分,平一场记一分,负一场记0分.某校队所负场数是胜的场数的12,结果共得20分.问该校队胜、平、负各多少场?解:设该校队胜x 场、平y 场、负z 场,根据题意,得:113202x y z x y x z ++=⎧⎪+=⎨⎪=⎩,解这个三元一次方程组,得623x y z =⎧⎪=⎨⎪=⎩.答:该校队胜6场、平2场、负3场.举一反三:【变式】现有面值为2元、1元和5角的人民币共24张,币值共计29元,其中面值为2元的比1元的少6张,求三种人民币各多少张?解:设面值为2元、1元和5角的人民币分别为x 张、y 张和z 张. 依题意,得24122926x y z x y z x y++=⎧⎪⎪++=⎨⎪⎪+=⎩①②③ 把③分别代入①和②,得21813232x z x z +=⎧⎪⎨+=⎪⎩④⑤ ⑤×2,得6x+z =46 ⑥⑥-④,得4x =28,x =7.把x =7代入③,得y =13.把x =7,y =13代入①,得z =4.∴方程组的解是7134x y z =⎧⎪=⎨⎪=⎩.答:面值为2元、l 元和5角的人民币分别为7张、13张和4张.。
《二元一次方程组解法》(二)--加减法 配套知识讲解 人教七年级下

二元一次方程组解法(提高)知识讲解【学习目标】1. 掌握加减消元法解二元一次方程组的方法;2. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;3.会对一些特殊的方程组进行特殊的求解.【要点梳理】要点一、加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.要点诠释:用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.要点二、选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.【典型例题】类型一、加减法解二元一次方程组1.(2020春•澧县期末)用加减消元法解方程组34659 23x y x y++==【思路点拨】先将原方程写成方程组的形式后,再求解. 【答案与解析】解:此式可化为:349(1) 2659(2) 3x yx y+⎧=⎪⎪⎨+⎪=⎪⎩由(1):3x+4y=18 (1) 由(2):6x+5y=27 (2) (1)×2:6x+8y=36 (3) (3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23 xy=⎧⎨=⎩【总结升华】先将每个式子化至最简,即形如ax+by=c的形式再消元. 举一反三:【变式】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为:.【答案】12x y =-⎧⎨=-⎩2.已知关于x 、y 的方程组ax by cex dy f+=⎧⎨+=⎩的解为31x y =⎧⎨=⎩,求关于x 、y 的方程组()()()()a x y b x y ce x y d x y f-++=⎧⎨-++=⎩的解. 【思路点拨】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把x -y ,x+y 看作一个整体,则两个方程同解. 【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(x -y )与(x+y )分别看成一个整体当作未知数,可得3,1.x y x y -=⎧⎨+=⎩ 解得:2,1.x y =⎧⎨=-⎩【总结升华】本例采用了类比的方法,若把其中的x+y 和x -y 分别看作整体,则第二个方程组与第一个方程组相同,即x+y =1,x -y =3. 举一反三:【变式】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是:. 【答案】 解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩,上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较,可得:510x y =⎧⎨=⎩.类型二、用适当方法解二元一次方程组3.解方程组36101610x y x yx y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩【思路点拨】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单. 【答案与解析】解:设,610x y x ym n +-==,则原方程组可化为31m n m n +=⎧⎨-=-⎩①②解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩.【总结升华】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法. 举一反三:【变式】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②,②×3-①×2得,3535y =,即1y =, 将1y =代入①得,99x =,即1x =, 所以原方程组的解为11x y =⎧⎨=⎩. 4.试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解.【答案与解析】解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①②①-②,整理得513y y -=-③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =; 当5y ≤时,③可化为513y y -=-,无解. 将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【总结升华】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解. 举一反三:【变式】(2020春•杭锦后旗校级期末)若二元一次方程组和y=kx+9有相同解,求(k+1)2的值. 【答案】 解:方程组,①×3+②得:11x=22, 解得:x=2,将x=2代入①得:6﹣y=7, 解得:y=﹣1, ∴方程组的解为,将代入y=kx+9得:k=﹣5,则当k=﹣5时,(k+1)2=16. 第二课时 【学习目标】1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.