求双曲线离心率取值范围涉附到解析几何
双曲线离心率常见题型

一、求双曲线的离心率及其范围。
例1:已知21,F F 分别是双曲线122
22=-b
y a x 的左右焦点,过1F 垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是直角三角形,求双曲线的离心率。
答案:21+
=e 变式:
1、若2ABF ∆是等边三角形,求双曲线的离心率。
答案:3=e
2、若2ABF ∆是锐角三角形,求双曲线的离心率。
答案:)21,1(+
∈e 3、若2ABF ∆是钝角三角形,求双曲线的离心率。
答案:),21(+∞+∈e
例2:已知21,F F 分别是双曲线12222=-b
y a x 的左右焦点,过2F 且倾斜角的为 60的直线与双曲线的右支有且仅有一个交点,求双曲线的离心率的取值范围。
答案:),2[+∞∈e
例3:过双曲线122
22=-b
y a x 的右焦点2F 作垂直于渐近线的的直线与双曲线的两支都相交,求双曲线的离心率的取值范围。
答案:),2(+∞∈e
二、直线1-=kx y 与双曲线42
2=-y x 没有公共点,求k 的取值范围 2
5,25>-<k k 或 变式1、直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围
)2
5,1()1,1()1,25(⋃-⋃-- 变式2、直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围1,2
5±±=k k 或 变式3、直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围 )1,25(--。
离心率的求值或取值范围问题

离心率的求值或取值范围问题【方法技巧】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式, 第三步 解不等式,确定离心率的范围.方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.【应用举例】【例题1】若椭圆经过原点,且焦点分别为12(0,1),(0,3)F F ,则其离心率为( )A .34 B .23 C .12 D .14【答案】C 【解析】试题分析:根据椭圆定义,原点到两焦距之和为2a=1+2,焦距为2c=2,所以离心率为12. 考点:椭圆的定义. 【难度】较易【例题2】点P (-3,1,过点P 且方向为a =(2,-5)的光线经直线y=-2反射后通过椭圆的左焦点,则此椭圆离心率为( )【答案】A 【解析】试题分析:因为给定点P (-3,1根据光线的方向为a =(2,-5)y=-2与入射光线的斜率互为相反数可知焦点的坐标为(1,0),因此可知 A 考点:本试题考查了椭圆性质的知识点。
点评:解决该试题的关键是利用椭圆的反射原理得到直线斜率的特点,结合平面反射光线与入射光线的斜率互为相反数,得到c 的值,同时得到a,b,c 的关系式,进而得到结论,属于基础题。
椭圆和双曲线的离心率的求值及范围问题

椭圆和双曲线的离心率的求值及范围求解问题【重点知识温馨提示】1.e=ca=1-b2a2(0<e<1),e=ca=1+b2a2(e>1)2.确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,c的方程或不等式,进而得到关于e的方程或不等式,3.【典例解析】例1.(2015·新课标全国Ⅱ,11)已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为( )A. 5 B.2 C. 3 D. 2例2.【2016高考新课标3文数】已知O为坐标原点,F是椭圆C:22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34例3 (2015·福建)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1例4.(2014·江西)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________. 【跟踪练习】1. (2015·浙江)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =b c x 的对称点Q 在椭圆上,则椭圆的离心率是________.2. 已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n 2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项, 则椭圆的离心率是( ) A.33 B.22 C.14 D.123.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0)、F 2(c,0),若椭圆上存在点P 使a sin ∠PF 1F 2=csin ∠PF 2F 1,则椭圆的离心率的取值范围为______.4.