外延工艺
外延工艺简介

外延工艺简介外延工艺是一种用于生产高质量晶体的工艺方法。
它是一种将晶体生长在基底上的技术,常用于制备半导体材料和器件。
外延工艺的基本原理是在一个基底上逐渐生长新的晶体。
这个基底通常是一块具有特定晶面结构的晶体,也可以是具有较高化学稳定性的材料。
在外延工艺中,基底材料被放置在一个高温的反应室中,通过注入气体或溶液中的原材料,使其与基底发生化学反应,并形成新的晶体。
外延工艺有多种不同的方法,包括气相外延、溶液外延和分子束外延。
每种方法都有其特定的优点和适用范围。
在气相外延中,原材料以气体的形式被输入反应室,然后在高温下发生化学反应,产生新的晶体。
这种方法适用于制备大面积以及薄膜状晶体。
溶液外延是将原材料以溶液的形式注入反应室中,然后通过控制温度和压力来控制晶体的生长速度。
这种方法适用于制备柱状晶体。
分子束外延通过向基底表面瞄准束流的方法进行,使得外延的晶体具有更高的控制性和纯度。
外延工艺的应用非常广泛。
在半导体产业中,外延工艺常用于制备硅、砷化镓、磷化镓等材料。
这些材料被广泛用于制造集成电路、激光器、光电器件等。
此外,外延工艺也被用于生产光纤、太阳能电池、LED等领域。
总的来说,外延工艺是一种重要的材料制备方法,通过控制晶体的生长过程,可以制备出高质量和定制化的晶体材料。
它在半导体、光电子、能源等领域都有重要的应用,推动了这些技术的发展。
外延工艺的技术原理和应用领域外延工艺是一种重要的半导体材料制备技术,具有广泛的应用领域。
它的核心原理是通过在基底上逐层生长新晶体,从而制备出具有高质量和定制化特性的材料。
外延工艺可以用于生产许多不同类型的半导体材料,例如硅、砷化镓、磷化镓等。
这些材料是制造集成电路、光电器件、激光器、发光二极管(LED)等的关键组成部分。
外延工艺的主要方法之一是气相外延(VPE)。
在VPE过程中,原材料以气体的形式输送到高温反应室中,并与基底材料发生化学反应,最终形成新的晶体。
通过控制反应室的参数,如温度、气体流量和气氛等,可以调节晶体的生长速度和晶体的性质。
3外延工艺

异质外延衬底和外延层的材料不同,晶体结构和晶格常数 不可能完全匹配。外延生长工艺不同,在外延界面会出现 两种情况——应力释放带来界面缺陷,或者在外延层很薄 时出现赝晶(pseudomorphic)
异质外延生长工艺的两种类型
晶格失配 lattice mismatch
失配率: f = a − a' 100% a'
2.2 气相外延原理
以硅烷为源进行外延 SiH4气体被通入反应器,气相输运 到达硅衬底,射频加热器
直接给基座加热,基座上的衬底温度高, 硅烷就在衬底表 面分解出硅,硅 原子规则排列为外延层 将外延过程分解为气相质量传递和表面外延两个过程来具 体分析。
主观题 10分
分析下图气相外延设备中温度,反应气体浓度以 及气体流速沿水平和垂直方向的变化趋势
• 其中:a外延层晶格参数(热膨胀系数或 者晶格常数); a′衬底晶格参数。有热膨 胀失配系数和晶格常数失配率。
热失配影响 单晶薄膜物 理和电学性 质
晶格失配导致 外延膜中缺陷 密度非常高
外延特点
• 外延生长时掺入杂质的类型、浓度都可 以与衬底不同,增加了微电子器件和电 路工艺的灵活性。
• 多次外延工艺得到多层不同掺杂类型、 不同杂质含量、不同厚度,甚至不同材 料的外延层。
作答
异质外延的相容性 1. 衬底与外延层不发生化学反应,不发
生大量的溶解现象; 2.衬底与外延层热力学参数相匹配,即热
膨胀系数接近。以避免外延层由生长温度冷却至 室温时,产生残余热应力,界面位错,甚至外延 层破裂。
3.衬底与外延层晶格参数相匹配,即晶体 结构,晶格常数接近,以避免晶格参数不匹配引 起的外延层与衬底接触的界面晶格缺陷多和应力 大的现象。
