教育统计学t检验练习
t检验习题及答案

例题7.5一家食品生产企业以生产袋装食品为主,每天的产量大约为8000袋左右。
按规定每袋的重量应为100g。
为对产品质量进行检测,企业质检部门经常要进行抽检,以分析每袋重量是否符合要求。
现从某天生产的一批食品中随机抽取25袋,测得每袋重量如表7—2所示。
表7—225袋食品的重量112.5 101.0 103.0 102.0 110.5102.6 107.5 95.0 108.8 115.6100.0 123.5 102.0 101.6 102.2116.6 95.4 97.8 108.6 105.0136.8 102.8 101.5 98.4 93.3已知产品重量的分布,且总体标准差为10g,试估计该天产品平均质量的置信区间,以为95%建立该种食品重量方差的置信区间。
解:已知δ=10,n=25,置信水平1-α=95%,Z x/2=1.96案例处理摘要案例有效缺失合计N 百分比N 百分比N 百分比重量25 100.0% 0 .0% 25 100.0%描述统计量标准误重量均值105.7600 1.93038 均值的95% 置信区间下限101.7759上限109.74415% 修整均值104.8567中值102.6000方差93.159标准差9.65190极小值93.30极大值136.80范围43.50四分位距9.15偏度 1.627 .464峰度 3.445 .902 重量重量 Stem-and-Leaf PlotFrequency Stem & Leaf1.00 9 . 34.00 9 . 557810.00 10 . 01112222234.00 10 . 57882.00 11 . 02。
单样本t检验例题及答案

单样本t检验例题及答案课题:单样本t检验一、简介单样本T检验,用来检验是否有显著性差异,以及存在什么样的差异。
它假设样本来自正态分布的总体,但是并没有要求两端对称,只要单边有统计显著性就行。
它是实验研究中常用的假设检验方法之一,它将检验样本与某一假设值(通常是总体的平均值、中心假设)之间的偏差作概率分析,判断其是否具有统计学显著性。
二、计算步骤(1)数据准备:我们有一组实验数据,每个受试者吃一顿饭后其血糖指数,我们假设其均在正态分布,计算其均数μ0和标准差σ;(2)计算单样本t值、概率P值:将t值和一定的α(一般α<0.05)的概率值带入t分布概率密度函数中求出概率P值,比较P值能区分做出是否拒绝零假设的结论;(3)最终结果:如果P值<α,则拒绝零假设,说明实验结果有显著性差异,否则,则接受零假设,说明实验结果无显著性差异。
三、示例分析下面为例,20位受试者吃完晚饭后1小时血糖指数测量值:88、86、96、86、75、93、93、78、100、85、86、89、81、85、87、77、90、88、95、94,检验其平均血糖指数和中心假设μ0=80之间是否有显著差异。
(1)数据处理:用上述数据得到均值=87.15,标准差=8.427;(2)计算单样本t值和概率P值:单样本t值为7.349,P值<0.001,α<0.05;(3)最终结果:由于概率P值<α,可以拒绝零假设,说明实验结果有显著性差异,即血糖指数与中心假设μ0=80之间有显著差异。
四、结论从上面的例子可以看出,单样本t检验是一种能够测量统计显著性的方法,用来检验样本数据和中心假设μ0之间的差异,它的特点在于只需要一个样本,就能判断两者间是否存在显著性差异。
t检验法的详细步骤例题

t检验法的详细步骤例题
假设我们想要通过t检验法来判断男生和女生在数学考试成绩上是否存在显著差异。
以下是一个详细步骤的例题:
步骤1: 建立假设(Hypotheses)
- 零假设(H0):男生和女生在数学考试成绩上没有差异,即两个样本的均值相等。
- 对立假设(H1):男生和女生在数学考试成绩上存在差异,即两个样本的均值不相等。
步骤2: 收集样本数据
- 随机抽取一定数量的男生和女生学生作为样本,记录他们在数学考试中的成绩。
步骤3: 计算统计量
- 对于两个独立样本的t检验,统计量t的计算公式为: t = (x1-x2) / sqrt(s1^2/n1 + s2^2/n2)
其中,x1和x2是两个样本的平均值,s1和s2是两个样本的标准差,n1和n2是两个样本的样本容量。
步骤4: 设置显著性水平
- 根据实际情况和问题的重要性,选择一个显著性水平(例如α = 0.05或α = 0.01)。
步骤5: 计算临界值
- 在给定的显著性水平下,查表或使用统计软件来计算临界值。
对于双尾检验,需要计算两侧的临界值。
步骤6: 做出决策
- 比较统计量t与临界值。
如果统计量t的绝对值大于临界值,就拒绝零假设,即表明男生和女生在数学考试成绩上存在显著差异;否则就接受零假设,认为差异不显著。
步骤7: 得出结论
- 根据统计推断的结果,结合具体问题,得出是否拒绝零假设的结论,并解释结果的意义。
练习t假设检验

1.假设检验在设计时应确定的是A.总体参数B.检验统计量C.检验水准D.P值E.以上均不是2.如果t≥2,υ,可以认为在检验水准α=处。
