球的表面积与体积教案修订
球的体积和表面积教案

球的体积和表面积教案教案名称:球的体积和表面积教学目标:1.了解球体积和表面积的概念以及计算公式。
2.通过具体实例,培养学生计算球体积和表面积的能力。
3.通过合作学习和讨论,提高学生的动手能力和分析问题的能力。
教学内容:1.球的体积和表面积概念介绍。
2.球体积的计算公式。
3.球表面积的计算公式。
4.实例讲解和练习。
教学过程:Step 1:引入教学(5分钟)教师可以通过问题引入,如“同学们是否知道什么是球的体积和表面积?”等,激发学生的学习兴趣。
Step 2:概念介绍(10分钟)通过教师的介绍和板书,向学生简单介绍球的体积和表面积的概念,并引导学生理解。
Step 3:计算公式(15分钟)教师通过示意图和具体的计算公式,向学生讲解球体积和表面积的计算方法,并强调公式的推导过程。
Step 4:实例讲解(15分钟)教师通过几个具体的实例,向学生讲解如何根据给定数据计算球的体积和表面积。
教师可以提供一些复杂的例子,并引导学生一步步解决问题。
Step 5:合作学习(15分钟)将学生分成小组,通过合作学习的方式进行练习。
每个小组选择一道题目进行讨论和解答,学生可以自由讨论并分享解题思路。
Step 6:展示与总结(10分钟)请几个小组派代表上台展示他们的解答思路,并进行讨论和解答。
教师总结和讲解正确答案,并强调问题的解题思路和技巧。
Step 7:拓展联系(15分钟)通过提出一些拓展问题,帮助学生巩固所学知识,并培养学生分析问题和解决问题的能力。
Step 8:课堂巩固(5分钟)布置相关的作业题,让学生在课后继续巩固和复习所学知识。
教学资源:1.教师教案和课件。
2.黑板和彩色粉笔。
3.计算器和几何器具。
4.课堂练习题和作业题。
教学评价方法:1.课堂参与度评价:观察学生是否积极参与课堂讨论和学习,参与度高者评价较好。
2.问题解答能力评价:观察学生在课堂上解答问题的能力,解答准确且思路清晰者评价较好。
3.作业完成情况评价:评价学生对所学知识的掌握情况,作业完成准确且规范者评价较好。
球的体积与表面积教案设计(参考)

球的体积与表面积教案设计(参考)
球的体积和表面积
一、教材分析
本节内容是数学2第一章空间几何体第3节空间几何体的表面积与体积的第2课时球的体积和表面积,是在学习了柱体、锥体、台体等基本几何体的基础上,通过空间度量形式了解另一种基本几何体的结构特征.从知识上讲,球是一种高度对称的基本空间几何体,同时它也是进一步研究空间组合体结构特征的基础;从方法上讲,它为我们提供了另外一种求空间几何体体积和表面积的思想方法;从教材编排上,更重视学生的直观感知和操作确认,为螺旋式上升的学习奠定了基础
. 课时分配
本节内容用1课时的时间完成,主要讲解球的体积公式和表面积公式及公式的应用.
二、教学目标
知识与技能
(1)通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识.
(2)能运用球的面积和体积公式灵活解决实际问题.
(3)培养学生的空间思维能力和空间想象能力
. 过程与方法 通过球的体积和面积公式的推导,从而得到一种推导球体积公式3
3
4=R V π和面积公式24=R S π的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想
. 情感与价值观 通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心
.
三、教学重点、难点
重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法.。
示范教案(球的体积和表面积)

一、教学目标:1. 让学生掌握球体体积和表面积的计算公式。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对球的体积和表面积概念的理解。
二、教学内容:1. 球的体积计算公式:V = 4/3πr³2. 球的表面积计算公式:S = 4πr²3. 实际例子:计算篮球、足球等球的体积和表面积。
三、教学重点与难点:1. 重点:球的体积和表面积计算公式的掌握。
2. 难点:如何将实际问题转化为球的体积和表面积的计算问题。
四、教学方法:1. 采用讲授法讲解球的体积和表面积的计算公式。
2. 利用多媒体展示实例,引导学生运用公式计算。
3. 分组讨论,让学生互相交流解题方法。
五、教学过程:1. 引入新课:通过展示篮球、足球等球体,引导学生思考如何计算它们的体积和表面积。
2. 讲解球的体积计算公式:V = 4/3πr³,解释公式的推导过程。
3. 讲解球的表面积计算公式:S = 4πr²,解释公式的推导过程。
4. 实例分析:计算篮球、足球等球的体积和表面积,引导学生运用公式解决问题。
5. 练习环节:布置一些有关球体积和表面积的练习题,让学生独立完成。
6. 总结:对本节课的内容进行总结,强调球的体积和表面积的计算公式及应用。
7. 作业布置:让学生课后总结球的体积和表面积的计算方法,并找出生活中有关球体积和表面积的实际问题进行解答。
六、教学评估:1. 通过课堂练习和课后作业,评估学生对球体积和表面积计算公式的掌握程度。
2. 观察学生在实际问题中运用公式的能力,以及对篮球、足球等球体体积和表面积的计算准确性。
七、教学拓展:1. 引导学生思考:除了球体,还有哪些几何体的体积和表面积可以运用类似的公式进行计算?2. 探讨其他几何体的体积和表面积计算方法,如圆柱、圆锥等。
八、教学资源:1. 多媒体课件:包括球体的图片、公式推导过程、实例分析等。
2. 练习题:包括不同难度的球体积和表面积计算题目。
球的表面积和体积教案

