基础拓扑学讲义11的习题答案

合集下载

拓扑学复习题与参考答案

拓扑学复习题与参考答案

拓扑学复习题与参考答案点集拓扑学练习题一、单项选择题(每题 2 分)1、已知X {a,b,c,d,e},下列集族中,()是X上的拓扑?①T {X, ,{a},{ a,b},{a,c,e}}②T {X, ,{a,b,c},{a,b,d},{a,b,c,e}}③T { X, ,{a},{ a,b}}④T {X, ,{a},{b},{c},{d},{e}}2、设X {a,b,c},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{c}} ②T {X, ,{a},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}3、已知X {a,b,c,d},下列集族中,()是X上的拓扑?①T {X, ,{a},{a,b},{a,c,d}} ②T {X, ,{a,b,c},{a,b,d}}③T {X, ,{a},{ b},{a,c,d}} ④T {X, ,{a},{b}}4、设X {a, b, c},下列集族中,()是X上的拓扑?①T {X, ,{b},{c},{a,b}} ②T {X, ,{a},{b},{a,b},{a,c}}③T {X, ,{a},{b},{a,c}} ④T {X, ,{a},{b},{c}}5、已知X {a,b,c,d},下列集族中,()是X上的拓扑?① T {X, ,{a,b},{a,c,d}} ② T {X, ,{a,b},{a,c,d}}③ T {X, ,{a},{b},{a,c,d}} ④ T {X, ,{a},{c},{a,c}}6、设X {a,b,c},下列集族中,()是X上的拓扑?① T {X, ,{a},{b},{b,c}} ② T {X, ,{a,b},{b,c}}③ T {X, ,{a},{a,c}} ④ T {X, ,{a},{b},{c}}7、已知X {a,b,c,d},拓扑T {X, ,{a}},贝U{b}=()②X {a,b,c,d}②X③{b},拓扑T {③{b}④{b,c,d}:()8已知X①?X, ,{a}},则{b,c,④{b,c,d}d}=9、已知X{a,b},拓扑T{X,,{a}},则面=( )①?②X③{a}④{b}10、已知X{a,b},拓扑T{X,,{a}},则{b}=( )①?②X③{a}④{b}11、已知X{a,b,c,d},拓扑T {X, ,{a}},则面=:( )②X③{a,b}④{b,c,d}12、已知X {a,b,c,d},拓扑T{X,,{a}},则=( )②X③{a,c}④{b,c, d}13、设X {a,b,c,d},拓扑T{X,,{a},{ b,c,d}}-,则X的既开又闭的非空真子集的个数为()①1②2③3④414、设X{a,b,c},拓扑T{X,,{a},{ b,c}},则X的既开又闭的非空真子集的个数为( )①1②2③3④415、设X{a,b,c},拓扑T{X,,{b},{ b,c}},则X的既开又闭的非空真子集的个数为( )①0②1③2④316、设X{a,b},拓扑T {X, ,{b}},则X的既开又闭的子集的个数为()①0②1③2④317、设X {a,b},拓扑T {X, ,{a},{ b}},则X的既开又闭的子集的个数为()①1②2③3④418、设X {a,b,c},拓扑T{X, ,{a},{ b},{ a,b},{ b,c}},则X的既开又闭的非空真子集的个数为()①1②2③3④419、在实数空间有理数集Q的内部Q o是()中,①②Q ③R -Q ④R20、在实数空间中,有理数集Q的边界(Q)是()①②Q ③R -Q ④R21、在实数空间中,整数集Z的内部Z o是()①②Z ③R-Z ④R22、在实数空间中,整数集Z的边界(Z)是()①②Z③R-Z ④R23、在实数空间中,区间[0,1)的边界是()① ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是()①②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的内部是()① ②[0,1]③{0,1}④(0,1)26、设X是一个拓扑空间,A,B是X的子集,则下列关系中错误的是()①d(AB)d(A) d(B)②A__B A B③d(AB)d(A) d(B)④ A A27、设X是一个拓扑空间,A,B是X的子集,则下列关系中正确的是()①d(AB)d(A) d(B)② A B A B③d(AB)d(A) d(B)④ A A28、设X是一个拓扑空间,AB是X的子集,则下列关系中正确的是()① d(A B) A B② A B A B③ d(A B)d(A) d(B)④ d(d(A)) A d(A)A是X的子集,则下列结论中正确的是()29、已知X是一'个离散拓扑空间,① d(A)② d(A) X A③ d(A) A④ d(A) XA是X的子集,则下列结论中不正确的是()30、已知X是一'个平庸拓扑空间,①若A ,则d(A)②若 A {X0},则d(A) X A③若A={X I,X2},则d(A) X④若A X ,则d(A) X31、已知X是一'个平庸拓扑空A是X的子集,则下列结论中正确的是()间,①若A ,则d(A) ②若A {X。