A.两个总体均数不同B.两个总体均数相同C.两个样本均数不同D.两个样本均数相同E.样本均数与总体均数相同3. 计量资料配对t检验的无效假设(双侧检验)可写为。
A.μd=0 B.μd≠0 C.μ1=μ2D.μ1≠μ2E.μ=μ04.两样本均数比较的t检验的适用条件是。
A.数值变量资料B.资料服从正态分布C.两总体方差相等D.以上ABC都不对E.以上ABC都对5.在比较两组资料的均数时,需要进行t/检验的情况是:A.两总体均数不等B.两总体均数相等C.两总体方差不等D.两总体方差相等E.以上都不是6.有两个独立的随机样本,样本含量分别为n1和n2,在进行成组设计资料的t检验时,自由度为。
A.n1+n2 B.n1+n2-1 C.n1+n2+1D.n1+n2-2 E.n1+n2+27. 已知某地正常人某定量指标的总体均值μ0=5,今随机测得该地特殊人群中的30人该指标的数值。
若用t检验推断该特殊人群该指标的总体均值μ与μ0之间是否有差别,则自由度为。
A.5 B.28 C.29D.4 E.308. 两大样本均数比较,推断μ1=μ2是否成立,可用。
A.t检验B.Z检验C.方差分析D.ABC均可以E.χ2检验9.关于假设检验,下列说法中正确的是A.单侧检验优于双侧检验B.采用配对t检验还是成组t检验由实验设计方法决定C.检验结果若P值大于,则接受H0犯错误的可能性很小D.用Z检验进行两样本总体均数比较时,要求方差齐性E.由于配对t检验的效率高于成组t检验,因此最好都用配对t检验10. 为研究新旧两种仪器测量血生化指标的差异,分别用这两台仪器测量同一批样品,则统计检验方法应用。
A.成组设计t检验B.成组设计Z检验C.配对设计t检验D.配对设计Z检验E.配对设计χ2检验11. 阅读文献时,当P=,按α=水准作出拒绝H0,接受H1的结论时,下列说法正确的是。
T检验-ANOVA分析习题

• 2. 已知某水样中含CaCO3的真值为20.7mg/L, 现用某方法重复测定该水样11次CaCO3的含量 (mg/L)为:
健康人
1.67 4.57 1.98 4.82 1.98 5.78 2.33 2.34 2.50 3.60 3.73 4.14 4.17
• 问该地区急性克山病患者与健康人的血鳞值是否 不同?(data 03.sav)
• 4. 现以体育疗法治疗高血压的数据,pretreat:治 疗前舒张压(mmHg),posttreat: 治疗后舒张压 (mmHg)。要求判断体育疗法对降低血压是否 有疗效。 (data 04.sav)
4.7
可待因
60
复方2号
50 20
复方1号
40 10
• 7. 为试验三种镇咳药, 先以NH.OH0.2ml对小 白鼠喷雾,测定其方式 咳嗽的时间,然后分别 用药灌胃,在同样条件 下再测定发生咳嗽的时 间,并以“用药前的时 间-用药后的时间”之 差为指标,计算延迟咳 嗽时间(秒)。试比较 三种药物的镇咳作用。 (data 07.sav)
• 6. 用二氧化硒50mg对大鼠染尘后不同时期全肺 湿重的变化见下表,试比较染尘后1个月,3个月, 6个月,三个时期的全肺湿重有无差别。(data 06.sav)
1个月 3.4 3个月 3.4 6个月 3.6
3.6
4.3 4.1
4.4
3.4 4.2
4.4
5.1 5.0
4.2
3.3
4.7
4.2
5.5
30
教育统计学t检验练习

教育统计学t检验练习内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)实验报告实验名称:t 检验成绩:实验日期: 2011年10月31日实验报告日期:2011年11 月日林虹一、实验目的(1)掌握单一样本t检验。
(2)掌握相关样本t检验(3)掌握独立样本t检验二、实验设备(1)微机(2)SPSS for Windows 统计软件包三、实验内容:1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。
问该班的成绩与全市平均成绩的差异显着吗表4-1 学生的数学成绩12345678910111213141516编号成96977560926483769097829887568960号68747055858656716577566092548780成绩2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。
为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。
进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。
测验成绩按“5分制”进行评定。
两组被试的测验成绩见数据文件data4-02。
请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。
3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测验结果见数据文件data4-03。
请问,儿童入园一年后的智商有明显的变化吗(例题)4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。