【知识网络】【要点梳理】要点一、不等式1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.要点诠释:(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点二、一元一次不等式1.定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,要点诠释:ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.要点诠释:不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.要点诠释:列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键. 要点三、一元一次不等式组关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.要点诠释:(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集. (2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.【典型例题】类型一、不等式1.(2020春•天津期末)判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..【答案与解析】解:(1)若由b﹣3a<0,移项即可得到b<3a,故正确;(2)如果﹣5x>20,两边同除以﹣5不等号方向改变,故错误;(3)若a>b,当c=0时则 ac2>bc2错误,故错误;(4)由ac2>bc2得c2>0,故正确;(5)若a>b,根据c2+1,则 a(c2+1)>b(c2+1)正确.(6)若a>b>0,如a=2,b=1,则<正确.故答案为:√、×、×、√、√、√.【总结升华】本题考查了不等式的性质,两边同乘以或除以一个不为零的负数,不等号方向改变.2. 设x>y ,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x 或y 的值是多少?【思路点拨】比较两个代数式的大小,可以运用不等式的性质得出比较方法。
二元一次方程组应用题经典题解析版----例题

实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的根本思想列方程组解应用题是把"未知〞转化为"〞的重要方法,它的关键是把量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的根本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比拟直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开场时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比拟直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-本钱(进价);(2);(3)利润=本钱〔进价〕×利润率;(4)标价=本钱(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:"商品利润=售价-本钱〞中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.〔例如八折就是按标价的十分之八即五分之四或者百分之八十〕4.储蓄问题:(1)根本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)根本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息× (1-利息税率) ⑤年利率=月利率×12 ⑥月利率=年利率1 12 .注意:免税利息=利息5.配套问题:解这类问题的根本等量关系是:总量各局部之间的比例=每一套各局部之间的比例.6.增长率问题:解这类问题的根本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量.7.和差倍分问题:解这类问题的根本等量关系是:较大量=较小量+多余量,总量=倍数×倍量.8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n 为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的根本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的根本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最正确方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最正确方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比拟几种方案得出最正确方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.要点诠释:(1)解实际应用问题必须写"答〞,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)"设〞、"答〞两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.(4)列方程组解应用题应注意的问题①弄清各种题型中根本量之间的关系; ②审题时,注意从文字,图表中获得有关信息; ③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列 方程组与解方程组时,不要带单位;④正确书写速度单位,防止与路程单位混淆; ⑤在寻找等量关系时,应注意挖掘隐含的条件; ⑥列方程组解应用题一定要注意检验.类型一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?思路点拨:画直线型示意图理解题意:(1)这里有两个未知数:①汽车的行程;②拖拉机的行程.