输出 PNP
外延工艺-SYGJPIE

外延掺杂
(1)有意掺杂
按器件对外延导电性和电阻率的要求,在外延的
同时掺入适量的杂质,这称为有意掺杂。
典型的掺杂剂通常为氢化物: 例如:N型为PH3 、 AsH3 P型为B2H6 都剧毒
(1)有意掺杂 对于杂质来说,也存在气相质量输运限制和化学反应速率
限制,只是情况更为复杂。例如,硼的掺入量随外延温度的上
ks hg Cg J R N ks hg N
式中,Cg 代表主气流中的反应剂浓度,
N 表示单位体积的薄膜含有的硅原子
的数量,对于硅,N的值为5×1022原子/厘米3 Hg 表示气相质量运输系数, Ks表示化学表面反应速率。 此公式显示了沉积速率正比于气体浓度
一、生长速率与温度的关系 当温度较低时,hg >> ks ,生长速率由表面反应速率常数 ks 决定 ;当温度较高时,hg << ks ,生长速率由气相质量转移系 数 hg 决定。
层在低于该材料的熔点或共晶点温度下,通过退火等手段,在单 晶衬底上生长出新的单晶层的过程。固相外延衬底温度低,杂 质扩散小,有利于制造突变掺杂界面的外延层。
分子束外延(MBE,Molecular Beam Epitaxy):在超高真空条
件下,利用薄膜组分元素受热蒸发所形成的原子或分子束,以 很高的速度直接射到衬底表面,并在其上形成外延层的技术。 特点:生长时衬底温度低,外延膜的组分、掺杂浓度以及分布 可以实现原子级的精确控制。
缺陷种类: a.存在于衬底中并延伸到外延层中的位错;
b.衬底表面的析出杂质或残留的氧化物,
吸附的碳氧化物导致的层错;
c.外延工艺引起的外延层中析出杂质; d.与工艺或与表面加工(抛光面划痕、损伤),碳沾污等有关,
外延工艺在集成电路制造产业中的应用(doc5)(1)

外延工艺在集成电路制造产业中的应用外延(Epitaxy,简称Epi)工艺是指在单晶衬底上生长一层跟衬底具有相同晶格排列的单晶材料,外延层能够是同质外延层(Si/Si),也能够是异质外延层(SiGe/Si或SiC/Si等);同样实现外延生长也有许多方法,包括分子束外延(MBE),超高真空化学气相沉积(UHV/CVD),常压及减压外延(ATM&RPEpi)等等。
本文仅介绍广泛应用于半导体集成电路生产中衬底为硅材料的硅(Si)和锗硅(SiGe)外延工艺。
依据生长方法能够将外延工艺分为两大类(表1):全外延(BlanketEpi)和选择性外延(SelectiveEpi,简称SEG)。
工艺气体中常用三种含硅气体源:硅烷(SiH4),二氯硅烷(SiH2Cl2,简称DCS)和三氯硅烷(SiHCl3,简称TCS);某些特别外延工艺中还要用到含Ge和C的气体锗烷(GeH4)和甲基硅烷(SiH3CH3);选择性外延工艺中还需要用到刻蚀性气体氯化氢(HCl),相应中的载气一般选用氢气(H2)。
外延选择性的实现一般通过调节外延沉积和原位(in-situ)刻蚀的相对速率大小来实现,所用气体一般为含氯(Cl)的硅源气体DCS,利用相应中Cl原子在硅表层的吸附小于氧化物或者氮化物来实现外延生长的选择性;由于SiH4不含Cl原子而且活化能低,一般仅应用于低温全外延工艺;而另外一种常用硅源TCS蒸气压低,在常温下呈液态,需要通过H2鼓泡来导进相应腔,但价格相对低廉,常利用其快速的生长率〔可抵达5um/min〕来生长对比厚的硅外延层,这在硅外延片生产中得到了广泛的应用。
IV族元素中Ge的晶格常数(5.646A与Si的晶格常数(5.431A区不最小,这使得SiGe与Si工艺易集成。