拓扑学复习题与参考答案

拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c e φ=T②{,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③{,,{},{,}}X a a b φ=T④{,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{}}X a a b c φ=T ②{,,{},{,},{,}}X a a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c d φ=T ②{,,{,,},{,,}}X a b c a b d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X b c a b φ=T ②{,,{},{},{,},{,}}X a b a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{,},{,,}}X a b a c d φ=T ②{,,{,},{,,}}X a b a c d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X a b b c φ=T ②{,,{,},{,}}X a b b c φ=T③{,,{},{,}}X a a c φ=T ④{,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ②X ③{}b ④{,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ②X ③{}b ④{,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{}a ④{}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ②X ③{}a ④{}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{,}a b ④{,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ②X ③{,}a c ④{,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0②1③ 2④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0②1③ 2④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1②2③ 3④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 419、在实数空间中,有理数集Q 的部Q 是( )①φ②Q ③R -Q ④R20、在实数空间中,有理数集Q 的边界()Q ∂是( )①φ②Q ③R -Q ④R21、在实数空间中,整数集Z 的部Z 是( )①φ②Z ③R -Z ④R22、在实数空间中,整数集Z 的边界()Z ∂是( )①φ②Z ③R -Z ④R23、在实数空间中,区间[0,1)的边界是( )①φ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是( )①φ②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的部是( )①φ②[0,1]③{0,1}④(0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B ⋃=⋃③()()()d A B d A d B ⋂=⋂④A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()d A B A B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④(())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ①()d A φ=②()d A X A =-③()d A A =④()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X A =-③若A={12,x x },则()d A X =④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X =③若A={12,x x },则()d A X A =-④若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③{ X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.①{{,}|{}}B p x x X p =∈-②{{}|}B x x X =∈③{{,}|}B p x x X =∈④{{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中()以{,,{}}S X a φ=为子基.①{ X ,φ,{a },{a ,c }} ② {X ,φ,{a }}③{ X ,φ,{a },{b },{a ,b }} ④ {X ,φ}35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ②R ③A ∪{0}④A39、在实数空间R 中,下列集合是闭集的是()①整数集②[)b a ,③有理数集④无理数集40、在实数空间R 中,下列集合是开集的是()①整数集Z ②有理数集③ 无理数集④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )①1 ②2 ③3 ④442、已知{,}X a b =,则X 上的所有可能的拓扑有( )①1个 ②2个③3个④4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3② 5③ 7④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉②T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )①{,{2},{1,2}}φ=T ②{,,{1},{2},{1,2}}T X φ=③{,,{1},{2}}T A φ=④{,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )①{,{1},{3},{1,3}}T φ=②{,,{1}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )①{,{3},{2,3}}φ=T ②{,,{2},{3}}T A φ=③{,,{2},{3},{2,3}}T X φ=④{,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )①{,{1}}T φ=②{,,{1,2}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,}T A φ=③{,,{2}}T X φ=④{,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,{},{1,3}}T X φ=③{,,{3}}T X φ=④{,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )①{,}T Z φ=②()T P Z =③T Z =④{}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯②A B A B ⨯=⨯③()A B A B ⨯≠⨯④()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对62、整数集Z 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对63、无理数集是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②连通性③离散性④第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②连通性③第二可数性公理④平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②可分性③第二可数性公理④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②可分性③离散性④第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )①0T 空间 ②1T 空间 ③2T 空间 ④以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间94、设X 是一个拓扑空间,若对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )①1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A 是有限补空间X 中的一个无限子集,则()d A = ;7、设A 是有限补空间X 中的一个无限子集,则A = ;8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;9、设A 是可数补空间X 中的一个不可数子集,则A = ;10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;14、设{,,}X a b c =,则X 的平庸拓扑为 ;15、设{,,}X a b c =,则X 的离散拓扑为 ;16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的部为 ; 18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个.20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间.如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间.如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间.如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的点3、集合A 的部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →,:g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。