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB →=2F A →,则此双曲线的离心率为( ) A. 2B. 3 C .2D. 55.(2015·山东)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为________.6.(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( )A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 27、(2016年山东高考)已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.8(2015年高考)过双曲线C :22221x y a a-=0,0a b >>()的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,则C 的离心率为 .9、(齐鲁名校协作体2016届高三上学期第二次调研联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是()(A)(B)(C) (D) 10、(东营市、潍坊市2016届高三高三三模)已知1F 、2F 为椭圆()222210x y a b a b+=>>的左、右焦点,以原点O 为圆心,半焦距长为半径的圆与椭圆相交于四个点,设位于y 轴右侧的两个交点为A 、B ,若1ABF ∆为等边三角形,则椭圆的离心率为( )A 1B 1-C D11、(济宁市2016届高三上学期期末)已知抛物线2y =-的焦点到双曲线()222210,0x y a b a b -=>>A.3B.3C.D.3912、(莱芜市2016届高三上学期期末)已知双曲线()222210,0x y a b a b-=>>的左焦点是(),0F c -,离心率为e ,过点F 且与双曲线的一条渐近线平行的直线与圆222x y c y +=在轴右侧交于点P ,若P 在抛物线22y cx =上,则2e =A.5B.51+ C.51-D.213,(烟台市2016届高三上学期期末)设点F 是抛物线()2:20x py p τ=>的焦点,1F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,若线段1FF 的中点P 恰为抛物线τ与双曲线C 的渐近线在第一象限内的交点,则双曲线C 的离心率e 的值为 A.322B.334C.98D.3241,4、(青岛市2016高三3月模拟)已知点12,F F 为双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=,则双曲线的离心率为_________.15、(日照市2016高三3月模拟)已知抛物线28y x =的准线与双曲线222116x y a -=相交于A,B 两点,点F 为抛物线的焦点,ABF ∆为直角三角形,则双曲线的离心率为 A.3B.2C.6D.316. (2015·重庆)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 2的直线交椭圆于P ,Q 两点,且PQ ⊥PF 1.(1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PQ |=λ|PF 1|,且34≤λ<43,试确定椭圆离心率e 的取值范围.答案部分:例1【解析】 如图,设双曲线E 的方程为x 2a 2-y 2b2=1(a >0,b >0),则|AB |=2a ,由双曲线的对称性,可设点M (x 1,y 1)在第一象限内,过M 作MN ⊥x 轴于点N (x 1,0),∵△ABM 为等腰三角形,且∠ABM =120°,∴|BM |=|AB |=2a ,∠MBN =60°,∴y 1=|MN |=|BM |sin ∠MBN =2a sin 60°=3a ,x 1=|OB |+|BN |=a +2a cos 60°=2a .将点M (x 1,y 1)的坐标代入x 2a 2-y 2b 2=1,可得a 2=b 2,∴e =c a =a 2+b 2a 2=2,选D.例2【答案】A例3如图,设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形.∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2.离心率e =ca =c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.例4.直线AB :x =c ,代入x 2a 2+y 2b 2=1,得y =±b 2a .∴A (c ,b 2a ),B (c ,-b 2a ).∴kBF 1=-b 2a -0c -(-c )=-b 2a 2c =-b 22ac .∴直线BF 1:y -0=-b 22ac (x +c ).令x =0,则y =-b 22a,∴D (0,-b 22a ),∴k AD =b 2a +b 22ac =3b 22ac .