在单晶Si中引进Ge形成的SiGe单晶层能够落低带隙宽度,增大晶体管的特征截止频率fT(cut-offfrequency),这使得它在无线及光通信高频器件方面应用十分广泛;另外在先进的CMOS集成电路工艺中还会利用Ge跟Si的晶格常数失配(4%)引进的晶格应力来提高电子或者空穴的迁移率(mobility),从而增大器件的工作饱和电流以及响应速度,这正成为各国半导体集成电路工艺研究中的热点。
外延工艺简介

THANKS
感谢观看
物理气相沉积
利用物理方法使气态物质冷凝或蒸发沉积在基底 上。
3
外延生长速率与成核密度
外延生长速率与成核密度之间存在关联。
液相外延生长技术
溶液生长
01
将基底浸泡在含有源材料的溶液中,通过扩散控制反应过程。
热壁外延生长
02
将基底靠近加热的壁,使源材料蒸发并在基底上沉积。
外延层厚度和均匀性
03
液相外延生长过程中,需要控制外延层厚度和均匀性。
外延材料种类及特性
单晶硅外延片
单晶硅外延片是一种常见的外延材料,具有高导热、高绝缘、高 透光等特性,广泛应用于电力电子、微电子等领域。
氮化镓(GaN)外延片
GaN外延片具有高击穿电压、高热导率、高抗辐射能力等特性,在 高频大功率电子器件领域具有广泛应用。
氧化锌(ZnO)外延片
ZnO外延片具有高电子迁移率、高透明度、低介电常数等优点,在 光电器件和压电器件领域有重要应用。
这类设备采用水平管式结构,具有生长速度快、温度分布均匀、薄膜质量高等优点,适用 于生长高质量的外延层。
垂直管外延设备
采用垂直管式结构,具有生长环境稳定、操作简单、易于维护等特点,适合生长多种材料 的外延层。
金属有机物化学气相沉积(MOCVD)
MOCVD设备具有灵活的化学气相沉积能力,能够在较低温度下生长高质量的外延层,同 时具有高生产效率和低成本等优点。
随着科技的不断发展,外延工艺的应用领域越来越广 泛。例如,在新能源领域,外延工艺可以用于制备太 阳能电池、燃料电池等高效能源转换器件;在生物医 学领域,外延工艺可以用于制备生物芯片、生物传感 器等生物医学器件;在环保领域,外延工艺可以用于 制备光催化材料、空气净化器等环保器件。未来,随 着外延工艺的不断进步和完善,其应用领域将不断拓 展,为人类社会的发展带来更多的机遇和挑战。
集成电路制造工艺第5章 外延工艺

2. 外延生长过程
反应气体分子从气相转移到生长层表面;反应气体分子被生长 层表面吸附;在生长层表面,反应物完成化学反应,生成硅原 子和其它副产物;副产物从生长层表面脱离;副产物排出反应 室;硅原子在生长层表面扩散;硅原子扩散至晶格形成处,与 其它硅原子结合形成晶核;晶核生长成单晶外延层。
Si������4 → ������������ + 2������2
1. 外延设备系统组成
5.2外延设备
图5-4 外延系统设备框图
2. 外延反应室 (1)卧式(水平式)反应室
(2) 立式(盘式)反应室
图5-5 卧式反应室
图5-6 立式反应室
3.筒式反应室
图5-7筒式反应室
5.3 气相外延
气相外延(Vapor Phase Epitaxy, VPE)是指含外延层材料的 物质以气相形式流向衬底,在衬底上发生化学反应,生长出和 衬底晶向相同的外延层的外延工艺。
SiCl4+2H2→Si+4HCl (2)SiHCl3:外延温度可略低于,生长速度快,每分钟可超过1μm,这 种源主要用于较厚的外延层生长。
3 SiH������������3 + 2 ������2 → Si + 3HCl (3)SiH2Cl2:常温下为气体。蒸汽压大于1个大气压,可在较上两种源 更低的温度下外延,从而有利薄层外延工艺中减少外扩散与自掺杂。 Si������2������������2 → ������������ + 2������������������ (4)SiH4:为气体,用于较低温度(950~1000℃)下薄层硅外延。
(3)换气