《拓扑学》作业参考答案

《拓扑学》作业参考答案
R-拓扑T 以B 为基。 (2) a,b R, a b, (a, b) - k B ,
{(a,b) K | a,b R, a b}T ,而 (a,b) K | a,bR (a,b) | a,bR K
因此 R K T
=R k
11. 设A 是 Y 的任意一个开覆盖 (A T ),则A {Y '}是X 的一个开覆盖, 由 X 的紧致性知 {U1, ,Un} A {Y '}是X 的开覆盖, 从而{U1, ,Un} {Y '} A 是Y 的开覆盖,也是A 的有限子覆盖,故 Y 是紧致子集。
n
令U {U x1 , ,U x n }, V Vxi
i 1
则 A U, F V , U Y ,且U,V T
18. y A,则y x,由T2性知 U y , Vy T , U y Vy s, y.x U y, y Vy 又{Vy | y A}是A 的开覆盖,A 为紧改子集。
{Vy1 , ,Vyn } {Vy | y A}, s.t. {Vy1 , ,Vyn } A
VT1
(2)由T * 的定义知 ( X *,T *) 中的闭集为 P( X ) 中的有限集和任一含有 的集合。 对于任意 x X * ,及闭集 F, x F 。 ( a ) x , 则 F 必 为 P( X ) 中 有 限 集 , 因 此 X * F为T * 中 的 元 素 , F 亦 为 T * 中 元 素 , 故 X * F, F T * ( X * F ) F , x X * F, F F ( b ) x X ,则{x} 为 开 集 , 再 取 U {x}' X * {x}则U 亦 为 开 集 , 故 {x}, {x}' T , 使 得 x {x}, F X * {x}, {x} ( X * {x}) ,故 ( X *,T*) 是正则空间。

拓扑试题及答案

拓扑试题及答案

拓扑试题及答案一、选择题(每题2分,共10分)1. 拓扑空间中,任意两个开集的并集还是开集,这是拓扑空间的哪个公理?A. 任意并集公理B. 有限并集公理C. 有限交公理D. 任意交公理答案:A2. 连续映射的定义是?A. 映射的逆映射是连续的B. 映射的原像与像的连续性一致C. 映射的像与原像的连续性一致D. 映射的原像与像的连续性不一致答案:B3. 在拓扑学中,一个空间的基是什么?A. 空间中所有开集的集合B. 空间中所有闭集的集合C. 空间中所有单点集的集合D. 空间中所有有限集的集合答案:A4. 拓扑空间中,一个集合的闭包是指什么?A. 集合本身B. 集合的内部C. 包含集合的所有极限点D. 集合的外部答案:C5. 什么是紧致性?A. 空间中任意开覆盖都有有限子覆盖B. 空间中任意闭覆盖都有有限子覆盖C. 空间中任意开覆盖都有无限子覆盖D. 空间中任意闭覆盖都有无限子覆盖答案:B二、填空题(每题2分,共10分)1. 如果拓扑空间X的任意开覆盖都有一个有限子覆盖,则称X是________。