(2)有两个等量关系: ①相向而行:汽车行驶113小时的路程+拖拉机行驶113小时的路程=160千米; ②同向而行:汽车行驶12小时的路程=拖拉机行驶112⎛⎫+ ⎪⎝⎭小时的路程. 解:设汽车的速度为每小时行千米,拖拉机的速度为每小时千米.根据题意,列方程组()4160,311122x y x y ⎧+=⎪⎪⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩ 解这个方程组,得: 90,30x y =⎧⎨=⎩ 1111901165,3011853232⎛⎫⎛⎫⨯+=⨯+= ⎪ ⎪⎝⎭⎝⎭.答:汽车行驶了165千米,拖拉机行驶了85千米.总结升华:根据题意画出示意图,再根据路程、时间和速度的关系找出等量关系,是行程问题的常用的解决策略.类型二:列二元一次方程组解决——工程问题2.一家商店要进展装修,假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?思路点拨:此题有两层含义,各自隐含两个等式,第一层含义:假设请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;第二层含义:假设先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元.设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,由第一层含义可得方程8〔*+y〕=3520,由第二层含义可得方程6*+12y=3480.解:(1)设甲组单独做一天商店应付*元,乙组单独做一天商店应付y元,依题意得:解得答:甲组单独做一天商店应付300元,乙组单独做一天商店应付140元.(2)单独请甲组做,需付款300×12=3600元,单独请乙组做,需付款24×140=3360元,故请乙组单独做费用最少.答:请乙组单独做费用最少.总结升华:工作效率是单位时间里完成的工作量,同一题目中时间单位必须统一,一般地,将工作总量设为1,也可设为a,需根据题目的特点合理选用;工程问题也经常利用线段图或列表法进展分析.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元.价风格整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?思路点拨:做此题的关键要知道:利润=进价×利润率解:甲商品的进价为*元,乙商品的进价为y元,由题意得:,解得:答:两件商品的进价分别为600元和400元.类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?〔利息所得税=利息金额×20%,教育储蓄没有利息所得税〕思路点拨:设教育储蓄存了*元,一年定期存了y元,我们可以根据题意可列出表格:教育储蓄一年定期合计现在x y一年后 2.25%+⨯ 2.25%80%x x+⨯⨯2042.75y y解:设存一年教育储蓄的钱为*元,存一年定期存款的钱为y元,则列方程:,解得:答:存教育储蓄的钱为1500元,存一年定期的钱为500元.总结升华: 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.类型五:列二元一次方程组解决——生产中的配套问题5.*服装厂生产一批*种款式的秋装,每2米的*种布料可做上衣的衣身3个或衣袖5只. 现方案用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?思路点拨:此题的第一个相等关系比拟容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).解:设用米布料做衣身,用米布料做衣袖才能使衣身和衣袖恰好配套,根据题意,得:答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.总结升华:生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.类型六:列二元一次方程组解决——增长率问题 6. *工厂去年的利润〔总产值—总支出〕为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元,去年的总产值、总支出各是多少万元?思路点拨:设去年的总产值为*万元,总支出为y 万元,则有总产值〔万元〕 总支出〔万元〕 利润〔万元〕 去年* y 200 今年 120%* 90%y 780 根据题意知道去年的利润和今年的利润,由利润=总产值—总支出和表格里的量和未知量,可以列出两个等式.解:设去年的总产值为*万元,总支出为y 万元,根据题意得: ,解之得:答:去年的总产值为2000万元,总支出为1800万元总结升华:当题的条件较多时,可以借助图表或图形进展分析.类型七:列二元一次方程组解决——和差倍分问题7.〔2011年丰台区中考一摸试题〕"爱心〞帐篷厂和"温暖〞帐篷厂原方案每周生产帐篷共9千顶,现*地震灾区急需帐篷14千顶,两厂决定在一周赶制出这批帐篷.为此,全体职工加班加点,"爱心〞帐篷厂和"温暖〞帐篷厂一周制作的帐篷数分别到达了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周,"爱心〞帐篷厂和"温暖〞帐篷厂各生产帐篷多少千顶?思路点拨:找出量和未知量,根据题意知未知量有两个,所以列两个方程,根据方案前后,倍数关系由量和未知量列出两个等式,即是两个方程组成的方程组.解:设原方案"爱心〞帐篷厂生产帐篷*千顶,"温暖〞帐篷厂生产帐篷y 千顶,由题意得:9,1.6 1.514x y x y +=⎧⎨+=⎩, 解得:5,4x y =⎧⎨=⎩所以:1.6*=1.65=8, 1.5y =1.54=6答:"爱心〞帐篷厂生产帐篷8千顶,"温暖〞帐篷厂生产帐篷6千顶.类型八:列二元一次方程组解决——数字问题8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,前一个四位数比后一个四位数大2178,求这两个两位数.思路点拨:设较大的两位数为*,较小的两位数为y.问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100*+y 问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y +*解:设较大的两位数为*,较小的两位数为y.依题意可得:,解得:答:这两个两位数分别为45,23.