04微电子工艺基础外延工艺

1 微电子工艺基础
第4章 外延工艺 本章( 学时)目标: 本章 ( 3 学时 ) 目标 :
1、了解相图和固溶度的概念 、 2、了解外延技术的特点和应用 、 3、 3、掌握外延的分类 4、掌握气相外延的原理、步骤 、掌握气相外延的原理、 5、了解分子束外延的实现方式和优点 、
2 微电子工艺基础
硅重量百分比
1414
液相
Ge-Si相图 固相
938.3
硅原子百分比
6 微电子工艺基础
6
第4章 外延工艺 一、相图和固溶度的概念 3、固溶度
固溶度 在平衡态下, 在平衡态下,一种杂质可以溶在另一种材料的 最高浓度,或者说溶质固溶于溶剂内所形成的饱 最高浓度 或者说溶质固溶于溶剂内所形成的饱 和固溶体内溶质的浓度。 和固溶体内溶质的浓度。 杂质浓度通常用单位体积内的原子数来表示。 杂质浓度通常用单位体积内的原子数来表示。 例如硅中砷原子浓度3.5%相当于 相当于1.75X1021cm-3 例如硅中砷原子浓度 相当于
11 微电子工艺基础
11
第4章 外延工艺 二、外延工艺 1、概述
(2)外延特点: )外延特点: 生成的晶体结构良好 掺入的杂质浓度易控制 可形成接近突变pn结的特点 可形成接近突变pn结的特点 pn
12 微电子工艺基础
12
第4章 外延工艺 二、外延工艺 1、概述
(3)外延分类: )外延分类: ① 按工艺分类
2
第4章 外延工艺 一、相图和固溶度的概念 二、外延工艺
1、概述 2、硅的气相外延 3、掺杂 4、缺陷与检测 5、外延的应用
三、其它外延
3 微电子工艺基础
3
第4章 外延工艺 一、相图和固溶度的概念 1、定义
外延工艺技术

外延工艺技术外延工艺技术是一种常用于半导体材料生长技术的方法,被广泛应用于集成电路、光电子器件等领域。
它的主要特点是在基片表面逐渐生长出所需薄膜或晶体材料,并能控制其结构和性能。
外延工艺技术的核心是在基片表面生成一层与自身晶体结构相同或相似的材料,即外延层。
通过调节生长条件,可以控制外延层的厚度、晶格常数以及晶体质量,从而实现对薄膜或晶体材料的精确控制。
外延工艺技术主要包括气相外延、分子束外延和金属有机化学气相沉积等方法。
其中,气相外延是最常见的一种方法。
它利用气相反应原料,在高温下将气体中的原子或分子沉积到基片表面,形成薄膜或晶体结构。
这种方法具有生长速度快、控制能力强、适用性广等优点。
分子束外延是一种高真空条件下生长膜的方法。
它利用电子束或离子束将原子或分子瞄准到基片表面,实现晶体生长。
这种方法生长的薄膜结构更加均匀,晶格常数更精确,因此在一些特殊应用中得到广泛应用。
金属有机化学气相沉积是一种利用有机金属气体化合物的热分解沉积薄膜或晶体的方法。
它具有较高的生长速率、较低的生长温度以及较好的材料纯度等优点,特别适用于一些高温不稳定的材料。
外延工艺技术在半导体行业中的应用非常广泛。
例如,现代集成电路中的材料生长、退火、离子注入等过程,都离不开外延工艺技术的支持。
通过外延工艺技术,可以实现对材料杂质掺入浓度、电学特性、光学特性等方面的精确调控,从而提高器件的性能和可靠性。
此外,外延工艺技术还被广泛应用于光电子领域,如光通信、太阳能电池等。
通过外延生长技术,可以制备出高质量的半导体材料,提高光电转换效率。
同时,外延工艺技术还可以用于制备纳米材料、二维材料等新型材料,具有很大的研究和应用前景。
总之,外延工艺技术是一种重要的半导体材料生长方法,具有精确控制材料结构和性能的优势。
随着半导体技术的不断发展,外延工艺技术将在电子、光电子等领域中发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.硅气相外延工艺
1. 外延原理
氢还原反应