答案:紧致的2. 拓扑空间中,如果一个映射是连续的,那么它的逆映射也是________。

答案:连续的3. 在拓扑空间X中,如果存在一个开集U包含点x,使得x是U的极限点,则称x是X的________。

答案:累积点4. 拓扑空间X的基B,如果X中任意开集都可以表示为B中开集的并集,则称B是X的一个________。

答案:基5. 如果拓扑空间X的任意子集的闭包都是闭集,则称X是________。

答案:T1空间三、简答题(每题5分,共20分)1. 请简述什么是拓扑空间?答案:拓扑空间是一个集合X,配合一个定义在其上的拓扑结构,这个结构由X的子集构成,满足任意并集公理、有限交公理和空集与全集为开集的条件。

2. 什么是连续映射?答案:连续映射是指在拓扑空间X和Y之间定义的映射f,对于Y中的任意开集V,其原像f^(-1)(V)在X中也是开集。

答案-拓扑学基础

答案-拓扑学基础

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。

(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

答案-拓扑学基础

答案-拓扑学基础

东 北 大 学 秦 皇 岛 分 校课程名称: 拓扑学基础 (答案) 试卷: A 考试形式:闭卷授课专业:数学与应用数学 考试日期: 2013年 7月 试卷:共 3 页一、填空题:(每空2分,共20分)1.设{1,2,3}X =,写出5个拓扑,使得每个拓扑中的所有集合按包含关系构成一个升链 平凡拓扑 ,{,,{3},{1,3}}X ∅,{,,{1}}X ∅, {,,{2}}X ∅,{,,{3}}X ∅。

(注:答案不唯一,正确即可)2. 汉字“东” 的连通分支的个数是 3 ,抛物线的连通分支的个数是 1 。

3.字母Y 的割点个数为 无穷 。

字母T 中指数为3的点个数为 1 。

4.叙述同胚映射的定义 拓扑空间之间的连续映射称为同胚映射,若它是一一对应且它的逆也是连续的 。

二、选择题:(每题2分,共8分) 1.下列说法中正确的是( B )A 连通空间一定是道路连通空间B 道路连通空间一定是连通空间C 道路连通空间一定局部道路连通D 以上说法都不对 2.下列说法正确的是( A )A 紧空间的闭子集紧致B 紧致空间未必局部紧致C 有限空间一定不紧致D 列紧空间是紧致空间 3.下列说法错误的是( A )A 离散空间都是1T 空间B 2T 空间中单点集是闭集C ¡赋予余有限拓扑不是2T 空间D 第二可数空间可分 4.下列不具可乘性的是( D )A 紧致性B 连通性C 道路连通性D 商映射三、计算题:(共16分)1.在¡上赋予余有限拓扑,记¤为有理数集合,[0,1]I =。

试求'¤和I 。

(4分) 答:'=ぁ,I =¡。

2.确定欧式平面上子集22{(,)|01}A x y x y =<+≤的内部、外部、边界和闭包。

(8分)答:内部,22{(,)|01}x y x y <+<; 外部,22{(,)|1}x y x y <+ 边界,22{(,)|1}x y x y +=; 闭包 A A =。

拓扑学基础答案

拓扑学基础答案

拓扑学基础(数学教育本科)试卷参考答案一、单项选择题1、C2、A3、B4、A5、A6、C7、D 8、A 9、B 10、D二、填空题11、满射 12、同胚 13、A 的补集A '是一个开集 14 、Y B 15、可分 16、一 17、x 和y 连通18、X ,)(x f 19、Y 中每一个开集U 的原象)(1U f -是X 中的一个开集三、名词解释题1、如果存在一个从集合X 到正整数集Z +的单射,则称集合X 是一个可数集。

2、设X 是一个集合,T 是X 的一个子集族,如果T 满足如下条件:(1)∈φ,X T ,(2)若A ,∈B T ,则∈B A T ,(3)若T ⊂1T ,则1A ∈∈ T T ,则称T 是X 的一个拓扑。

