七年级数学下册6.3实数教案1(新版)新人教版
人教版数学七年级下册-6.3 实数(1) 教案

6.3 实数(1)教学目标1.了解有理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;2.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数;教学重点难点1.无理数、实数的意义;2.实数的性质.教学过程一、亲自动手发现真理:.算一算:使用计算器,把下列有理数写成小数的形式,你们发现了什么?我们通过计算后,发现31、-21 、-32 可以写成有限小数的形式;2 、-3 、5可以写成无限循环小数的形式.想一想:2 、3 是不是有理数?为什么?1.41421356……它是一个无限不循环小数,所以它不是有理数.二、新概念学习:我们把有限小数或无限循环小数叫做有理数;无限不循环小数叫做无理数.分析:很多数的平方根和立方根,例如、 、 、 ……都是无理数,π=3.14159265……也是无理数.想一想:我们把有理数、无理数统称实数,你能把我们学过的数进行一下分类吗三、实数与数轴关系:探究1:每个有理数都可以用数轴上的点来表示,无理数是否也可以用数轴上的点来表示?π、是否可以用数轴上的点表示?我们设想直径为1个单位长度的圆的周长就是π.若让这个圆从原点沿数轴向右滚动1周,原上的一点就由原点到达O′、OO′,的长度就是π则O′的坐标就是π.结论:无理数π可以用数轴上的点表示出来.探究2:2能在数轴上表示吗?以单位长度1为边长画一个正方形,以原点为圆心,正方形的对角线为半径画弧,与正半轴的交无理数π可以用数轴上的点表示出来.点就表示2,与负半轴的交点就表示 -2.结论:无理数2可以用数轴上的点表示出来.实数包括有理数和无理数,任何一个有理数都可以用数轴上的一个点来表示,任何一个无理数也都可以用数轴上的一点个来表示.数轴上的点有些表示有理数,有些表示无理数,总之,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.四、课后小结.1.今天的探究学习,你们有哪些收获?2.根据你们对有理数、无理数、实数的理解,你们认为实数还可以怎样分类? 3.实数与数轴有什么关系啊?五、作业练习.6.3 复习巩固。
七年级数学下册(人教版)6.3.1实数的相关概念及分类(第一课时)优秀教学案例

五、案例亮点
1.生活情境的创设:通过购物找零的实际例子,让学生感受到实数的实际意义,激发学生的学习兴趣,提高学生对实数的理解和运用能力。
2.问题导向的设计:通过设计具有启发性和针对性的问题,引导学生进行思考和探究,激发学生的思维活力,培养学生的解决问题的能力。
4.运用实际例子,引导学生将实数知识应用到生活中,培养学生的实践能力和创新意识。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使学生感受到数学的趣味性和魅力,激发学生学习数学的内在动力。
2.培养学生的团队合作意识,使学生在合作交流中体验到学习的乐趣,增强学习的自信心。
3.培养学生严谨治学的态度,使学生养成认真思考、细致观察的学习习惯,提高学生的学习效果。
2.利用数轴情境导入:在数轴上标出几个关键点,如0, 1, -1等,引导学生观察实数在数轴上的位置,引出实数的分类。
3.利用故事情境导入:讲述“兔子与胡萝卜”的故事,引发学生对实数的思考,如兔子每天跑的距离是无理数,胡萝卜的数量是有理数,引出实数的概念和分类。
(二)讲授新知
1.实数的定义和分类:讲解实数的概念,引导学生理解实数是包括有理数和无理数两大类的数,并讲解实数与数轴的关系。
5.教学策略的灵活运用:结合学生的认知水平和学习兴趣,设计丰富的教学活动,注重引导学生通过自主探究、合作交流,深入理解实数的本质特征和分类依据,提高实数知识的系统性和灵活运用能力。同时,运用多媒体教学手段,直观地展示实数的性质和规律,帮助学生更好地理解和掌握实数知识。
(二)过程与方法
1.通过自主探究、合作交流,培养学生的动手操作能力和思维能力,提高学生对实数概念和分类的理解。
(人教版)七年级下册数学配套教案:6.3 第1课时 《实数》