SiCl4 2H2 Si 4HCl
1000 C
SiCl4 Si(固) 2SiCl2
硅烷热分解
SiH4 Si 2H 2
2017/4/9
600 C
4
2. 生长速率
影响外延生长速率的主要因素:
外延工艺
§1 外延工艺
一.外延工艺概述
定义:外延(epitaxy)是在单晶衬底上生长
一层单晶膜的技术。新生单晶层按衬底 晶相延伸生长,并称此为外延层。长了 外延层的衬底称为外延片。
2017/4/9 1
CVD:Chemical Vapor Deposition
晶体结构良好
掺入的杂质浓度易控制 可形成接近突变p—n结
2017/4/9
14
同型杂质
异型杂质
2017/4/9
15
四. 外延层中的缺陷与检测
1. 缺陷种类:
a.存在于衬底中并连续延伸到外延层中的位错; b .衬底表面的析出杂质或残留的氧化物,吸附 的碳氧化物导致的层错; c . 外延工艺引起的外延层中析出杂质; d .与工艺或与表面加工(抛光面划痕、损伤), 碳沾污等有关,形成的表面锥体缺陷(如角锥 体、圆锥体、三棱锥体、小丘); e . 衬底堆垛层错的延伸;
外延层和衬底中不同类型的掺杂形成的
p--n结,它不是通过杂质补偿作用形成的, 其杂质分布可接近理想的突变结。
2017/4/9
24
外延改善NMOS存储器电路特性
(1)提高器件的抗软误差能力
(2) 采用低阻上外延高阻层,可降低源、
漏 n+ 区耗尽层寄生电容,并提高器件对 衬底中杂散电荷噪声的抗扰度 (3) 硅外延片可提供比体硅高的载流子寿 命,使半导体存储器的电荷保持性能提 高。
系统示意图
2017/4/9
9
工艺流程
. 基座的 HCl 腐蚀去硅程序 ( 去除前次外
延后基座上的硅)
N2预冲洗
260L/min 4min H2预冲洗 260L/min 5min 升温1 850ºC 5min 升温2 1170ºC 5min HCl排空 1.3L/min 1min
2017/4/9 10
少子寿命
杂质分布
缺陷密度
2017/4/9
22
五.外延的用途
双极电路:
利用n/n+硅外延,将双极型高频功率晶体
管制作在n型外延层内,n+硅用作机械支 撑层和导电层,降低了集电极的串联电 阻。 采用n/p外延片,通过简单的p型杂质隔离 扩散,便能实现双极集成电路元器件间 的隔离。
2017/4/9 23
2017/4/9
28
工艺多样化:
具有相反导电类型的外延层,在器件工
艺中可形成结和隔离区; 薄层外延供器件发展等平面隔离和高速 电路; 选择外延可取代等平面隔离工艺来发展 平面隔离; 绝缘衬底上的多层外延工艺可以发展三 维空间电路
2017/4/9 29
HCl腐蚀
H2冲洗 降温 N2冲洗
10L/min 260L/min
10min 1min 6min
2017/4/9
11
外延生长程序 (1)N2 预冲洗 260L/min 4min (2)H2 预冲洗 260L/min 5min (3)升温 1 850ºC 5min (4)升温 2 1170ºC 6min (5)HCl 排空 1.3L/min 1min (6)HCl 抛光 1.3L/min 3min (7)H2 冲洗(附面层) 260L/min 1min (8)外延生长: H2: 260L/min SiCl4: 6.4~7g/min PH3: 100PPM; 0.15~0.18L/min T: 1160~1190ºC; 时间随品种而定 (9)H2 冲洗 1170ºC 1min (10)降温 6min (11)N2 冲洗 4min
外延分类:气相外延(VPE)--常用
液相外延(LPE)--ⅢⅤ 固相外延(SPE)--熔融在结晶 分子束外延(MBE)--超薄 化学气相淀积(CVD)----低温,非晶 2
. .
