免疫和炎症相关信号通路-精选.pdf
NF-κB信号通路与炎症反应

自从1986年,Sen等在哺乳动物细胞中发现了 一种潜在的转录调节因子一NF—KB以来,关于NF—KB 各方面的研究迅速发展。NF—KB可以被多种刺激因 子诱导而迅速从抑制状态转化为活化状态,它几乎 存在于所有细胞中,是由Rel家族构成的二聚体蛋 白。Rel家族可分为两组:第一组包括p50(NF— KBl)和p52(NF.KB2)蛋白;第二组包括p65(Rel
导型一氧化氮合酶(iNOs)。另外,经过NF—KB诱导 产生的蛋白,比如TNF仪,同样会活化NF-KB,即产生 一种恶性循环而扩大最初的炎症反应‘9l。
医雨丽磊雨瓦丽
I因子,单拉细胞趋化蛋白、牯l
l附因子、环氧台酶.磷脂酶等)I
oቤተ መጻሕፍቲ ባይዱ萄为
/』L————。—————————一
ff
细咆梭
图2与自身免疫有关的NF—KB活化经典通路
型小鼠中,自噬的减少可以增加IKB的积累从而抑
去泛素化酶,敲除编码A20的基因会导致持续性的 炎症反应(Lee等.2000)。 二、NF.KB信号通路相关疾病及通路阻断策略 (一)NF—KB信号通路概述 NF—KB信号通路 经促炎因子、TNF仅、AngⅡ等多种刺激因子诱导后, 在下游调节白细胞介素相关基因、凋亡抑制因子、编 码粘附因子相关基因等多种基因的表达。NF—KB信 号通路不仅参与机体免疫调节、炎症反应及肿瘤等 生理病理过程,还参与感染、细胞周期调控、细胞分 化及凋亡等。因此NF—KB信号通路在机体的多种 生理过程中起重要的调节作用。近年来,NF-KB信 号通路与人类疾病的相互关系越来越受到重视。如 上文所述,NF—KB信号通路的活化若不能及时消退 便会导致病理反应,如类风湿性关节炎、系统性红斑 万方数据
生理型堂逛屋!!!!至筮笪鲞笠!塑
细胞信号通路在炎症调控中的作用

细胞信号通路在炎症调控中的作用炎症是机体对于损伤或感染的一种免疫反应,它在维持机体稳态和修复组织损伤中起着重要作用。
细胞信号通路是细胞内外信息传递的重要途径,参与调控细胞的生长、分化、凋亡等生物学过程。
细胞信号通路在炎症调控中发挥关键作用,对于炎症的发生和发展具有重要的调节作用。
一、细胞信号通路概述细胞信号通路是指细胞内外的信息通过一系列信号传导分子传递给细胞内靶蛋白从而引起细胞功能的改变。
常见的细胞信号通路包括磷脂酰肌醇信号通路、MAPK信号通路和NF-κB信号通路等。
这些信号通路在炎症调控中发挥着重要作用。
二、细胞信号通路在炎症介导过程中的作用炎症反应是一系列复杂的生物学过程,细胞信号通路参与其中的每个环节。
细胞信号通路在炎症调控中的作用主要表现在以下几个方面:1. 信号通路介导的炎症因子产生炎症反应过程中,细胞通过信号通路激活相关的转录因子,促进炎症因子的产生和释放。
例如,NF-κB信号通路可被多种刺激物(如细菌感染、细胞因子刺激等)激活,进而促进炎症因子的合成和释放,从而加剧炎症反应。
2. 信号通路介导的细胞浸润和炎性细胞活化炎症反应中,信号通路能够调控细胞的浸润和炎性细胞的活化。
例如,MAPK信号通路参与了炎症反应的早期阶段,通过调控炎症细胞趋化和黏附分子表达,促使炎性细胞向炎症灶局部迁移并发挥作用。
3. 信号通路介导的炎症反应持续性炎症反应往往需要在一定程度上得到控制,否则过度的炎症反应将对机体产生不利影响。
细胞信号通路在炎症调控中发挥作用的一个重要方面是调节炎症反应的持续性。
炎症信号通路的负调控因子可通过抑制信号分子活化或降低相关分子的表达来限制炎症反应的强度和持续时间。
三、细胞信号通路在炎症相关疾病中的应用细胞信号通路在炎症相关疾病治疗中具有广泛的应用前景。