(人教版)七年级下册数学配套教案:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在掌握了有理数的相关知识后,进一步扩大知识面,认识实数的概念。
本节内容主要包括实数的定义、实数的分类和实数的性质。
通过本节课的学习,学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的相关知识,具备了一定的数学基础。
但是,对于实数的定义和性质,可能还比较陌生。
因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握实数的概念和性质。
三. 教学目标1.理解实数的概念,掌握实数的分类和性质。
2.能够运用实数的概念和性质解决一些简单的实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
五. 教学方法采用讲授法、引导法、讨论法等教学方法。
通过教师的讲解和引导,学生的思考和讨论,使学生理解和掌握实数的概念和性质。
六. 教学准备1.教师准备教案、PPT等教学资料。
2.学生准备笔记本、文具等学习用品。
七. 教学过程1.导入(5分钟)教师通过复习有理数的相关知识,引导学生思考有理数的局限性,引出实数的概念。
2.呈现(15分钟)教师通过PPT或者黑板,呈现实数的定义、性质和分类。
引导学生理解和记忆实数的概念和性质,掌握实数的分类。
3.操练(15分钟)教师布置一些有关实数的练习题,让学生独立完成。
通过练习,巩固学生对实数的理解和掌握。
4.巩固(10分钟)教师选取一些典型的练习题,进行讲解和分析,帮助学生巩固对实数的理解和掌握。
5.拓展(10分钟)教师引导学生思考实数在实际生活中的应用,让学生举例说明实数在生活中的作用。
6.小结(5分钟)教师对本节课的内容进行小结,强调实数的概念、性质和分类,提醒学生注意实数的应用。
7.家庭作业(5分钟)教师布置一些有关实数的家庭作业,让学生进一步巩固和理解实数的概念和性质。
七年级数学下册 6.3 实数教案 (新版)新人教版

课题:6.3 实数教学目标:1.了解无理数和实数的概念.2.知道实数与数轴上的点具有一一对应关系,初步体会“数形结合”的数学思想.3.会求实数的相反数与绝对值,会对实数进行简单的运算.重点:1.了解无理数和实数的概念,知道实数与数轴上的点的一一对应关系.2.知道有理数的运算律和运算性质同样适合于实数的运算,并会进行简单的运算.难点:1.对无理数的认识.2.认识和理解有理数的一些概念和运算在实数中仍适用的这种扩充。
教学流程:一、情境引入问题1:有理数包括整数和分数,你能将下列分数写成小数的形式吗?你能将整数写成小数的形式吗?3,5327119 254911-,,,,.解:52.52=,30.6,5-=-276.754=,111.29=,90.8111=,3=3.0问题2:你有什么发现?问题3:我们学过的数是否都可以化为有限小数或无限循环小数吗?请举例说明.1.414321; 2.236067-= 1.259921=;1.442249=-;π 3.14159265=;00000000001.1111⋅⋅⋅⋅⋅⋅(两个1之间依次多一个0)概念:无限不循环小数叫无理数.无理数三种形态:开方开不尽的数;含有π的数;有规律但不循环的数无理数分为:正无理数;负无理数二、探究1归纳:有理数和无理数统称实数. 按定义分类:0⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 按大小分类:⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数 正无理数实数 负有理数 负实数 负无理数 练习1:把下列各数分别填入相应的集合内:15,42π-答案:三、探究2问题1:我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?追问1:直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ,点O ' 对应的数是多少?答案:π追问2:为什么?回顾:能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?小正方形对角线的长为______dm.问题2:和的点吗?追问:以单位长度为边长画一个正方形,以原点为圆心,正方形对角线为半径画弧,与正半轴的交点表示什么?与负半轴的交点表示什么?,与负半轴的交点表示.强调:(1)每一个无理数都可以用数轴上的一个点表示出来.(2)实数与数轴上的点是一一对应的关系.(3)数轴上的任意两个点,右边的点表示的实数总比左边的点表示的实数大.练习2:1.判断正误,并说明理由.(1)无理数都是无限小数; ( )(2)实数包括正实数、0、负实数; ( )(3)不带根号的数都是有理数; ( )(4)所有有理数都可以用数轴上的点表示,反过来,数轴上所有的点都表示有理数. ( )(5)实数不是有理数就是无理数。
人教版数学七年级下册教案6.3《 实数》