由于AD ⊥BF 1,∴-b 22ac ·3b 22ac =-1,∴3b 4=4a 2c 2,∴3b 2=2ac ,即3(a 2-c 2)=2ac , ∴3e 2+2e -3=0,∴e =-2±4-4×3×(-3)23=-2±423.∵e >0,∴e =-2+423=223=33.【跟踪练习】1,答案 方法一 设椭圆的另一个焦点为F 1(-c,0),如图,连接QF 1,QF ,设QF 与直线y =bcx 交于点M .由题意知M 为线段QF 的中点,且OM ⊥FQ .又O 为线段F 1F 的中点, ∴F 1Q ∥OM ,∴F 1Q ⊥QF ,|F 1Q |=2|OM |.在Rt △MOF 中,tan ∠MOF =|MF ||OM |=bc ,|OF |=c ,可解得|OM |=c 2a ,|MF |=bca,故|QF |=2|MF |=2bc a ,|QF 1|=2|OM |=2c 2a .由椭圆的定义得|QF |+|QF 1|=2bc a +2c 2a =2a ,整理得b =c ,∴a =b 2+c 2=2c ,故e =c a =22.方法二 设Q (x 0,y 0),则FQ 的中点坐标⎝⎛⎭⎫x 0+c 2,y 02,k FQ=y0x 0-c ,依题意⎩⎨⎧y 02=b c ·x 0+c 2,y 0x 0-c ·bc =-1,解得⎩⎨⎧x 0=c (2c 2-a 2)a 2,y 0=2bc2a 2,又因为(x 0,y 0)在椭圆上,所以c 2(2c 2-a 2)2a 6+4c 4a 4=1,令e =c a ,则4e 6+e 2=1,∴离心率e =22. 2解析 在双曲线中m 2+n 2=c 2,又2n 2=2m 2+c 2,解得m =c2,又c 2=am ,故椭圆的离心率e =c a =12.3依题意及正弦定理,得|PF 2||PF 1|=a c (注意到P 不与F 1,F 2共线), 即|PF 2|2a -|PF 2|=a c , ∴2a |PF 2|-1=c a ,∴2a |PF 2|=c a +1>2a a +c,即e +1>21+e ,∴(e +1)2>2.又0<e <1,因此2-1<e <1.4解析 (1) 如图,∵FB →=2F A →,∴A 为线段BF 的中点, ∴∠2=∠3.又∠1=∠2,∴∠2=60°, ∴ba=tan 60°=3, ∴e 2=1+(ba )2=4,∴e =2. 答案 C5.把x =2a 代入x 2a 2-y 2b 2=1得y =±3b .不妨取P (2a ,-3b ).又∵双曲线右焦点F 2的坐标为(c,0), ∴kF 2P =3b c -2a .由题意,得3b c -2a =ba.∴(2+3)a =c .∴双曲线C 的离心率为e =ca =2+ 3.6. e 1=1+b 2a2,e 2=1+(b +m )2(a +m )2.不妨令e 1<e 2,化简得b a <b +m a +m (m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m ,即e 1<e 2.故选B.7、【答案】2 【解析】试题分析:依题意,不妨设6,4AB AD ==作出图像如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 8、【答案】23+考点:1.双曲线的几何性质;2.直线方程. 9、【答案】B【解析】双曲线的渐近线为y =±bax ,易求得渐近线与直线x -3y +m =0的交点为A ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b ,B ⎝ ⎛⎭⎪⎫-am a -3b ,-bm a -3b .设AB 的中点为D .由|P A |=|PB |知AB 与DP 垂直,则D ⎝ ⎛⎭⎪⎫-a 2m (a +3b )(a -3b ),-3b 2m (a +3b )(a -3b ),k DP=-3,解得a 2=4b 2,故该双曲线的离心率是52.10B,11.B 12.D 13 D 14. 15.A16.解 (1)由椭圆的定义,2a =|PF 1|+|PF 2|=(2+2)+(2-2)=4,故a =2. 设椭圆的半焦距为c ,由已知PF 1⊥PF 2, 因此2c =|F 1F 2|=|PF 1|2+|PF 2|2 =(2+2)2+(2-2)2=23, 即c =3,从而b =a 2-c 2=1. 故所求椭圆的标准方程为x 24+y 2=1.(2)如图,连接F 1Q ,由PF 1⊥PQ ,|PQ |=λ|PF 1|,得 |QF 1|=|PF 1|2+|PQ |2 =1+λ2|PF 1|.由椭圆的定义,|PF 1|+|PF 2|=2a ,|QF 1|+|QF 2|=2a , 进而|PF 1|+|PQ |+|QF 1|=4a ,高中数学 于是(1+λ+1+λ2)|PF 1|=4a ,解得|PF 1|=4a 1+λ+1+λ2, 故|PF 2|=2a -|PF 1|=2a (λ+1+λ2-1)1+λ+1+λ2. 由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2=(2c )2=4c 2,从而⎝ ⎛⎭⎪⎫4a 1+λ+1+λ22+⎝ ⎛⎭⎪⎫2a (λ+1+λ2-1)1+λ+1+λ22=4c 2. 两边除以4a 2,得4(1+λ+1+λ2)2+(λ+1+λ2-1)2(1+λ+1+λ2)2=e 2. 若记t =1+λ+1+λ2,则上式变成e 2=4+(t -2)2t 2=8⎝⎛⎭⎫1t -142+12. 由34≤λ<43,并注意到t =1+λ+1+λ2关于λ的单调性,得3≤t <4,即14<1t ≤13. 进而12<e 2≤59,即22<e ≤53.。