球的表面积和体积教案教案标题:球的表面积和体积教案教案目标:1. 通过本课的学习,学生将能够理解球的表面积和体积的概念。
2. 学生将能够运用适当的公式计算球的表面积和体积。
3. 学生将能够将所学知识应用于实际问题,并进行问题解决。
教学资源:1. 白板、黑板或投影仪2. 球模型或球图片3. 教学课件或教材4. 学生练习题和解答教学步骤:引入:1. 在白板上绘制一个球体的图形,引导学生思考并分享他们对球的认识和特点。
2. 提问学生,他们是否知道如何计算球的表面积和体积。
讲解:1. 通过使用球模型或球图片,向学生展示球的表面积和体积的定义。
2. 解释并推导出球的表面积和体积的公式。
表面积公式为4πr²,体积公式为(4/3)πr³,其中r为球的半径。
3. 通过示例问题演示如何使用公式计算球的表面积和体积。
练习:1. 分发学生练习题,并要求学生独立或合作完成。
2. 监督学生的练习过程,及时解答他们的问题。
3. 收集学生的练习作业,并给予适当的反馈。
拓展:1. 提供一些拓展问题,鼓励学生运用所学知识解决实际问题。
2. 引导学生思考和讨论球的表面积和体积在现实生活中的应用。
总结:1. 总结本课的重点内容,强调球的表面积和体积的计算方法和公式。
2. 鼓励学生复习和巩固所学知识,以便能够灵活运用。
评估:1. 设计一些评估题目,测试学生对球的表面积和体积的理解和计算能力。
2. 根据学生的回答和解答,评估他们的学习情况,并提供适当的反馈和指导。
教学延伸:1. 鼓励学生进行更多的实践和探索,例如测量和计算不同球体的表面积和体积。
2. 引导学生了解其他几何体的表面积和体积计算方法,扩展他们的数学知识。
注意事项:1. 在讲解过程中,使用简单清晰的语言和示例,确保学生能够理解和掌握。
2. 确保学生参与课堂互动,鼓励他们提问和分享自己的思考。
3. 在评估过程中,注重学生的思维过程和解决问题的能力,而不仅仅是答案的准确性。
球的体积与表面积教案设计(参考)

球的体积与表面积教案设计(参考)一、教学目标1. 知识与技能:(1)理解球的体积和表面积的概念;(2)掌握球体积和表面积的计算公式;(3)能够运用球体积和表面积的知识解决实际问题。
2. 过程与方法:(1)通过观察和操作,培养学生的空间想象能力;(2)运用数学建模思想,解决生活中的几何问题。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养学生的探究精神;(2)培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)球的体积和表面积的计算公式;(2)运用球体积和表面积的知识解决实际问题。
2. 教学难点:(1)球体积和表面积公式的推导;(2)运用球体积和表面积公式解决实际问题。
三、教学准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:笔记本、三角板、圆规、直尺。
1. 导入新课(1)教师通过生活中的实例,如篮球、足球等,引导学生思考球的体积和表面积的概念;(2)学生分享对球体积和表面积的理解。
2. 探究球的体积和表面积公式(1)教师引导学生观察球的特征,引导学生思考球的体积和表面积的计算方法;(2)学生分组讨论,推导球的体积和表面积公式;3. 运用公式解决实际问题(1)教师出示实际问题,如篮球的体积是多少?足球的表面积是多少?;(2)学生运用所学知识,计算解决问题;五、作业布置1. 请学生运用球体积和表面积的知识,解决家庭作业中的实际问题;六、教学反馈与评价1. 课堂提问:教师在课堂过程中通过提问,了解学生对球体积和表面积知识的理解程度;2. 作业批改:教师对学生的家庭作业进行批改,了解学生对球体积和表面积公式的掌握情况;七、教学拓展1. 教师引导学生思考球的体积和表面积在实际生活中的应用,如建筑设计、体育用品等;2. 学生通过查阅资料,了解球体积和表面积在其他领域的应用。
教师在课后对本次教学进行反思,分析教学过程中的优点和不足,如教学方法、学生参与度等,为下次教学提供改进方向。
球的体积与表面积教案设计(参考)

