七年级上册 数学 第一章 知识点整理

合集下载

(完整版)人教版七年级数学上册一至四章知识点归纳

(完整版)人教版七年级数学上册一至四章知识点归纳

第一章有理数(一)正数和负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba 4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点. 一、正数与负.. 1.在实际中表示意义相反的.上升5米记为5米.-8米则表示下降8米.. 2.正数:大于0的数.. 3.负数:在正数的前面加上“-〞.. 4.0的含义.. ①既不是正数也不是负数.. ②0在计数时表示没有,比如0元.. ③0表示某种量的基准,比如0℃表示温度的基.. 5.有理数的分.. 分数概.. (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数.. (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001.... “非〞的概.. 非负数:正数和.非正分数:负分.. 非正数:负数和.非负分数:正分.. 非负整数:正整数和.. 非正整数:负整数和..二、数.. 1.三要素:原点、正方向、单位长度。

通常原点用“O〞表示,向右的方向为正方向,单位长度为1.. 2.如何画数.. ①画直线(一般画成水平的),定原点,标出原点“O〞.. ②取原点向右的方向为正方向,并标出箭头.. ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点.. 3.数轴上的点与有理数.. (1)数轴上的点与有理数一一对.(2)左边的数右边的.. 三、相反.. ①只有符号不同的两个数,叫做互为相反数。

0的相反数是0.. ②a的相反数-.. ③a与b互为相反数:a+b=.. ④a-b的相反数是:-a+b或b-.. ⑤a+b的相反数是:-a-.. ⑥求一个数的相反数方法:在这个数的前面加“-〞号.. ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等..四、绝对.. 1.几何意义:从数轴上表示a的点到原点的距离即为|a.. 2.①一个正数的绝对值等于它本身.当a是正数时,|a|=a.. ②一个负数的绝对值等于它的相反数.当a是负数时,|a|=-a.. ③0的绝对值等于0.当a=0时,|a|=0.. 3.互为相反数的两个数的绝对值相等.. 五、有理数的大小比.. 1.正数0负数.. 2.两个负数比.. ①右边的点表示的数比左边的点表示的数大.. ②绝对值大的反而小.. 六、有理数的运.. 1.有理数的加法.. 加法一般步骤.. ①确定符号:同号取相同的符号.. 异号取绝对值大的加数的符号.. ②确定绝对值:同号将绝对值相加.. 异号用较大的绝对值减去较小的绝对值.. 互为相反数的两个数相加得0。

人教版七年级数学上册 第一至第四章全册知识点归纳

人教版七年级数学上册  第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

七年级上册数学第一章知识点归纳

七年级上册数学第一章知识点归纳

第一章:有理数★重点★有理数的有关概念及性质,有理数的运算一、重要概念1、数的分类及概念:学会区分正数、负数、整数、分数正整数(>0)自然数整数0负整数(<0)有理数正分数分数负分数例:有理数是()和()的统称。

【正数】大于0的数【负数】小于0的数【0 】既不是正数,也不是负数如果一个问题中出现相反意义的量,我们就可以用正数和负数表示。

例:记海平面为0米,那么-375米表示;+375米表示。

2、【数轴】用一条直线上的点表示数,这条直线就叫做数轴。

一般地,正方向向右时,数轴左边的数小于右边的数。

【数轴的三要素】原点、正方向/负方向、单位长度【数轴的作用】直观地比较实数的大小;明确体现绝对值意义;建立点与实数的一一对应关系。

负数<0<正数;两个负数绝对值大的数反而小一般地,设a 为一个正数,则数轴上表示a 的点在原点右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离也是a 个单位长度。

3、【相反数】①定义:只有符号不同的两个数叫做互为相反数;0的相反数是0; ②性质: a ≠0时,a ≠-aa 与-a 在数轴上的位置(关于原点对称,即原点两侧到原点距离相等的点)和为0,商为-1。

例:想一想,设a 为一个数,-a 一定是负数吗?4、【绝对值】①定义(两种):代数定义:几何定义:数a 所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉它一个正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5、【非负数】正数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

6、【乘方】求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,a(a≥-a(a<0│a │=在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作:a的n次幂。