类型九:列二元一次方程组解决——浓度问题9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg ,问甲、乙两种酒精溶液应各取多少?思路点拨:此题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:〔1〕甲种酒精溶液与乙种酒精溶液的质量之和=50;〔2〕混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;〔3〕混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;〔4〕混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比.解:法一:设甲、乙两种酒精溶液分别取*kg , ykg.依题意得:,答:甲取20kg,乙取30kg法二:设甲、乙两种酒精溶液分别取10*kg和5ykg,则甲种酒精溶液含水7*kg,乙种酒精溶液含水ykg,根据题意得:,所以 10*=20,5y=30.答:甲取20kg,乙取30kg总结升华:此题的第〔1〕个相等关系比拟明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等.用它们来联系各量之间的关系,列方程组时就显得容易多了.列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么.有时候需要设间接未知数,有时候需要设辅助未知数.类型十:列二元一次方程组解决——几何问题10.如图,用8块一样的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为*,宽为y,就可以列出关于*、y的二元一次方程组.解:设长方形地砖的长*cm,宽ycm,由题意得:,答:每块长方形地砖的长为45cm、宽为15cm.总结升华:几何应用题的相等关系一般隐藏在*些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解.类型十一:列二元一次方程组解决——年龄问题11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少?思路点拨:解此题的关键是理解"6年后〞这几个字的含义,即6年后父子俩都长了6岁.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程.解:设现在父亲*岁,儿子y岁,根据题意得:,答:父亲现在30岁,儿子6岁.总结升华:解决年龄问题,要注意一点:一个人的年龄变化〔增大、减小〕了,其他人也一样增大或减小,并且增大〔或减小〕的岁数是一样的〔一样的时间〕.类型十二:列二元一次方程组解决——优化方案问题:12.*地生产一种绿色蔬菜,假设在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进展粗加工,每天可以加工16吨;如果进展细加工,每天可加工6吨. 但两种加工方式不能同时进展. 受季节条件的限制,公司必须在15天之将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案方案一:将蔬菜全部进展粗加工;方案二:尽可能多的对蔬菜进展精加工,没来得及加工的蔬菜在市场上直接销售;方案三:将局部蔬菜进展精加工,其余蔬菜进展粗加工,并恰好在15天完成你认为选择哪种方案获利最多?为什么?思路点拨:如何对蔬菜进展加工,获利最大,是生产经营者一直思考的问题. 此题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣.解:方案一获利为:4500×140=630000(元).方案二获利为:7500×(6×15)+1000×(140-6×15)=675000+50000=725000(元).方案三获利如下:设将吨蔬菜进展精加工,吨蔬菜进展粗加工,则根据题意,得:,解得:所以方案三获利为:7500×60+4500×80=810000(元).因为630000<725000<810000,所以选择方案三获利最多答:方案三获利最多,最多为810000元.总结升华:优化方案问题首先要列举出所有可能的方案,再按题的要求分别求出每个方案的具体结果,再进展比拟从中选择最优方案.。
二元一次方程组的应用题,总结了十个题型,学透很容易!

初学二元一次方程组的应用,好多同学会遇到会解不会列的尴尬局面。
为此,特把二元一次方程组应用中常见的题型整理出来,希望能对同学们有所帮助。
类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。
类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类型解二元一次方程组
一、知识回顾:
1、解二元一次方程组的基本思想是什么? “消元转化思想”
2、二元一次方程组的解法有哪些?
代入法和加减消元法
二、归类复习:
(一)相同未知数,系数为1或者-1
例题:
达标练习:
(二)相同未知数,系数相等
例题:
达标练习:
⎩⎨⎧=+=+17371y x y x )(⎩⎨⎧=+-=-10
2352y x y x )(⎩⎨⎧-=-=-2.32872x y y x ⎩⎨⎧=-=+23435531y x y x )
(⎩⎨⎧=+=-14
645342y x y x )(⎩⎨⎧=+-=+132734y x y x
(三)相同未知数,系数互为相反数 例题:
达标练习:
(四)相同未知数,系数有倍数关系
例题:
达标练习:
(五)相同未知数,系数无明显关系
例题:
⎩⎨⎧=-=+13751y x y x )(⎩⎨⎧=-=+19765762y x y x )(⎪⎩⎪⎨⎧=+--=-3521135.0y x y x ⎩⎨⎧=+=-17236421y x y x )(⎩⎨⎧=+=-14655342y x y x )(⎩⎨⎧=-=-276832x y y x ⎩⎨⎧=+=-17326231y x y x )(⎩⎨⎧=+=-42
6510432y x y x )(
达标练习:
(六)含分数或复杂二元一次方程组 例题:
达标练习:
三、知识小结:
⎩⎨⎧=-+=+-0315202023y x y x ⎪⎪⎩
⎪⎪⎨⎧-=-=+122943323211y x y x )(⎪⎪⎩⎪⎪⎨⎧=+-+=-+-04235132423512y x y x 解方程组的基本思路是什么?主要步骤有哪些?。