球的体积与表面积教案设计(参考)第一章:球的定义与性质一、教学目标:1. 了解球的定义及其在几何中的重要性。
2. 掌握球的基本性质,如球心、半径等。
3. 能够识别和描述球的各种相关术语。
二、教学内容:1. 球的定义及特点。
2. 球心、半径等基本性质的介绍。
3. 球的相关术语,如球面、球体等。
三、教学方法:1. 采用讲授法,讲解球的定义及性质。
2. 利用实物模型或图形,帮助学生直观理解球的特点。
3. 进行小组讨论,让学生互相交流对球的理解。
四、教学评估:1. 课堂提问,检查学生对球的概念和性质的理解。
2. 学生作业,要求学生绘制球的图形并描述其性质。
第二章:球的体积计算一、教学目标:1. 理解球的体积的定义及其计算公式。
2. 学会使用球的体积公式进行计算。
3. 能够应用球的体积公式解决实际问题。
二、教学内容:1. 球的体积的定义及计算公式。
2. 球的体积公式的推导过程。
3. 应用球的体积公式解决实际问题。
三、教学方法:1. 采用讲解法,讲解球的体积的定义及计算公式。
2. 通过数学推导,展示球的体积公式的推导过程。
3. 提供实际问题,让学生应用球的体积公式进行计算和解决。
四、教学评估:1. 课堂提问,检查学生对球的体积定义和计算公式的理解。
2. 学生作业,要求学生应用球的体积公式进行计算和解决实际问题。
第三章:球的表面积计算一、教学目标:1. 理解球的表面积的定义及其计算公式。
2. 学会使用球的表面积公式进行计算。
3. 能够应用球的表面积公式解决实际问题。
二、教学内容:1. 球的表面积的定义及计算公式。
2. 球的表面积公式的推导过程。
3. 应用球的表面积公式解决实际问题。
三、教学方法:1. 采用讲解法,讲解球的表面积的定义及计算公式。
2. 通过数学推导,展示球的表面积公式的推导过程。
3. 提供实际问题,让学生应用球的表面积公式进行计算和解决。
四、教学评估:1. 课堂提问,检查学生对球的表面积定义和计算公式的理解。
球的表面积和体积(教学设计)

8.3.2《球的表面积和体积》教学设计一、教材分析本节内容选自人教A版《普通高中教科书数学必修第二册》(以下统称“教材”)第八章《立体几何初步》的第三节《简单几何体的表面积和体积》。
本节内容为球的表面积和体积,是在学习了柱体、锥体、台体等基本几何体的基础上,学习另一种几何体——球体的表面积和体积。
研究球的体积方法很多,教材介绍了“分割、求近似值、再由近似求和转化为球体的体积”的极限思想方法,这也是球的体积的教学重点。
从知识结构上讲,球是进一步研究空间组合体结构特征的基础,具有承上启下的作用;从思想方法上讲,在球的体积公式的教学中充分运用极限思想,为以后学习导数做好铺垫。
这节课在章节、模块甚至数学课程中全面整合教材,突出学科知识的系统性和教学的方向性,形成有生命、有灵魂的知识体系。
二、学情分析1.知识储备:在学习本节课内容之前,通过柱体、锥体、台体的体积和表面积的探究和学习,学生已具备了一定的空间想像能力、综合分析、归纳总结的能力;通过小学研究了圆的周长和面积,已经初步具备了极限、等价转化、分割的思想或方法。
2.认知障碍:对球体的研究已经超越了学生能把握的直观化对象,是教材中学生最难理解的内容之一。
比如极限法怎样分割?应用祖暅原理怎样进行等价转化?对于高一学生还是具有一定挑战性的。
3.能力水平:本节课的授课班级理化生班,该班学生的数学思维相对其他学科班级的学生生来说比较活跃,接受能力也比较强,但由于处于高一阶段,大部分同学的数学思维、听课效率、学习习惯等都有待提高和改善。
三、教学目标1.通过类比研究圆的周长和面积的方法及祖暅原理,能够推导出球的体积和面积公式,感受转化、类比、极限的数学思想,发展直观想象、数学建模、逻辑推理等核心素养;2.掌握球的表面积和体积计算公式,了解球的截面及其性质,并能运用这些公式解决一些实际问题,培养数学抽象、数学运算的核心素养;3.通过探究球的体积的过程,发展研究数学问题的思维体系,体会把空间图形转化为平面图形解决问题的降维处理思想及数形结合思想。
球的体积与表面积 优秀教案