解析几何中求参数取值范围的方法(精)

解析几何中求参数取值范围的方法近几年来,与解析几何有关的参数取值范围的问题经常出现在高考考试中,这类问题不仅涉及知识面广,综合性大,应用性强,而且情景新颖,能很好地考查学生的创新能力和潜在的数学素质,是历年来高考命题的热点和重点。
学生在处理这类问题时,往往抓不住问题关键,无法有效地解答,这类问题求解的关键在于根据题意,构造相关的不等式,然后求出不等式的解。
那么,如何构造不等式呢?本文介绍几种常见的方法:一、利用曲线方程中变量的范围构造不等式曲线上的点的坐标往往有一定的变化范围,如椭圆 x2a2 + y2b2 = 1上的点P(x,y)满足-a≤x≤a,-b≤y≤b,因而可利用这些范围来构造不等式求解,另外,也常出现题中有多个变量,变量之间有一定的关系,往往需要将要求的参数去表示已知的变量或建立起适当的不等式,再来求解.这是解决变量取值范围常见的策略和方法.例1 已知椭圆 x2a2 + y2b2 = 1 (a>b>0), A,B是椭圆上的两点,线段AB的垂直平分线与x轴相交于点P(x0 , 0)求证:-a2-b2a ≤ x0 ≤ a2-b2a分析:先求线段AB的垂直平分线方程,求出x0与A,B横坐标的关系,再利用椭圆上的点A,B满足的范围求解.解: 设A,B坐标分别为(x1,y1) ,(x2,y2),(x1≠x2)代入椭圆方程,作差得: y2-y1x2-x 1 =-b2a2 •x2+x1 y2+y1又∵线段AB的垂直平分线方程为y- y1+y22 =- x2-x1 y2-y1 (x-x1+x22 )令y=0得x0=x1+x22 •a2-b2a2又∵A,B是椭圆x2a2 + y2b2 = 1 上的点∴-a≤x1≤a, -a≤x2≤a, x1≠x2 以及-a≤x1+x22 ≤a∴ -a2-b2a ≤ x0 ≤ a2-b2a例2 如图,已知△OFQ的面积为S,且OF•FQ=1,若 12 < S <2 ,求向量OF与FQ的夹角θ的取值范围.分析:须通过题中条件建立夹角θ与变量S的关系,利用S的范围解题.解: 依题意有∴tanθ=2S∵12 < S <2 ∴1< tanθ<4又∵0≤θ≤π∴π4 <θ<ARCTAN4< p>例3对于抛物线y2=4x上任一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是 ( )A a<0B a≤2C 0≤a≤2D 0<A<2< p>分析:直接设Q点坐标,利用题中不等式|PQ|≥|a| 求解.解: 设Q( y024 ,y0) 由|PQ| ≥a得y02+( y024 -a)2≥a2 即y02(y02+16-8a) ≥0∵y02≥0 ∴(y02+16-8a) ≥0即a≤2+ y028 恒成立又∵ y02≥0而 2+ y028 最小值为2 ∴a≤2 选( B )二、利用判别式构造不等式在解析几何中,直线与曲线之间的位置关系,可以转化为一元二次方程的解的问题,因此可利用判别式来构造不等式求解.例4设抛物线y2 = 8x的准线与x轴交于点Q,若过点Q的直线L与抛物线有公共点,则直线L的斜率取值范围是 ( )A [-12 ,12 ]B [-2,2]C [-1,1]D [-4,4]分析:由于直线l与抛物线有公共点,等价于一元二次方程有解,则判别式△≥0解:依题意知Q坐标为(-2,0) , 则直线L的方程为y = k(x+2)由得 k2x2+(4k2-8)x+4k2 = 0∵直线L与抛物线有公共点∴△≥0 即k2≤1 解得-1≤k≤1 故选 (C)例5 直线L: y = kx+1与双曲线C: 2x2-y2 = 1的右支交于不同的两点A、B,求实数k的取值范围.分析:利用直线方程和双曲线方程得到x的一元二次方程,由于直线与右支交于不同两点,则△>0,同时,还需考虑右支上点的横坐标的取值范围来建立关于k的不等式.解:由得 (k2-2)x2 +2kx+2 = 0∵直线与双曲线的右支交于不同两点,则解得 -2<K<-2< p>三、利用点与圆锥曲线的位置关系构造不等式曲线把坐标平面分成三个区域,若点P(x0,y0)与曲线方程f(x,y)=0关系:若P在曲线上,则f(x0,y0)=0;若P在曲线内,则f(x0,y0)<0;若P在曲线外,则f(x0,y0)>0;可见,平面内曲线与点均满足一定的关系。
高中数学常见题型解法归纳-离心率取值范围的常见求法

高中数学常见题型解法归纳-离心率取值范围的常见求法
高中数学常见题型解法归纳 - 离心率取值范围的常见求法
【知识要点】
1、求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点.