针对特定信号通路的抑制剂或激动剂可用于调节炎症反应的程度,从而达到治疗疾病的目的。
1. 炎症性肠病细胞信号通路在炎症性肠病的治疗中被广泛研究。
细胞信号通路在免疫炎症中的作用

细胞信号通路在免疫炎症中的作用细胞信号通路是维持生物体内正常生理、代谢功能并参与疾病发生发展的重要基础。
在免疫炎症过程中,细胞信号通路起到了关键作用。
本文将从细胞信号通路的概念、免疫炎症的基本概念、细胞信号通路在免疫炎症中的作用机制等方面进行细致论述。
一、细胞信号通路的概念及分类细胞信号通路是细胞内外环境变化和信息传递的载体,通过一系列的相互作用和信号转导,转化外界信号成为细胞内各种功能的调控因子。
细胞信号通路可以分为细胞表面受体通路、细胞内受体通路以及一些特殊的通路类型。
1. 细胞表面受体通路:细胞表面上的受体与外界信号分子结合,激活受体上的酪氨酸激酶或酪氨酸酶活性,从而启动一系列的信号传导。
2. 细胞内受体通路:细胞内受体作为信号分子的接受器,通过与信号分子结合转化成一种活性的状态,从而启动一系列的信号传导。
3. 特殊通路类型:包括钙离子通路、小G蛋白通路、MAPK通路等。
二、免疫炎症的基本概念免疫炎症是机体对于各种伤害刺激的一种防御反应,其主要表现为局部充血、局部渗出白细胞及其他免疫细胞等。
免疫炎症是由免疫细胞介导的,包括单核细胞、巨噬细胞、淋巴细胞等。
免疫炎症反应由于取决于外界刺激物的类型和程度,因此分为急性免疫炎症和慢性免疫炎症。
三、细胞信号通路在免疫炎症中的作用机制细胞信号通路在免疫炎症过程中扮演着重要的角色,参与了多个信号分子的调控。
下面将分别介绍细胞表面受体通路和细胞内受体通路在免疫炎症中的作用机制。
1. 细胞表面受体通路的作用机制:细胞表面受体通过受体激活酪氨酸激酶或酪氨酸酶活性,启动一系列信号传导,激活多种细胞效应分子的表达。
比如,在炎症过程中,细胞表面受体与促炎介质结合后,可以激活NF-κB信号通路,促进炎症细胞的迁移、促炎因子的分泌等;同时,细胞表面受体同时也可以激发抗炎信号通路,通过抑制炎症因子的释放来平衡炎症反应。
2. 细胞内受体通路的作用机制:细胞内受体通过与信号分子结合,转化成一种活性状态,进而启动一系列信号传导。
炎症因子及其介导的细胞信号通路研究

炎症因子及其介导的细胞信号通路研究随着科技的不断发展,人们对身体内部的细胞机制、信号传递和调控越来越感兴趣。
炎症作为一种常见的生理过程,在人类生命的各个阶段都扮演着重要的角色。
炎症在一定程度上可以抵御侵略性外界因子,但是如果炎症失去了平衡,就会对人体造成一定的伤害。
炎症因子及其介导的细胞信号通路的研究,可以深入了解病理生理的机制,为治疗炎症相关疾病提供理论基础和临床指导。
一、炎症因子的产生和分类炎症反应由许多炎症细胞参与,包括单核细胞、淋巴细胞、粒细胞、巨噬细胞等。
这些细胞为了对抗外来的病原体或损伤刺激,会释放出一系列的炎症因子。
这些炎症因子包括细胞因子、趋化因子、介素等。
细胞因子是指由细胞产生,能够影响其它细胞生理和代谢功能的一类蛋白质分子,如肿瘤坏死因子、白细胞介素、干扰素等。
趋化因子是指能够引起特定细胞向炎性部位趋向的蛋白质分子,它们能够诱导白细胞趋向到感染、炎症或组织修复部位,如趋化素、白细胞介素8等。
介素是由淋巴细胞等免疫细胞产生的,相对较小的多肽,在调节免疫反应、炎症反应和细胞生长分化功能上起重要作用,如白细胞介素1、关节炎因子等。
二、炎症因子介导的细胞信号通路炎症因子介导的细胞信号通路是调节炎症反应的重要机制。
当细胞受到外界刺激,会引起多种信号分子的产生和释放,这些信号分子被称为炎症因子。
炎症因子主要通过细胞膜上的受体结合,进而激活一系列细胞内的信号通路,从而调节细胞的生理功能。