请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。
教育统计学t检验练习

实验报告实验名称:t 检验成绩:实验日期: 2011年10月31日实验报告日期:2011年11 月日林虹一、实验目的(1)掌握单一样本t检验。
(2)掌握相关样本t检验(3)掌握独立样本t检验二、实验设备(1)微机(2)SPSS for Windows 统计软件包三、实验内容:1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。
问该班的成绩与全市平均成绩的差异显着吗表4-1 学生的数学成绩12345678910111213141516编号成96977560926483769097829887568960绩编17181920212223242526272829303132号成68747055858656716577566092548780绩2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。
为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。
进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。
测验成绩按“5分制”进行评定。
两组被试的测验成绩见数据文件data4-02。
请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。
3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测验结果见数据文件data4-03。
请问,儿童入园一年后的智商有明显的变化吗(例题)4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。
请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。
T检验例题资料

T检验习题1.按规定苗木平均高达1.60m以上可以出圃,今在苗圃中随机抽取10株苗木,测定的苗木高度如下:1.75 1.58 1.71 1.64 1.55 1.72 1.62 1.83 1.63 1.65假设苗高服从正态分布,试问苗木平均高是否达到出圃要求?(要求α=0.05)解:1)根据题意,提出:无效假设为:苗木的平均苗高为H0=1.6m; 备择假设为:苗木的平均苗高H A>1.6m;2)定义变量:在spss软件中的“变量视图”中定义苗木苗高, 之后在“数据视图”中输入苗高数据;3)分析过程在spss软件上操作分析过程如下:分析——比较均值——单样本T检验——将定义苗高导入检验变量——检验值定义为1.6——单击选项将置信区间设为95%——确定输出如下:表1.1:单个样本统计量表1.2:单个样本检验4)输出结果分析由表1.1数据分析可知,变量苗木苗高的平均值为1.6680m,标准差为0.0843,说明样本的离散程度较小,标准误为0.0267,说明抽样误差较小。
由表1.3数据分析可知,T检验值为2.55,样本自由度为9,t检验的双尾检验值为0.031<0.05,说明差异性显著,因此,否定无效假设H0,取备择假设H A。
根据题意,苗木的苗高服从正态分布,由以上分析知:在显著水平为0.05的水平上检验,苗木的平均苗高大于1.6m,符合出圃的要求。
习题2.从两个不同抚育措施育苗的苗圃中各以重复抽样的方式抽得样本如下:样本1苗高(CM):52 58 71 48 57 62 73 68 65 56样本2苗高(CM):56 75 69 82 74 63 58 64 78 77 66 73设苗高服从正态分布且两个总体苗高方差相等(齐性),试以显著水平α=0.05检验两种抚育措施对苗高生长有无显著性影响。
解:1)根据题意提出:无效假设为H0:两种抚育措施对苗木生长没有显著的影响;备择假设H A:两种抚育措施对苗高生长影响显著;2)在spss中的“变量视图”中定义变量“苗高1”,“抚育措施”,之后在“数据视图”中输入题中的苗高数据,及抚育措施,其中措施一定义为“1”措施二定义为“2”;3)分析过程在spss软件上操作分析过程如下:分析——比较变量——独立样本T检验——将“苗高1变量”导入“检验变量”——将“抚育措施”导入“分组变量”——定义组,其中:组一定义为“1”组二定义为“2”——单击选项将置信区间设为95%——输出分析数据如下;表2.1:组统计量表2.2:独立样本检验4)输出结果分析由上述输出表格分析知:在两种抚育措施下的苗木高度的平均值分别为61.00cm;69.58cm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育统计学t检验练习集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)实验报告实验名称:t 检验成绩:实验日期: 2011年10月31日实验报告日期:2011年11 月日林虹一、实验目的(1)掌握单一样本t检验。