人教版七年级数学上册 第一至第四章全册知识点归纳

人教版七年级数学上册  第一至第四章全册知识点归纳

人教版初一数学上册知识点归纳七年级数学上册知识点第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

初一数学上册第一章知识点归纳

初一数学上册第一章知识点归纳

导语:总结所学内容,进⾏学法的理性反思,强化并进⾏迁移运⽤,在训练中掌握学法。

以下是整理的初⼀数学上册第⼀章知识点归纳,希望对⼤家有帮助。

⼀、正数和负数1、以前学过的0以外的数前⾯加上负号-的数叫做负数。

2、以前学过的0以外的数叫做正数。

3、零既不是正数也不是负数,零是正数与负数的分界。

4、在同⼀个问题中,分别⽤正数和负数表⽰的量具有相反的意义。

⼆、有理数1、正整数、0、负整数统称整数,正分数和负分数统称分数。

2、整数和分数统称有理数。

3、把⼀个数放在⼀起,就组成⼀个数的集合,简称数集。

三、数轴1、规定了原点、正⽅向、单位长度的直线叫做数轴。

2、数轴的作⽤:所有的有理数都可以⽤数轴上的点来表达。

3、注意事项:⑴数轴的原点、正⽅向、单位长度三要素,缺⼀不可。

⑵同⼀根数轴,单位长度不能改变。

4、性质:(1)在数轴上表⽰的两个数,右边的数总⽐左边的数⼤。

(2)正数都⼤于零,负数都⼩于零,正数⼤于负数。

四、相反数1、只有符号不同的两个数叫做互为相反数。

2、数轴上表⽰相反数的两个点关于原点对称。

3、零的相反数是零。

五、绝对值1、⼀般地,在数轴上表⽰数a的点与原点的距离叫做数a的绝对值,记做|a|。

2、⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0。

六、有理数的⼤⼩⽐较1、正数⼤于0,0⼤于负数,正数⼤于负数。

2、两个负数,绝对值⼤的反⽽⼩。

七、有理数的加法1、有理数的加法法则(1)号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较⼤的加数的符号,并⽤较⼤的绝对值减去较⼩的绝对值。

(3)互为相反数的两个数相加得零。

(4)⼀个数同零相加,仍得这个数。

2、有理数加法的运算律(1)加法交换律:两个数相加,交换加数的位置,和不变。

即a+b=b+a(2)加法结合律:三个数相加,先把前⾯两个数相加,或者先把后两个数相加,和不变。

即(a+b)+c=a+(b+c)⼋、有理数的减法1、有理数减法法则减去⼀个数,等于加这个数的相反数。

人教版七年级数学上册知识点总结1-4章

人教版七年级数学上册知识点总结1-4章

第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。

初一上册数学知识点总结归纳整理

初一上册数学知识点总结归纳整理

初一上册数学知识点归纳整理第一章有理数(一)正负数1.正数:大于0的数。

2.负数:小于0的数。

3.0即不是正数也不是负数。

4.正数大于0,负数小于0,正数大于负数。

(二)有理数1.有理数:由整数和分数组成的数。

包括:正整数、0、负整数,正分数、负分数。

可以写成两个整之比的形式。

(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。

如:π)2.整数:正整数、0、负整数,统称整数。

3.分数:正分数、负分数。

(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。

(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。

)2.数轴的三要素:原点、正方向、单位长度。

3.相反数:只有符号不同的两个数叫做互为相反数。

0的相反数还是0。

4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

(四)有理数的加减法1.先定符号,再算绝对值。

2.加法运算法则:同号相加,到相同符号,并把绝对值相加。

异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

一个数同0相加减,仍得这个数。

3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

5.a-b=a+(-b)减去一个数,等于加这个数的相反数。

(五)有理数乘法(先定积的符号,再定积的大小)1.同号得正,异号得负,并把绝对值相乘。

任何数同0相乘,都得0。

2.乘积是1的两个数互为倒数。

3.乘法交换律:ab=ba4.乘法结合律:(ab)c=a(bc)5.乘法分配律:a(b+c)=ab+ac(六)有理数除法1.先将除法化成乘法,然后定符号,最后求结果。

2.除以一个不等于0的数,等于乘这个数的倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数
1、正负数的概念:
正数就是大家小学学过的自然数+小数;在正数前面加“-”(负)的数叫做负数。

2、0既不是正数,也不是负数。

(0是正负数的分界线)
3、“-”(负号):表示相反意义的概念。

例如:增加记为“+”,则减少记为“-”。

(“+”通常省略不写)
4、整数和分数统称为有理数。

(π和无限不循环小数不是有理数)。

5、整数包括:正整数、0、负整数。

6、分数包括:正分数、负分数。

7、数轴三要素:原点、正方向、单位长度。

每一个数在数轴上都能找到它对应的位置。

8、一般地,设a是一个正数,则数轴上表示a的点要在数轴的_____边,与原点的距离是_____个单位长度;表示数-a的点在原点的_____边,它与原点的距离是_____个单位长度。