在炎症介导的细胞信号通路中,最重要的是核转录因子-kappa B(NF-κB)和线粒体通道调节蛋白(mitochondrial permeability transition pore, mPTP)。
NF-κB是一种基因转录因子,在正常情况下呈静止状态,被IκB蛋白(即IKB)所抑制。
当炎症因子刺激细胞,IKB蛋白会被磷酸化而分解,释放出活化的NF-κB,并进入细胞核内,调节一系列炎症相关基因的表达。
mPTP是由粒粒膜上的多个小分子蛋白和大分子蛋白间相互作用而形成的,对调节线粒体膜通透性和能量代谢起重要作用。
炎症相关的信号转导通路PPT精品课程课件讲义

一、介导炎症启动和炎细胞激活的模 式识别受体及其信号转导通路
Signalings mediated by pattern recognition
receptors activate inflammatory cells and
initiate inflammation
致炎因子总体上可分为两大类:
Toll-like receptors (TLRs, 膜受体)
清道夫受体(Scavenger Receptors, 膜受体)
C型凝集素(lectin ) receptors (CLRs,膜受体) RIG-I like receptors (RLRs,为胞质的RNA解旋酶) NOD-like receptors (NLRs; cytoplasmic sensors)
激活信号转导,促进转录,启动炎症反应 Figure 2.Initiation of Inflammation Usually Requires Signals from Both Microbes and Injured Tissue
(一)模式识别受体的分类 (Classes of pattern recognition receptors)
钙信号通路
激活磷脂酶A2(PLA2),产生花生四烯酸 及其衍生 物脂质炎症介质:
前列腺素( Prostaglandins, PGs)
白三烯(Leukotrienes, LTs) 血栓素(TXA2)
血小板激活因子(PAF)等。
LPS PMN
LPS TLR4 MyD88
Hale Waihona Puke IRAKTRAF6
PI3K
TAK-TAB-TAB2
for advanced glycation end products, RAGE)等
免疫细胞和炎症因子的调控机制

免疫细胞和炎症因子的调控机制是生命体系中一个非常重要的过程。
这个过程涉及到许多不同类型的细胞和分子,它们组成了一个复杂的调节网络。
这个网络可以被看作是一个大型的生物逻辑电路,其中有许多不同的信号通路、调节环节和反馈机制,它们一起协调和控制着生命系统中的免疫和炎症响应。
接下来,我们将对这个机制进行更深入的探讨。
免疫细胞免疫细胞是免疫系统中的基本组成单元,包括B细胞、T细胞、巨噬细胞、树突状细胞等,它们在免疫应答中扮演着不同的角色。
在这些免疫细胞中,T细胞是最为重要的一类。
T细胞分为许多亚型,其中包括免疫调节性T细胞、细胞毒性T细胞、辅助性T细胞等。
这些细胞各自有不同的功能,协调起来发挥着免疫应答中的不同作用。
炎症因子在免疫细胞中,炎症因子是一个非常重要的因素。
炎症是免疫响应的重要组成部分之一,它是身体对外界刺激的一种防御反应。
当身体受到某种伤害时,免疫细胞会释放各种炎症因子,包括IL-1、IL-6、TNF-α等,这些因子会在局部产生炎症反应,引起疼痛、发热、红肿等症状。
炎症反应可以帮助身体对抗感染、修复受损组织等。