2、椭圆的离心率,双曲线的离心率,抛物线的离心率,对于这三种圆锥曲线的离心率的范围要清楚,自己求出的离心率的范围必须和这个范围求交集.
3、求离心率的取值范围常用的方法有以下三种:(1)利用圆锥曲线的变量的范围,建立不等关系;(2)直接根据已知中的不等关系,建立关于离心率的不等式;(3)利用函数的思想分析解答.
【方法讲评】
先求出曲线的变量或
如果椭圆上存在点,使【例1】设椭圆的左右焦点分别为,
,
,求离心率的取值范围.
从而,且
所以
【点评】(1)本题主要椭圆中的满足建立了关于离心率的不等式.(2)求离心率的取值范围,注意圆锥曲线离心率法范围,椭圆的离心率,双曲线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解.
【反馈检测1】双曲线在右支上存在与右焦点、左准线长等距离的点,求离心率的取值范围.
的不等关系,再转化为离心率的不等式,解不等式
【例2】已知双曲线的右焦点为,若过点且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是.
【点评】本题就是直接根据“直线与双曲线的右支有且只有一个交点”得到关于的不等式,再转化成关于的二次不等式,解二次不等式即得离心率的取值范围.
【反馈检测2】过双曲线的右焦点作实轴所在直线的垂线,交双曲线于,两点,设双曲线的左顶点为,若点在以为直径的圆的内部,则此双曲线的离心率的取值范围为( ) A. B. C. D.。
离心率公式双曲线

离心率公式双曲线The eccentricity formula for a hyperbola is a fundamental concept in mathematics that plays a crucial role in understanding the shape and properties of hyperbolas. It defines the amount by which a hyperbola deviates from being circular and is a key parameter that can be used to describe the geometry of the hyperbola.双曲线的离心率可以通过以下公式来计算:e = √(a^2 + b^2)/a,其中a 和b分别是双曲线的两个轴的长度。
离心率是一个0到1之间的值,当离心率接近于0时,双曲线形状接近于椭圆;当离心率接近于1时,双曲线形状变得非常扁平,曲线变得非常陡峭。
这个公式是双曲线性质的重要指标,可以帮助我们更好地理解双曲线的形状和特性。
Understanding the eccentricity formula for hyperbolas also has practical applications in various fields such as physics, engineering, and astronomy. For example, in physics, the eccentricity of an orbit can determine the shape and behavior of planetary trajectories. In engineering, the eccentricity of structures like bridges or arches can affect their stability and load-bearing capacity. In astronomy, theeccentricity of comets' orbits can indicate how elongated their paths are around the sun.双曲线的离心率公式还可以在教育领域得到应用,通过教授学生如何计算和理解离心率,可以帮助他们更好地掌握几何学的概念,提高数学素养。
如何求双曲线的离心率

双曲线离心率的取值范围

双曲线离心率的取值范围双曲线离心率是描述双曲线形状的一个重要指标,它是双曲线焦点距离与直轴长度的比值。
双曲线的离心率存在一定的取值范围,本文将介绍双曲线离心率的定义、性质以及其取值范围。
一、双曲线离心率的定义双曲线离心率(eccentricity)是指双曲线上离于中心最远的点到中心的距离与中心到双曲线直轴的距离的比值。