9、一般地,设a是一个正数,数轴上与原点的距离是a的点有____个,他们分别在原点的左右两边,表示为____和____。

10、只有______不同的两个数互为相反数,互为相反数的两个数到原点的距离______。

11、a的相反数记为____,容易看出,在任何一个数前面添上“-”号,新的数就表示原数的相反数。

12、_____的相反数是它本身。

13、如果a与b互为相反数,则a+b=____,a=___。

14、简单理解,一个数变相反数就是把这个数前面的符号变相反就行了。

即:
-(-5)=______ -(+5)=______
15、一般地,数轴上表示数a的点与_______的距离叫做数a的绝对值,记作|a|。

这里,a可以是任何数,显然,我们容易发现,正数的绝对值是_______,0
的绝对值是______,负数的绝对值是__________。

所以,|a|=
{________,a>0 ________,a=0 _______,a<0
16、由绝对值的定义不难的出,互为相反数的两个数,它们的绝对值_____,反过来|a|=5表示数a到原点的距离为5,显然这样的点左右两侧各有一个,也就是说|a|=5时,a=______。

|a|=0时,a=______。

17、不难发现,数a的绝对值|a|____0,即绝对值具有非负性。

18、比大小:
(1)数轴法:数轴上的点,越靠_____越大,
(2)过渡法:正数____0,0_____负数,正数_____负数。

(3)绝对值:两个负数比大小,绝对值___的反而小。

19、有理数的加法:先定符号,再算绝对值
(1)同号相加一边倒(正数加正数还是_____,负数加负数还是______),
(2)异号相加“大”减“小”(“大”减“小”指的是这些数的________)
符号跟着大的跑。

(3)绝对值相等“零”正好。

(4)“0+”“+0”不用管,照着原数抄下来。

(0在加法运算中不起作用)20、加法交换律:a+b=_________
加法结合律:(a+b)+c=_________
21、有理数的减法:减去一个数等于加上这个数的相反数,特别的,0减去一个数等于这个数的______。

引入相反数后,加减混合运算可以统一为加法运算,即:a+b-c=a+b+(-c)。

(推广:数可以带着它自身前面的符号到处跑。

)22、在数轴上,点A,B分别表示数a,b,则A,B之间的距离等于大数减小数,可记作|a-b|。

23、有理数的乘法:先定符号,再算绝对值
(1)两数相乘,同号得____,异号得____,先定符号,再把绝对值乘积算出来。

(2)任何数和0相乘都得0。

(3)几个不是0的数相乘,负数的个数是偶数个时,结果是______,负数的个数是奇数个时,结果是______。

24、乘积是1的两个数互为倒数。

____没有倒数,_______的倒数是它本身。

25、乘法交换律:ab=______
乘法结合律: (ab)c=_________
乘法分配律:a(b+c)=________________
字母与字母相乘:a×b=_________=___________
字母与数字相乘:2×a=_________=___________
(数字与字母之间要省略乘号必须把数字写前面)
26、除以一个不为0的数,等于乘以这个数的______。

即: a÷b=a×_____
27、有理数的加减乘除混合运算中:有括号先算括号,之后算乘除,最后算加减
28、一般地,n个相同的因式a相乘,记作_______,读作_______________。

求n个相同因数相乘的积的运算,叫做______,乘方的结果叫做_____,在a n 中,a叫做_______,n叫做_________。

29、负数的奇次幂是_______,负数的偶次幂是________。

正数的任何次幂都是___________,0的任何正整数次幂都是_________。

特别的,(-1)2017=__________ -12017=_________
(-1)2016=__________ -12016=_________
30、有理数的混合运算:
(1)先乘方,再乘除,最后加减
(2)同级运算,从左到右。

(3)如有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。

31、把一个大于10的数表示成a×10n的形式(其中a大于或等于___且小于____,n是正整数),使用科学记数法。

法则:用科学记数法表示一个n位数,其中10的指数是________。

32、近似数:四舍五入
(1)精确到百分位=精确到0.01
(2)保留两位有效数字(从数值的左边第一个不为0的数字起,一直数到这个数字结束,中间的数字叫这个值的有效数字)。

相关文档
最新文档