人教版数学七年级下册教案6.3《实数》一. 教材分析《实数》是人教版数学七年级下册的一章内容,主要介绍了实数的概念、性质和运算。
本章内容包括有理数、无理数和实数的分类,以及实数的运算规则。
通过本章的学习,学生能够理解实数的概念,掌握实数的性质和运算规则,为后续的数学学习打下基础。
二. 学情分析学生在学习本章内容前,已经学习了有理数的概念和运算规则,对数学运算有一定的基础。
但是,学生可能对无理数的概念和性质较为陌生,需要通过实例和讲解来加深理解。
此外,学生可能对实数的分类和运算规则有一定的困惑,需要通过具体的例题和练习来进行巩固。
三. 教学目标1.了解实数的概念和性质,能够对实数进行分类。
2.掌握实数的运算规则,能够进行实数的加减乘除运算。
3.能够运用实数的概念和运算规则解决实际问题。
四. 教学重难点1.实数的分类:有理数、无理数和实数的区别和联系。
2.实数的运算规则:实数的加减乘除运算规则。
五. 教学方法采用问题驱动法和案例教学法,通过提问和举例引导学生思考和探索实数的概念和性质,通过具体的例题和练习来讲解和巩固实数的运算规则。
六. 教学准备1.PPT课件:实数的概念、性质和运算规则的讲解和例题。
2.练习题:针对实数的分类和运算的练习题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)讲解实数的概念和性质,通过具体的例子来阐述实数的分类,如有理数、无理数和实数的区别和联系。
3.操练(20分钟)讲解实数的运算规则,通过具体的例题来演示和解释实数的加减乘除运算,引导学生进行思考和提问。
4.巩固(10分钟)学生进行实数的分类和运算的练习,教师进行个别指导和讲解,确保学生能够掌握实数的分类和运算规则。
5.拓展(10分钟)通过实际问题引导学生运用实数的概念和运算规则进行解决问题,培养学生的应用能力和创新思维。
6.小结(5分钟)对本节课的内容进行总结和回顾,强调实数的概念、性质和运算规则的重点和难点。
人教版数学七年级下册6.3《实数》教学设计1

人教版数学七年级下册6.3《实数》教学设计1一. 教材分析人教版数学七年级下册6.3《实数》是学生在掌握了有理数和无理数的概念之后,进一步对实数进行系统学习的开始。
本节内容主要包括实数的定义、实数与数轴的关系、实数的运算等。
通过本节课的学习,使学生对实数有一个清晰的认识,为后续的代数学习和解决实际问题打下基础。
二. 学情分析学生在之前的学习中已经掌握了有理数和无理数的概念,对数轴也有了一定的了解。
但实数作为介于有理数和无理数之间的一个整体,其定义和性质还需要进一步引导和探究。
此外,实数与数轴的关系以及实数的运算对学生来说也是一个新的挑战。
三. 教学目标1.理解实数的定义,掌握实数与数轴的关系。
2.掌握实数的运算规则,能进行实数的基本运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
3.实数的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题引导学生思考,通过案例让学生理解实数的定义和性质,通过小组合作学习法让学生在讨论中掌握实数与数轴的关系和实数的运算规则。
六. 教学准备1.PPT课件。
2.数轴教具。
3.练习题。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
同时,提出问题:“实数与数轴有什么关系?”激发学生的学习兴趣。
2.呈现(10分钟)通过PPT课件呈现实数的定义和性质,实数与数轴的关系,实数的运算规则。
结合案例,让学生直观地理解实数的内涵。
3.操练(10分钟)让学生在小组内进行实数的运算练习,如加、减、乘、除等。
教师巡回指导,解答学生疑问。
4.巩固(5分钟)选取一些典型练习题,让学生独立完成,检验对实数知识的掌握程度。
教师及时点评,指出错误并讲解。
5.拓展(5分钟)引导学生思考实数在实际生活中的应用,如面积、体积计算等。
让学生举例说明,培养解决实际问题的能力。
人教初中数学七下《6.3 实数》教案1