1.3.2球的体积与表面积【课题】:§1.3.2球的体积与表面积A 【教学目标】:1. 知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。
3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
【教学重点】:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
【教学难点】:推导体积和面积公式中空间想象能力的形成。
【教学突破点】:球体的表面积和体积计算的教学,主要应当通过诱导学生前面已有知识点的运用技巧,通过客观的诱导分析及具体动手操作来完成.教学时,教师要充分利用“思考”“探究”栏目中提出的问题,让学生在动手实践的过程中学直观的得出柱体、锥体、台体的表面积和体积计算公式,更进一步体验公式的实际作用. 【教法、学法设计】:1.教法:通过对空间模型或运用计算机软件所呈现的空间几何体的开展过程的观察,帮助学生认识可以使用分割求和的方法得到球体的体积与表面积的运算公式。
并且能够运用基本公式来解决实际问题,培养解题技能。
2.学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。
【课前准备】:模型、课件 【教学过程设计】:练习与测试:1. 球的体积是323π,则此球的表面积是 ( ) A. 12π B. 16π C. 163π D. 643π2. 两个球的表面积之比为1:9, 则此两球的体积之比为 ( )A. 1: 729B. 1: 27C. 1: 9D. 1: 33. 一个正方体的内切球与外接球的表面积之比为 ( ) A. 1: B. 1: 3 C. D. 1: 24. 一个几何体的三视图都是半径为1的圆,则此几何体的表面积是 ;体积是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题解决最佳方案
问题解决最佳方案
教后反思
8.将一钢球放入底面半径为 的圆柱形玻璃容器中,水面升高 ,则钢球的半径是.
9.已知正方体的每个顶点都在球面上,球的体积是 ,求正方体的表面积.
10.(1)如图,,红色圆环的大圆半径为 ,小圆半径为 ,现
将圆环绕直径所在直线旋转 ,请计算旋转得到几何体的体积.
(2)一种空心钢球的质量是142 ,外径是 ,求它的内径
(A) (B) (C) (D)
3.直径是 的一个大金属球,溶化后铸成若干个直径为 的小球,如果不计损失,可铸成这样的小球().
(A)123个(B)124个(C)125个(D)126个
4.已知长方体一个顶点上三条棱的长分别是3,4,5,且它的顶点都在同一球面上,则这个球的表面积是().
(A) (B) (C) (D)
问题解决最佳方案
5.如果球的过球心截面圆的面积ቤተ መጻሕፍቲ ባይዱ大为原来的4倍,那么球的表面积扩大为原来球的表面积的().
(A) 倍(B) 倍(C) 倍(D) 倍
6.如图,是一个几何体的三视图,根据图中数据,
可得几何体的表面积是().
(A) (B)
(C) (D)
7.两球表面积之差为 ,大圆(过球心的截面)周长之和为 ,则两球直径之差为.
(A) (B) (C) (D)
2.将一个气球的半径扩大1倍,它的体积扩大到原来的倍.
3.球的体积是 ,试计算它的表面积( 取 ,结果精确到 ,可用计算器).
4.一个正方体的顶点都在球面上,它的棱长是 ,求球的体积.
问题解决最佳方案
问题解决最佳方案
【典型例题】
例1如图,圆柱的底面直径与高都等于球的直径.求证:
1.3.2球的体积和表面积
【教学目标】
1.熟记球的体积公式和表面积公式;
2.会用球的体积公式 和表面积公式 解决有关问题.
【重点】球的体积公式和表面积公式及其应用.
【难点】球的体积公式和表面积公式及其应用.
【学习探究】
【预习提纲】
(根据以下提纲,预习教材第27页~第28页)
1.已知球的半径为 ,则球的体积 ,球的表面积 .
(1)球的体积等于圆柱体积的 ;
(2)球的表面积等于圆柱的侧面积.
【方法总结】
例2若三个球的表面积之比为 ,求这三个球的体积之比.
【方法总结】
【自我检测】
1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的().
(A) 倍(B) 倍(C) 倍(D) 倍
2.一个正方体与一个球表面积相等,那么它们的体积比是().
【感悟】
2.球的体积是球体所占空间大小的度量,它是关于半径 的三次方函数,两个球的体积之比等于这两个球的半径之比的.
【感悟】
3.球的表面积由球的半径唯一确定,是关于 的二次函数,两个球的表面积之比等于这两个球的半径之比的.
【感悟】
【基础练习】
1.将一个直径为 的半圆绕直径所在直线旋转 ,得到的几何体表面积是().