免疫和炎症响应的调控机制免疫和炎症响应是一个复杂的过程,它涉及到许多不同的信号通路和调节环节。
在这个过程中,有许多因素可以影响免疫和炎症响应的强度和持续时间,包括免疫细胞密度、炎症因子浓度、细胞因子的产生和释放速度、细胞信号通路的调控等。
一些研究表明,免疫细胞中的信号通路可以被分为两类:一类是通过T细胞介导的信号通路,另一类是通过细胞因子介导的信号通路。
其中,T细胞介导的信号通路主要包括抗原呈递和抗原识别等过程,这些过程是免疫应答中最为重要的步骤。
细胞因子介导的信号通路则主要包括炎症因子的产生和释放过程,这些过程是炎症反应中的关键步骤。
在炎症反应中,许多细胞因子起到了重要的调节作用。
这些细胞因子包括IL-1、IL-6、IL-8、TNF-α等。
它们通过调节各种信号通路影响免疫系统和炎症反应的强度和持续时间。
免疫系统中的CAMKII信号通路及其在炎性反应中的作用研究

免疫系统中的CAMKII信号通路及其在炎性反应中的作用研究免疫系统是保护机体免受病毒、细菌和真菌等病原体侵袭的重要系统。
随着人们对免疫系统的研究不断深入,越来越多的信号通路及其在免疫系统中的作用被揭示。
其中,CAMKII(钙/钙调蛋白依赖性激酶II)信号通路是近年来备受关注的研究方向之一。
CAMKII是一种广泛存在于神经系统、肌肉和心脏等组织中的激酶,在细胞内存在多个亚型,其活性与Ca2+/CaM(钙/钙调蛋白)结合有关。
在免疫系统中,CAMKII主要参与调节细胞活性、促进细胞增殖和调控免疫炎症反应等。
研究表明,CAMKII信号通路在免疫系统中发挥重要作用,特别是在炎性反应中的作用备受关注。
炎性反应是免疫系统对外界刺激的一种自我保护反应,涉及到一系列复杂的分子与细胞互作过程。
在这个过程中,CAMKII信号通路参与了多个环节的调节,包括免疫细胞的激活、细胞因子的分泌、细胞黏附和细胞凋亡等。
研究发现,CAMKII信号通路的激活能够促进细胞的激活和免疫细胞的转化,增强细胞因子的产生和释放,加强免疫细胞间的黏附作用,增强炎症反应。
此外,CAMKII信号通路还能够调控细胞凋亡途径,抑制细胞凋亡,增强免疫细胞的存活和功能。
近年来,越来越多的研究表明,CAMKII信号通路在多种免疫相关疾病的发生中起着重要作用。
例如,研究发现,在自身免疫性疾病、过敏性疾病和炎症性肠病等免疫相关疾病中,CAMKII信号通路激活水平明显升高,而抑制其激活则能够显著抑制免疫炎症反应和疾病进程。
另外,CAMKII信号通路在免疫细胞癌变和转化过程中也起着重要作用,其抑制剂被广泛用于肿瘤治疗中。
总之,CAMKII信号通路在免疫系统中的作用被越来越多的研究所关注,其调控的分子和机制也得到了更深入的了解。
未来,我们可以通过对CAMKII信号通路相关调控分子的研究,深入探讨其在免疫系统中的作用机制,为免疫相关疾病的防治提供更有效的策略和药物治疗。
细胞内炎症信号通路

细胞内炎症信号通路生物机体细胞间重要而多样化的生物学功能来源于细胞间的信号转导,其中细胞因子介导是信号转导的一种重要方式。
1 Janus酪氨酸激酶-信号转导和转录激活因子(Janus tyrosine kinase-sigal transduction and transcraption activator, JAK-STAT)信号通路JAK-STAT信号通路是细胞间最主要的信号及链传递途径,介导完成从胞质到核内的信号转导。
在免疫、造血及神经系统中,机体接受外源及内源的刺激而产生细胞因子,细胞因子与受体结合后导致受体同源或者异二聚化,通过信号通路促发细胞内信号级联传递。
JAKs 家族是一类非受体酪氨酸激酶(PTK),由JAK1、JAK2、JAK3和TYK1四个成员组成,其结构不含SH2、SH3,C段具有两个相连的激酶区。