《实数》【教学目标】知识与技能:了解无理数和实数的概念以及实数的分类;知道实数与数轴上的点具有一一对应的关系.过程与方法:在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系.情感态度与价值观:通过了解数系扩充体会数系扩充对人类发展的作用;敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.教学重点:了解无理数和实数的概念;对实数进行分类.教学难点:对无理数的认识.【教学过程】一、复习引入无理数:利用计算器把下列有理数3,53-,847,119,95写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式, 反过来,任何有限小数或者无限循环小数也都是有理数.通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数, 把无限不循环小数叫做无理数.二、实数及其分类:1、实数的概念:有理数和无理数统称为实数.2、实数的分类:按照定义分类如下:实数:⎪⎩⎪⎨⎧⎩⎨⎧数)无理数(无限不循环小小数)(有限小数或无限循环分数整数有理数按照正负分类如下:实数:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数零负无理数正有理数正实数 3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示.物理是合乎是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来.活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-.事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数.归纳:①实数与数轴上的点是一一对应的.即没一个实数都可以用数轴上的点来表示; 反过来,数轴上的每一个点都表示一个实数.②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.三、应用:例1、下列实数中,无理数有哪些?2,172,37.0 -,14.3,35,0,⋅⋅⋅11121211211121.10,π,2)4(-. 解:无理数有:2,35,π注:①带根号的数不一定是无理数,比如2)4(-,它其实是有理数4;②无限小数不一定是无理数,无限不循环小数一定是无理数.比如⋅⋅⋅11121211211121.10. 例2、把无理数5在数轴上表示出来. 分析:类比2的表示方法,我们需要构造出长度为5的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5.有理数集合 无理数集合 解:如图所示, OA =2,AB =1. 由勾股定理可知:5=OB ,以原点O 为圆心,以OB 长度为半径画弧,与数轴的正半轴交于点C ,则点C 就表示5.四、随堂练习:1、判断下列说法是否正确:⑴无限小数都是无理数;⑵无理数都是无限小数;⑶带根号的数都是无理数;⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数; ⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数.2、把下列各数分别填在相应的集合里:1415926.3,7,8-,32,6.0,0,36,3π,⋅⋅⋅313113111.0.3、比较下列各组实数的大小:(1)4,15 (2)π,1416.3五、课堂小结1、无理数、实数的意义及实数的分类.2、实数与数轴的对应关系 .六、布置作业教学反思:关于无理数的认识是非常抽象的,只要求学生了解无理数和实数的意义即可,学生对实数的认识是逐步加深的,以后还要讨论,所以本节课不易过难,教师要把握好难度.。
七年级数学下册6.3.1实数的概念教案(新版)新人教版

1.正实数的绝对值是,0的绝对值是,负实数的绝对值是.
2. 的相反数是,绝对值是.
3.绝对值等于 的数是, 的平方是.
4.比较大小:-7
5、一个数的绝对值是 ,则这个数是.
板书设计
学生收获
教学反思
过程与方法:
情感、态度与价值观:
教学重点
了解无理数和实数的概念;知道实数与数轴上的点的一一对应关系.
了解无理数和实数的概念;知道实数与数轴上的点的一一对应关系.
教学难点
对无理数的认识
对无理数的认识
课时安排
2课时
2课时
收集的学生提问
教学过程
温故知新
1.有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?
实数
4.实数与数轴上的点一一对应
问题:直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点 ,点 对应的数是多少?
问题:边长为1的正方形,对角线长为多少?
每一个无理数都可以用数轴上的一个点来表示.数轴上的点有些表示有理数,有些表示无理数.
实数与数轴上的点是一一对应的.
5.实数的相反数、绝环小数.
(2)反过来,任何有限小数或无限循环小数也都是有理数.
2.无限不循环的小数叫做无理数.
无理数的特征:
(1).圆周率 及一些含有 的数
(2).开不尽方的数
(3).有一定的规律,但不循环的无限小数
导学激趣
3.实数的分类:
(1)按定义分
实数
(2)按正负分
数 的相反数是 ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.
典例分析
例1:把下列各数填入相应的集合内:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总结①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
三、学以致用
例1、把下列各数分别填入相应的集合里:
正有理数{}
负有理数{}
正无理数{}
负无理数{}
2、下列实数中是无理数的为()A. 0 B. C. D.
3、的相反数是,绝对值
4、绝对值等于的数是,的平方是
5、
6、求绝对值
练习:
一、判断下列说法是否正确:
1.实数不是有理数就是无理数。()
2.无限小数都是无理数。()
实数
3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______
这样,无理数可以用数轴上的点表示出来
实数
教
学
目
标
知识与技能
了解实数的意义,能对实数按要求进行分类。
过程与方法
了解实数范围内,相反数、倒数、绝对值的意义。
情感态度
与价值观
了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
教学重难点
正确理解实数的概念。
教
学
过
程
探究新知
1、归纳:任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小数也都是有理数
3.无理数都是无限小数。()
4.带根号的数都是无理数。()
5.两个无理数之和一定是无理数。()
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。()
二、填空1、
2、
3、比较大小
4、_________
四、总结反思
这节课你有什么新发现?知道了哪些新知识?
无理数的特征:
1.圆周率及一些含有的数
观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,____________小数又叫无理数,也是无理数
结论:_______和_______统称为实数
你能举出一些无理数吗?
2、试一试把实数分类
像有理数一样,无理数也有正负之分。例如,,是____无理数,,,是____无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
2.开不尽方的数
3.有一定的律,但循环的无限小数
注意:带根号的数不一定是无理数
教
学
反
思
在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式.把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念.无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数.帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。
2与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______
4、讨论当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结数的相反数是______,这里表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______