2017/4/9
材料异同
同质结
Si-Si 异质结GaAs--AlxGa(1-x) As 温度:高温1000℃以上 低温1000℃以下 CVD(低温)
2017/4/9
16
2017/4/9
17
2017/4/9
18
2017/4/9
19
2.埋层图形的漂移与畸变2.
2017/4/9
20
漂移规律
{111}面上严重,偏离2~4度,漂移显著减小,
常用偏离3度. 外延层越厚,偏移越大 温度越高,偏移越小 生长速率越小,偏移越小 SiCl4 SiH2Cl2 SiH4 硅生长---腐蚀速率的各向异型是发生漂移 的根本原因.
2017/4/9 26
CMOS电路采用外延片可使
电路的寄生闸流管效应有数 量级的改善。
Latch-提高器件的性能和集成度要求按比例 缩小器件的横向和纵向尺寸。其中,外 延层厚和掺杂浓度的控制是纵向微细加 工的重要组成部分;薄层外延能使 p-n 结 隔离或氧化物隔离的横向扩展尺寸大为 减小。
2017/4/9
25
软误差
从封装材料中辐射出的α 粒子进入衬 底产生大量(约106量级)电子-空穴对, 在低掺杂MOS衬底中,电子-空穴对 可以扩散50μ m,易受电场作用进入 有源区,引起器件误动作,这就是 软误差。 采用低阻衬底上外延高阻层的外延片, 则电子 -空穴对先进入衬底低阻层,其扩 散长度仅 1 μ m,易被复合,它使软误差 率减少到原来的1/10。
反应剂浓度
2017/4/9
5
温度:B区高温区(常选用),A区低温区
2017/4/9
6
气体流速 :气体流速大生长加快
2017/4/9
7
生长速率还与反应腔横截面形状和衬底
取向有关
矩形腔的均匀性较圆形腔好。晶面间的共 价键数目越多,生长速率越慢。
等气压线
2017/4/9
8
3.系统与工艺流程
2017/4/9 21
3.参数测量
参数内容
外延层厚度
常用测量方法
磨角染色法 层错法 红外椭圆偏振仪法 红外反射干涉法 四探针法 三探针法 C-V 法 扩展电阻法 脉冲 MOS 电容法 C-V 法 扩展电阻法 微分电导和霍尔效应 放射性元素示踪分析 卢瑟福背散射 光学显微镜观测 自动激光扫描仪
电阻率
2017/4/9 12
三. 外延中的掺杂
掺杂剂有: 1. 氢化物 : PH3,AsH3,BBr3,B2H6 POCl3,AsCl3 2. 氯化物:
2017/4/9 13
在外延层的电阻率还会受到下 列三种因素的干扰
重掺杂衬底中的大量杂质通过热扩散方
式进入外延层,称为杂质外扩散。 衬底中的杂质因挥发等而进入气流,然 后重新返回外延层,称为气相自掺杂。 气源或外延系统中的污染杂质进入外延, 称为系统污染。