JAK激酶同源域1(JH1)具有催化PTK的功能域,JH2为激酶样功能域,为STATs结合部位,但由于缺乏激酶活化所必需的氨基酸残基而没有活性。
STAT家族在哺乳动物中共发现七个成员,包括STAT1、STAT2、STAT3、STAT4、STAT5a、STAT5b及STAT6。
STAT具有多种生物学功能,STAT1和STAT2对先天性免疫其关键作用,STAT4和STAT6在获得性免疫中起重要作用。
研究表明,JAKs主要由细胞因子受体超家族(cytokine receptor superfamily)活化,活化受体的胞内部分发生二聚体化,JAKs 与二聚体化受体的box功能区结合并发生磷酸化激活,活化的JAKs进一步诱发活化的二聚体受体复合物周围的PTK底物活化,包括细胞因子受体型PTK、JAKs家族、STATs等。
JAKs的底物STATs具有SH2和SH3两类结构域,STATs可通过SH2功能域与二聚体受体复合物的酪氨酸及JAKs上的KLD功能域结合,被JAKs磷酸化后发生二聚化,形成同源或医院二聚体(如:SIF-A、SIF-B、SIF-C等),然后穿过核膜进入核内调节相关基因的表达,即JAK-STAT途径,包括:配体与受体结合导致受体二聚化,二聚化的受体激活JAKs,JAKs 使STATs磷酸化形成二聚体,暴露出入核信号,进入核内,调节基因的表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
免疫与炎症相关信号通路一、Jak/Stat Signaling:IL-6 Receptor FamilyJak和Stat是许多调节细胞生长、分化、存活和病原体抵抗信号通路中的关键部分。
就有这样一个通路涉及到IL-6(gp130)受体家族,它帮助调节B 细胞的分化,浆细胞生成和急性期反应。
细胞因子结合引起受体的二聚化同时激活受体结合的Jak蛋白,活化的Jak蛋白对受体和自身进行磷酸化。
这些磷酸化的位点成为带有SH2结构的Stat蛋白和接头蛋白的结合位臵,接头蛋白将受体和MAP激酶,PI3激酶/Akt还有其他的通路联系在一起。
受体结合的Stat蛋白被Jak磷酸化后形成二聚体,转移进入细胞核调节目的基因的表达。
细胞因子信号传导抑制分子(SOCS)家族的成员通过同源或异源的反馈减弱受体传递的信号。
Jak或Stat参与其他受体蛋白的信号传导,在下面Jak/Stat使用表格中有这方面的列举。
研究人员已经发现Stat3和Stat5在一些实体肿瘤中被酪氨酸激酶而不是Jaks组成性激活。
JAK/STAT途径介导细胞因子的效应,如促红细胞生成素,血小板生成素,G-CSF,这些细胞因子分别是用于治疗贫血,血小板减少症和中性粒细胞减少症的蛋白质类药物。
该途径也通过干扰素介导信号通路,干扰素可以用来作为抗病毒和抗增殖剂。
研究人员发现,失调的细胞因子信号有助于癌症的发生。
异常的IL-6的信号或导致自身免疫性疾病,炎症,癌症,如前列腺癌和多发性骨髓瘤的发生。
Jak抑制剂目前正在多发性骨髓瘤模型中进行测试。
Stat3具有潜在促癌性(原癌基因),在许多癌症中持续的表达。
在一些癌细胞中,细胞因子信号传导和表皮生长因子受体(EGFR)家族成员之间存在交流。
Jak激活突变是恶性血液病中主要的分子机制。
研究人员已经在Jak2假激酶域中发现一个特有的体细胞突变(V617F),这个突变常常发生于真性红细胞增多症,原发性血小板增多症和骨髓纤维化症患者。
这个突变导致Jak2的病理激活,同时激活控制红细胞,巨核细胞和粒细胞增殖分化的促红细胞生成素(EPO),血小板生成素(TPO)和G-CSF等的受体。