偶对(X ,T )是一个拓扑空间。

3、设X 和Y 是两个拓扑空间,如果f:X →Y 是一个一一映射,并且f 和f -1:Y →X 都是连续的,则称f 是一个同胚映射。

4、设X 是一个拓扑空间,如果对于任何x 、y ,存在X 中的一条从x 到y 的道路(或曲线),则称X 是一个道路连通空间。

5、一个拓扑空间如果在它的每一点处有一个可数邻域基,则称这个拓扑空间是一个A 1空间。

6、一个拓扑空间如果有一个可数基,则称这个拓扑空间是一个A 2空间。

7、设X 是一个拓扑空间,如果X 的每一个开覆盖都有一个可数子覆盖,则称拓扑空间X 是一个Lindel öff 空间。

8、设X 是一个拓扑空间,如果X 中的任何一个点和任何一个不包含这个点的闭集都各有一个开邻域,它们互不相交,则称拓朴空间X 是一个正则空间。

9、设X 是一个拓扑空间,如果X 的每一个开覆盖有一个有限子覆盖,则称拓扑空间X 是一个紧致空间。

10、设X 是一个拓扑空间,如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个可数紧致空间。

四、判断题1、√2、√3、×4、×5、√6、×7、√ 8、× 9、√ 10、× 11、√ 12、×五、解答与证明题1、解:(1)1T 不是X 的拓扑,这是因为∈},{b a 1T ,∈},{d b 1T ,但∈/=}{},{},{b d b b a 1T(2)2T 是X 的拓扑,满足拓扑的定义2、证∵()()()()A B A B d A B A B d A d B ==B A B d B A d A ==))(())((3、证:∵B B A A B A ⊂⊂ ,,故A B A ⊂ ,B B A ⊂∴B A B A ⊂5、设Y 是紧致空间X 中的一个闭子集,如果A 是Y 的一个覆盖,它由X 中的开集构成,则B =A {Y '}是X 的一个开覆盖,设1B 是2B 的一个有限子族并且覆盖X ,则1B }{Y '-便是A 的一个有限子族并且覆盖Y ,这说明Y 是X 的一个紧致子集。

拓扑答案

拓扑答案
· · · ∪ (B ∩ An) 是 X 的闭集.
3
练习 11 (11.). • 设 Y 是 X 的子空间,x ∈ Y ,则 x ∈ DY (A) 当且仅当 x ∈ DX (A),即 DY (A) = DX (A) ∩Y ,这里,DY (A) 表示 A 在 Y 中的导集.
证明
• 任取 x ∈ DY (A),则对 x 在 X 中的任意邻域 U 有 (U ∩Y )∩(A \ {x}) ̸= 0/ ,所以 U ∩ (A \{x}) ̸= 0/ , 从而 x ∈ DX (A).
1 2
(d
(x,
a)

r),则
a
的邻域
B(a,
r0)
满足
B(a,
r0)

B[x,
r]c,从而
B[x, r]
– 事实上,任取 y ∈ B(a, r0),则
1 d(x, y) ≥ d(x, a) − d(a, y) > d(x, a) − r0 = 2 (d(x, a) + r) > r, * 即 y ∈/ B[x, r],再由 y 的任意性有 B(a, r0) ⊆ B[x, r]c. – 反例:在多于一点的离散空间 X,有 B[x, 1] = X,但 B(x, 1) = {x}.
f −1(F),
* 即 f −1(F) = f −1(F),于是 f −1(F) 是 X 的闭集。
证明:(4)⇐⇒(1) • (4)⇒(1)
– 假设对 Y 中的每一子集 B,有 f −1(B◦) ⊆ [ f −1(B)]◦. * 则对 Y 的开集 B 有 f −1(B) = f −1(B◦) ⊆ f −1(B)◦ ⊆ f −1(B), · 所以有 f −1(B) = f −1(B)◦,因此 f −1(B) 是 X 的开集。 * (1)⇒(4) · 设 f 连续,则 f −1(B◦) 是开集. · 由于 f −1(B◦) ⊆ f −1(B),所以有 f −1(B◦) ⊆ f −1(B)◦.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题
2、1、18 记S 就是全体无理数的集合,在实数集R 上规定子集族
{}
1\A ,A S U U τ=⊂是E 的开集、
(1)验证τ就是R 上的拓扑;
(2)验证(),R τ满足2T 公理,但不满足3T 公理; (3)验证(),R τ就是满足1C 公理的可分空间;
(4)证明τ在S 上诱导的子空间拓扑s τ就是离散拓扑,从而(),s S τ就是不可分的;
(5)说明
(),R τ不满足2
C
公理。