(2)掌握相关样本t检验(3)掌握独立样本t检验二、实验设备(1)微机(2)SPSS for Windows V17.0统计软件包三、实验内容:1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。
问该班的成绩与全市平均成绩的差异显着吗?表4-1 学生的数学成绩12345678910111213141516编号96977560926483769097829887568960成绩17181920212223242526272829303132编号成68747055858656716577566092548780绩2.某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。
为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。
进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。
测验成绩按“5分制”进行评定。
两组被试的测验成绩见数据文件data4-02。
请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。
3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测验结果见数据文件data4-03。
请问,儿童入园一年后的智商有明显的变化吗?(例题)4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。
请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。
5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小学二年级班级的学生学习相同的汉字,两个班学生的学习成绩见data4-05。
请问哪种学习方式效果更好?6.某省语文高考平均成绩为78分,某学校的成绩见data4-06。
请问该校考生的平均成绩与全省平均成绩之间的差异显着吗?**7.某县在初三英语教学中进行教改试验,推广新的教学方法,经一年教改试验后,参加全市英语统一考试,全市英语测验平均分数为82分,随机抽取该县初三学生54人,其英语测验成绩见表9.1(数据文件data4-07)。
试分析该县的初三英语教学改革是否成功。
8.已知某省12岁男孩平均身高为142.3cm。
2003年某市测量120名12岁男孩的身高结果见表9.4(数据文件data4-08)。
问该市12岁男孩身高与该省的平均身高有无显着差异?9.从某中学随机抽取初二学生32人进行为期一周的思维策略训练,训练前后测验分数见表9.7(data4-09)。
问思维策略训练有无显着效果?10.在一次有关记忆方法训练的试验中,按IQ基本相同的原则将60名小学四年级学生一一匹配成对,每对随机地分入实验组(A)和对照组(B),试验组进行为期三天的记忆方法训练,对照组不进行训练,实验后期的记忆力测验结果见表9.11(数据文件data4-10)。
问该记忆方法训练是否有效?11.在一项关于高二化学教学方法改革的研究中,从某中学高二年级随机抽取两个小组,在化学教学中实验组(A)采用启发探究法,对照组(B)采用传统讲授法,后期统一测验结果见表9.15(数据文件data4-11)。
试分析该项教法改革是否成功。
12.在某师范学校书法比赛中,随机抽取男女学生各40名,其比赛成绩见表9.18(数据文件data4-12)。
试检验本次书法比赛中男女生书法比赛成绩是否有显着性差异。
13.现有29名13岁男生的身高(单位:厘米)、肺活量(单位:升)数据见表9.21(数据文件data4-13)。
将男生的身高分为高个(A,身高大于等于155cm)与矮个(B,身高小于155cm)。
试分析高个男生与矮个男生的肺活量均值是否有显着性差异。
四.实验步骤。
1.某市统一考试的数学平均成绩为75分,某校一个班的成绩见表4-1。
问该班的成绩与全市平均成绩的差异显着吗?表4-1 学生的数学成绩12345678910111213141516编号96977560926483769097829887568960成绩17181920212223242526272829303132编号68747055858656716577566092548780成绩(1)操作(2)选择“分析”菜单中“比较均值”中“单样本T检验”,打开“单样本T检验”进行如下操作。
将“成绩”选入“检验变量”,在检验值框中输入75,单击“确定”。
(3)结果与解释:单个样本统计量当检验值为75时,样本均数与总体均数的检验值T值为0.466,自由度为31,P为0.645,两均数之差为1.188,因为T=0.466,P=0.645>p=0.05,所以接受虚无假设,拒绝研究假设,说明该班成绩跟全市平均成绩差异不显着。