而Jak1的功能获得性体细胞突变已发现存在于成人急性淋巴细胞性白血病当中。
体细胞激活突变已经证明存在于小儿急性淋巴细胞白血病(ALL)患者中。
此外,在儿童唐氏综合症B-ALL以及小儿唐氏综合症患者中已发现Jak2假激酶域R683(R683G或者deltaIREED)附近的突变。
二、NF-κB SignalingNF-κB/Rel蛋白包括NF-κB2 p52/p100,NF-κB1 p50/plo5,c-Rel,RelA/p65和RelB。
这些蛋白均形成二聚体转录因子,它们控制的基因调控众多的生物学过程如先天性和获得性免疫,炎症,应激反应,B细胞形成,淋巴器官的生成。
在经典的通路中,NF-κB/Rel与IκB结合并被其抑制。
促炎症因子,LPS,生长因子和抗原受体激活IKK复合体(包含IKKβ,IKKα和NEMO),后者磷酸化IκB蛋白,导致IκB蛋白被泛素化和溶酶体降解,于是NF-κB被释放出来。
活化的NF-κB进一步被磷酸化激活并转移入核,NF-κB或单独或与其他转录因子如AP-1,Ets和Stat结合诱导靶基因的表达。
在另一条NF-kB 途径中,NF-κB2 p100/RelB复合体以未激活的状态停留在胞浆中。
一些受体的激活,如LTβR,CD40和BR3激活激酶NIK,激活的NIK而后又激活IKKα复合体,后者对NF-κB2 p100的羧基端氨基酸进行磷酸化。
磷酸化的NF-κB2 p100被泛素化并被蛋白酶体降解为NF-κB2 p52。
最后形成具有完整转录活性的NF-κB2 p52/RelB复合体,转移进入细胞核并起始靶基因转录。
在图中只列举了一部分已知的NF-kB的激活剂和靶基因。
三、Toll-like Receptors (TLRs) PathwayToll样受体(TLR,Toll-like receptor)识别独特的病原体相关的分子特征,在固有性免疫应答中起关键的作用。
它们参与组成抗击入侵病原体的第一道防线,在炎症,免疫细胞调节,存活和增殖中发挥显著作用。
至今已发现TLR 家族的11个成员,其中TLR1,2,4,5,6定位于细胞表面,TLR3,7,8,9位于内质网和溶酶体上。
TLR通路的信号传导从受体的胞内TIR结构域(Toll/IL-1 receptor domain)和与之结合同样含有TIR结构域的接头蛋白MyD88开始。
当受到配体的刺激后,MyD88使激酶IRAK(IL-1 receptor associated kinase)结合到TLRs上,通过两个分子死亡结构域的相互反应。
IRAK-1被磷酸化而激活,然后与TRAF6结合,最后导致JNK和NF-kB的激活。
Tollip和IRAK-M 与IRAK相互作用,对TLR通路进行负调节。
这些通路的其他调控模式包括由RIP1介导的依赖TRIF诱导TRAF6信号传导和由ST2L, TRIAD3A, and SOCS1介导的TIRAP下游信号传导的负调控。
My88-非依赖的通路被TRIF 和TRAF3所激活,同时诱导IKKε/TBK1的招募,IRF3的磷酸化和干扰素β的表达。
含有TIR结构域的接头分子如TIRAP,TRIF和TRAM为特定的TLR形成特异的信号传导提供帮助。
TRAF3通过自身的降解在MyD88依赖的和TRIF依赖的信号调控中发挥重要的作用,它激活了MyD88依赖的通路,并抑制了TRIF依赖的通路(反之亦然)。
四、B Cell Receptor SignalingB细胞抗原受体(BCR)由细胞膜免疫球蛋白分子(mIg)和所结合的Igα/Igβ (CD79a/CD79b)异质二聚体组成。
mIg分子结合抗原后发生受体的聚集,而将信号向细胞内传导。