具体来说,如果设双曲线的两个焦点分别为F1和F2,直轴长度为2a,离心率为e,那么离心率的计算公式如下:e = sqrt((a^2 + b^2)/a^2)其中,b^2 = c^2 - a^2,c就是双曲线的半轴。
双曲线两段的出现是因为其它8中情况没法支持完整的曲线图案出现(9种为)二、双曲线离心率的性质1. 双曲线离心率大于1。
2. 双曲线的离心率越大,曲线的形状越扁平,离心率越小,曲线的形状越细长。
3. 双曲线的离心率与另一重要指标——双曲率(率曲率)有关系。
具体来说,当双曲线在同一点上的双曲率相等时,双曲线的离心率也相等;反之,当双曲线在同一点上的离心率相等时,双曲线的双曲率也相等。
三、双曲线离心率的取值范围由于双曲线离心率的定义中,分母a代表直轴长度,最小为正实数,因此双曲线离心率e的取值范围为e > 1,也就是说,双曲线的离心率永远大于1。
这一点也可以从双曲线的定义出发解释:双曲线定义为到两个焦点距离之差等于常数的点集,而这意味着离心率应该大于1。
当离心率等于1时,曲线就变成了双曲线的一种特殊情形——抛物线。
双曲线离心率的取值范围在实际应用中有着广泛的用途,比如在几何光学中,双曲线作为反射面的一种理想曲线,其离心率就决定了光线的折射角、反射角及成像质量等关键参数。
在物理学中,双曲线也被广泛应用于描述电场和磁场的分布等问题。
综上所述,双曲线离心率作为双曲线形状的重要指标,其取值范围是大于1的正实数。
对于双曲线形状的描述和应用,离心率的数值是多么关键和重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求双曲线离心率的取值范围涉及到解析几何、平面几何、代数等多个知识点,综合性强方法灵活,解题关键是挖掘题中的隐含条件,构造不等式,下面举例说明。
一、利用双曲线性质
例1设点P在双曲线的左支上,双曲线两焦点为,已知是点P到左准线的距离和的比例中项,求双曲线离心率的取值范围。
2 设点P在双曲线的右支上,双曲线两焦点,,求双曲线离心率的取值范围。
3(同例2)2可知:P在双曲线右支上由图1可知:,,即,两式相加得:,解得:。
4 已知点在双曲线的右支上,双曲线两焦点为,最小值是,求双曲线离心率的取值范围。
5(2000年全国高考题)已知梯形ABCD中,,点E分有向线段所成的比为,双曲线过C、D、E三点,且以A、B 为焦点,当时,求双曲线离心率的取值范围。
2建立平面直角坐标系,设双曲线方程为,设其中是梯形的高,由定比分点公式得,把C、E两点坐标分别代入双曲线方程得,,两式整理得
,从而建立函数关系式,由已知
得,,解得。
6已知双曲线与直线:交于P、Q两个不同的点,求双曲线离心率的取值范围。
7已知双曲线
上存在P、Q两点关于直线对称,求双曲线离心率的取值范
围。
PQ中点为M,由点差法求得,当点M在双曲线内部时
,整理得:无解;当点M在双曲线外部时,点M应在两渐近线相交所形成的上下区域内,由线性规划可知:,即,则,所以。
8 已知过双曲线左焦点的直线交双曲线于P、Q两点,且(为原点),求双曲线离心率的取值范围。
OP⊥OQ得,即:,解得:,因为,所以,则
,所以。
解析:
点评:
二、利用平面几何性质
例
解析:
,由三角形性质得:解得:。
点评:
三、利用数形结合
例
解析:
,点
四、利用均值不等式
例
解析:,
五、利用已知参数的范围
例
解析:
六、利用直线与双曲线的位置关系
例
解析:
七、利用点与双曲线的位置关系
例
解析:
八、利用非负数性质
例
解析:
,由
求双曲线离心率的取值范围时要根据题情,因题制宜挖掘题中隐含的不等关系,构造不等式,从而求出双曲线离心率的取值范围
设,过左焦点的直线方程:,代入双曲线方程得:
,由韦达定理得:,设
,弦把双曲线方程和直线方程联立消去得:
时,直线与双曲线有两个不同的交点则,
,即且,所以,即且。
如图由均值定理知:当且仅当时取得最小值,又
所以,则。
由例求双曲线离心率的取值范围时可利用平面几何性质,如“直角三角形中斜边大于直角边”、“三角形两边之和大于第三边”等构造不等式。
由双曲线第一定义得:,与已知联立解得:求双曲线离心率取值范围时可先求出双曲线上一点的坐标,再利用性质:若点在双曲线
的左支上则;若点在双曲线的右支上则。
由题设得:。
由双曲线第二定义得:,由焦半径公式得:,则,即,解得。