证明:(1)○
1,A U R R U A ττ=∅=⎫⎫
⇒∅∈⇒∈⎬⎬=∅=∅⎭⎭
所以R 与∅都含在τ中 ○
2()U A U A λλλλλλλ∈Λ
∈Λ
∈Λ
-=
-
()0
000,,,x U A x U A x U x A x U x A x U A λλλ
λλλλλλλλλλ
λλλ∈Λ
∈Λ
∈Λ
∈Λ
∈Λ
∀∈
-⇔∃∈Λ∈-⇔∈∉⇔∈

⇔∈
-
使
U A λλλλτ∈Λ
∈Λ
-

∴τ中任意多个成员的并集仍在τ中
○3()
()()()
11221212\\\U A U A U U A A =
()
()()()
11221122
11221212121
2\\,,,,,\x U A U A x U A x U A x U x A x U x A x U U x A A x U U A A ∀∈⇔∈-∈-⇔∈∉∈∉⇔∈∉⇔∈
()()1212\U U A A τ∈
∴τ中两个成员的交集仍在τ中 综上所述:τ就是R 上的拓扑
(2)任取一个有理数a ,则a 在(),R τ中存在一个开邻域11\U A
这样我们就可以在1
E 中找到一个与1U 不相交的开集2U ,令有理数2b U ∈
则22\U A 为b 的一个开邻域 且()
()1122\\U A U A =∅
∴(),R τ满足2T 公理
由题意可知S 就是闭集,a S ∀∉有理数
如果W 就是S 的任意一个开邻域
因为S 为全集,所以S 的开邻域W 总会与a 的开邻域相交 因此在(),R τ中,S 与a 不存在不想交的开邻域,故不满足3T 公理
(3)x R ∀∈,做x 的一组可数邻域{}11,n U x x x Q n n ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭
则{}n U 就是x 的一个可数邻域 对x 的任一开邻域U ,U 为R 中开集
(),\\x a b S U S ∈⊂
当n 充分大,(),\\n U a b S U S ⊂⊂
所以{}n U 就是x 的一个可数邻域基 说明(),R τ满足1C 公理 显然Q R ⊂
x R ∀∈,x 的任一开邻域\U S
()
\U S Q x Q
R Q
≠∅⇒∈⇒⊂
所以Q R =
所以Q 就是(),R τ的可数稠密子集,所以(),R τ就是可分的 (4)设A S ⊂
()\\R S A 就是(),R τ的开集
∴有()
\\R S A S A =就是(),S S τ的开集
∴S 的每个子集都就是(),S S τ的开集 ∴(),S S τ就是离散拓扑空间,S 不可数
∴从而(),S S τ就是不可分的 (5)假如(),R τ满足2C 公理
2C 公理具有遗传性
则(),S S τ也要满足2C 公理
2C 空间就是可分空间
则(),S S τ就是可分的与(),S S τ不可分矛盾了 ∴(),R τ不满足2C 公理
1、1、9 设A 与B 都就是拓扑空间X 的子集,并且A 就是开集、证明A B A B ⊂、
证明:对x A
B ∀∈,即x A ∈且x B ∈
令U 就是x 的任一开邻域 则U A 也就是x 的开邻域 因为x B ∈ 所以()U A B ≠∅ 即()U
A
B ≠∅
所以x A B ∈,所以A B A B ⊂
1、1、10 设12,,,n A A A 都就是X 的闭集,并且1
n
i i X A ==
、证明B X ⊂就是X 的闭集
⇔i B
A 就是()1,2,
,i A i n =的闭集、
证明:()⇒1,2,
,i n ∀=
有()C
i i i A B A B A -=
(),i i i i
C C
i
x A B
A x A x B
A x
B x B x B A ∀∈-⇔∈∉⇔∉⇔∈⇔∈