受体的聚集很快激活Src激酶家族中的Lyn,Igα/IgβBlk和Fyn,Syk和Btk酪氨酸激酶。
这就引发了“信号小体”的形成,它由BCR,之前提到的酪氨酸激酶,配体蛋白分子如CD19和BLNK,以及信号酶如PLCγ2, PI3K, and Vav等多种成分组成。
由信号小体发出的信号继而激活复杂的信号传递级联反应,其中包括多个接头蛋白,激酶,磷酸酶,GTP酶和转录因子。
这将导致细胞在代谢,基因表达和细胞骨架组织等方面发生变化。
BCR信号传导通路的复杂性可以导致产生许多不同的结果,包括存活,耐受,分化,凋亡,增殖和分化成产生抗体的细胞或记忆B细胞。
细胞反应的实际结果取决于多方面的因素,如细胞的成熟状态,抗原性,BCR信号存在的时间和强度,还有其他受体信号如CD40、IL-21受体和BAFF-R等。
已知一些其他的跨膜蛋白,其中有一些也是受体,对BCR信号传递中的一些分子元件有特异的调节作用。
在上图中用黄颜色标记的就是其中的一部分,例如CD45,CD19,CD22,PIR-B,和FcγRIIB1(CD32)。
BCR信号传导的时长和强度受BCR内化和负反馈回路的限制,包括那些参与Lyn/CD22/SHP-1通路分子,Cbp/Csk通路分子,SHIP,Cbl,Dok-1,Dok-3,FcγRIIB1,PIR-B和BCR的内在化。
在体内,B细胞经常被抗原提呈细胞激活,抗原提呈细胞能够捕获抗原并把它呈递在细胞表面。
B细胞被这种膜相关抗原激活时需要BCR诱导的细胞骨架重组。
请参考Akt/PKB信号通路图、NF-kB信号通路图和actin的动态调节图了解关于这些通路更详细的信息。
五、T Cell Receptor SignalingT细胞受体(TCR)激活后向几条决定细胞命运的通路传递信号,这些通路调节细胞因子产生,细胞存活,增殖和分化。
TCR激活的早期事件是淋巴细胞蛋白酪氨酸激酶(Lck, lymphocyte protein-tyrosine kinase)对TCR/CD3复合体胞内部分的ITAM结构域的磷酸化,ITAM为免疫受体酪氨酸活化基序(immunoreceptor tyrosine-base activation motif), CD45受体酪氨酸磷酸酯酶调节Lck和其他Src家族酪氨酸激酶的磷酸化状态和活性。
δ-链结合蛋白激酶(Zap-70,δ-chain associatedprotein kinase)被召集到TCR/CD3上并被活化,然后它促进下游接头蛋白和支架蛋白的结合和磷酸化。
SLP-76被Zap-70磷酸化后进一步促进其他分子的结合,如Vav,接头蛋白NCK和GADS, 还有诱导型T细胞激酶(ITK, inducible T cell kinase)。
ITK磷酸化磷脂酶Cγ1(PLCγ1, phospholipase Cγ1), 后者水解磷脂酰肌醇4,5-二磷酸(PIP2,phosphatidylinositol 4,5-bisphosphate)生成第二信使二酰甘油(DAG,diacylglycerol)和三磷酸肌醇(IP3,inositol trisphosphate)。
DAG激活PKCθ和MAPK/Erk通路,两者都促进NF-kB激活。
IP3释放内质网中的Ca2+,促进胞外的Ca2+通过钙离子激活的Ca2+通道进入细胞。
结合上Ca2+的钙调蛋白激活钙调蛋白磷酸酶,后者通过转录因子NFAT促进IL-2的转录。
在这些通路中的某些点上存在反馈回路,允许信号通路在不同的细胞和环境下产生不同的结果。
从其他细胞表面受体(如CD28和LFA-1)上接受的信号整合到TCR信号通路中进一步对细胞的反应做出调节。