2. 某物理教师在教学中发现,在课堂物理教学中采用“先讲规则(物理的定理或法则),再举例题讲解规则的具体应用”与采用“先讲例题,再概括出解题规则”这两种教学方法的教学效果似乎不同。
为了验证他的这个经验性发现是否属实,他选择了两个近似相等的班级进行教学实验。
进行教学实验时的教学内容、教学时间和教学地点等无关变量他都做了严格的控制,分别采用“例-规”法与“规-例”法对两个班的学生进行物理教学,然后,两个班的被试都进行同样的物理知识测验。
测验成绩按“5分制”进行评定。
两组被试的测验成绩见数据文件data4-02。
请用SPSS,通过适当的统计分析方法,检验这两种教学方法的教学效果是否存在实质性差别。
(1)打开数据文件data4-02,在“分析”中“比较均值”中“单样本T检验”对话框,将“成绩”选入检验变量框中。
检验值设为5.单击“确定”。
(2)结果与解释:总体均数为5,样本均数与总体均数的检验值T值为-14.647,自由度为99,P=0.000,P<0.01,所以拒绝虚无假设,接受研究假设。
说明这两种教学方法的教学效果极显着。
3.某幼儿园分别在儿童入园时和入园一年后对他们进行了“比奈智力测验”,测验结果见数据文件data4-03。
请问,儿童入园一年后的智商有明显的变化吗?(1)打开数据data4-03,选择“分析”菜单中“比较均值”子菜单中“配对样本T检验”,打开如下对话框。
(2)将“入园时”和“一年后”选入成对变量中。
再单击“确定”。
(3)结果与分析:成对样本相关系数N 相关系数Sig.对1入园时 &一年后34.764.00成对样本检验成对差分差分的95% 置信区间均值标准差均值的标准误下限上限对1入园时 -一年后-8.9413.054.524-10.007-7.875成对样本检验t dfSig.(双侧)成对样本相关系数N 相关系数Sig.对1入园时 -一年后-17.06933.00以上是幼儿入园前与入园后一年的相关样本t检验,因t=-17.069时,p=0.000<0.01,所以拒绝虚无假设,接受研究假设,说明入园时与一年后的智商极显着差异。
4.某心理学工作者以大学生为被试,以“正性”和“负性”两种面部表情模式的照片为实验材料,测量被试对“正性”和“负性”面部表情识别的时间,测验结果见数据文件data4-04。
请用SPSS中适当的统计分析方法检验两种面部表情模式对大学生识别面部表情的时间是否存在明显的影响。
(4)打开数据文件data4-04,然后选择“分析”菜单中“比较均值”子菜单中“配对样本T检验”菜单,打开“配对样本T检验”对话框。
(5)将“form”和“time”选入“成对变量”列表中,单击“确定”。
(6)结果与分析:成对样本统计量均值N 标准差均值的标准误对1form1.500060.50422.06509time3.9833601.66206.21457成对样本检验成对差分差分的95% 置信区间均值标准差均值的标准误下限上限对1form-time-2.483331.89103.24413-2.97184-1.99483成对样本检验t dfSig.(双侧)对1form-time-10.17259.000以上为相关样本的t检验结果,因t=-10.172时,p=0.000<0.01, 拒绝虚无假设,接受研究假设,说明两种面部表情模式对大学生识别面部表情的时间极显着差异。
5.某小学教师分别采用“集中学习”与“分散学习”两种方式教两个小学二年级班级的学生学习相同的汉字,两个班学生的学习成绩见data4-05。
请问哪种学习方式效果更好?(1)打开数据data4-5,单击“分析”菜单中“比较均值”菜单“独立样本T检验”菜单,打开“独立样本T检验”对话框,进行如下操作:(7)单击“定义组”选项,打开“定义组”对话框,进行如下操作:(8)结果与分析:组统计量学习方式N 均值标准差均值的标准误成绩集中学习309.40002.84787.51995分散学习3011.5002.90956.53121独立样本检验方差方程的Levene检验均值方程的 t 检验F Sig.t dfSig.(双侧)均值差值成绩假设方差相等.279.600-2.82558.006-2.1000组统计量学习方式N 均值标准差均值的标准误成绩集中学习309.40002.84787.51995假设方差不相等-2.82557.973.006-2.1000根据以上相关样本t检验。
T=-2.825,p=0.006<0.01.所以集中学习方法比较好。
6.某省语文高考平均成绩为78分,某学校的成绩见data4-06。
请问该校考生的平均成绩与全省平均成绩之间的差异显着吗?(9)打开数据data4-06,“分析”菜单中选择“比较均值”子菜单中“单样本T检验”菜单,打开“单样本T检验”对话框,将“语文成绩”添加到“检验变量”列表中。
检验值设为“78”,单击“确定”按钮。
(10)结果与分析:单个样本统计量N均值标准差均值的标准误语文成绩4276.619013.836952.13509单个样本检验检验值 = 78根据以上的相关样本t检验结果,因t=-0.647时,p=0.521>0.05,所以接受虚无假设,拒绝研究假设,说明该校考生的平均成绩与全省平均成绩无显着差异。