B 就是X 的闭集
∴C B 就是X 的开集 从而i B A 就是i A 的开集 ∴i B A 就是i A 的闭集 ()⇐因为i B
A 就是()1,2,
,i A n 的闭集
故1,2,
,i n ∀=,存在X 的闭集i B ,使i i
i B
A B A =,而
()()1
1
1111
n
n n n n n
i i
i i i i i i i i i i i B B A B A B A B X B ======⎛⎫⎛⎫⎛⎫=
=
===
⎪ ⎪ ⎪
⎝⎭⎝⎭⎝⎭
所以B 就是X 的闭集(有限多个闭集的并还就是闭集)
1、1、13 设{}n x 就是(),c R τ中的一个序列、证明:n x x →⇔存在正整数N ,使得当
n N >,n x x =、
证明:()⇐显然的
()⇒ 假设当n N >时,n x x =不成立
那么可找到{}n x 的无穷子序列{}k n x ,{}
()1,2,k n x x k ==
{}
\k n R x 为x 的一个开邻域 因为lim n x x x →∞
=
对x 的开邻域{}
\k n R x
会{}
,,\k n n K n K x R x ∃>∈ 与{}
\k k n n x R x ∉矛盾
所以存在正整数N ,使得当n N >,n x x =
1、1、15 证明:A 就是拓扑空间X 的稠密子集⇔X 的每个非空开集与A 相交非空、 证明:()⇒因为A 就是X 的稠密子集 所以A X =
故对x A ∀∈,x 的每个开邻域与A 都有交点 从而X 的每个非空开集与A 相交非空 ()⇐因为X 的每个非空开集与A 相交非空 故对x X ∀∈,X 的每个开邻域与A 都有交点 所以x A ∈,即X A ⊂ 又因为A X ⊂,所以A X = 所以A 就是X 的稠密子集
1、1、16 若A 就是X 的稠密子集,B 就是A 的稠密子集,则B 也就是X 的稠密子集、 证明:令U 就是X 的任一非空开集 因为A 就是X 的稠密子集 所以U A ≠∅
从而U A 就是A 的非空开集 又因为B 就是A 的稠密子集,则
()U
B U A B =≠∅
所以B 也就是X 的稠密子集
1、2、1 设:f X Y →就是映射,证明下列条件互相等价: (1)f 就是连续映射;
(2)对X 的任何子集A ,()
()f A f A ⊂; (3)对Y 的任何子集B ,()()
1
1f
B f B --⊂

证明:()()12→欲证()
()
f A f A ⊂
即()
y f A ∀∈,要有()y f A ∈ 设V 为y 的任一开邻域 因为f 就是连续映射 所以()1
f V -为x 开集
()1
f
y A -∈,()()11f y f V --∈
又因为()
1
f V A -≠∅
所以()
()1
f f V A -≠∅
即()
()()()
()()()11f
f V A f f V f A V f A y f A --==⇒∈
所以()
()f A f A ⊂ ()()23→由(2)得,()(
)()()1
1f f B f f B B --⊂=
所以()()
1
1f
B f B --⊂
()()31→B 就是Y 的闭集,且()()
()1
11f B f B f B ---⊂=
所以()1
f
B -就是X 的闭集
由定理1、1可得,f 就是连续映射。

相关文档
最新文档