2016年迎春杯8年级初赛试题(全国卷)含答案及解析
迎春杯小学生试题及答案

迎春杯小学生试题及答案一、选择题(每题2分,共10分)1. 春天的代表颜色是什么?A. 红色B. 绿色C. 蓝色D. 黄色答案:B2. 迎春花通常在哪个季节开放?A. 春季B. 夏季C. 秋季D. 冬季答案:A3. 下列哪一项不是春天的常见活动?A. 植树B. 放风筝C. 赏月D. 踏青答案:C4. 春天的气温变化特点是什么?A. 持续升高B. 持续降低C. 先升高后降低D. 先降低后升高答案:A5. 以下哪个动物不是春天常见的?A. 燕子B. 蜜蜂C. 蜻蜓D. 蝴蝶答案:C二、填空题(每题2分,共10分)1. 春天是一年四季中的______个季节。
答案:第一2. 迎春杯小学生试题是针对______年级的学生设计的。
答案:小学3. 春天的气候特点是______和______。
答案:温暖;湿润4. 春天,人们常常进行的活动有______、______等。
答案:植树;春游5. 春天的代表花卉是______。
答案:迎春花三、判断题(每题1分,共5分)1. 春天是播种的季节。
()答案:正确2. 春天的气温总是比冬天高。
()答案:错误3. 春天是收获的季节。
()答案:错误4. 春天的植物生长速度比夏天慢。
()答案:错误5. 春天是一年四季中最短的季节。
()答案:错误四、简答题(每题5分,共10分)1. 描述一下春天的景象。
答案:春天是万物复苏的季节,树木开始抽芽,花朵竞相开放,小草从土里探出头来,鸟儿在枝头欢快地歌唱,整个大自然充满了生机和活力。
2. 为什么说春天是播种的季节?答案:春天气温适中,雨水充沛,土壤湿润,是植物生长的最佳时期。
因此,农民们通常会选择在春天播种,以期待秋天的丰收。
2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,t ==+<<Q 324,∴<+< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B . 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,B ∴∠=o 114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 2 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAHCM ∴=设,AM x = 则,CM x AH =∴=在Rt ABM ∆中,BM == 则AB AMAH BM⋅===显然0x ≠,化简整理得22100x -+=解得2x =(x =,故2CM =在Rt CDM ∆中,12DM ==,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠==o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=,BC Q ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, Q ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o Q2,2180,βααβ∴=+=o解得36,72αβ==o o ,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o 故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3t x t +∴=x Q 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时 167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =. (下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =Q 2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=- 同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦ ()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y z xyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q 点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等) BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=225 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)------------------------------------------------------------------------ 怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。
(2021年整理)2016年全国初中数学联赛(初三组)初赛试卷含答案

(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案的全部内容。
(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案这篇文档能够给您的工作和学习带来便利.同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2016年全国初中数学联赛(初三组)初赛试卷含答案> 这篇文档的全部内容。
F第2题图EDBAC第2题图2016年全国初中数学联赛(初三组)初赛试卷(考试时间:2016年3月4日下午3:00—5:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)1、已知实数a 、b 满足31|2||3|=+-+-+-a a b a ,则b a +等于( )A 、1-B 、2C 、3D 、52、如图,点D 、E 分别在ABC ∆的边AB 、AC 上,BE 、CD 相交于点F ,设四边形EADF 、BDF ∆、BCF ∆、CEF ∆的面积分别为1S 、2S 、3S 、4S ,则31S S 与42S S 的大小关系为( )A 、4231S S S SB 、4231S S S S =C 、4231S S S SD 、不能确定3、对于任意实数a ,b ,c ,d ,有序实数对(a ,b )与(c ,d )之间的运算“*"定义为: ()*b a ,()=d c ,()bc ad bd ac +-,。
第1-29届历届小学“迎春杯”真题word版

目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
2016年迎春杯7年级初赛试题(全国卷)含答案及解析

(测评时间: 2015 年 12 月 19 日 10:30— 11:30) 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我
确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚. 我同意遵守以上协议 签名:____________________
6.
设 a 、 b 、 c 均为非 0 有理数,且 ab 2 a b 、 bc 3 b c 、 ca 4 c a , 则 5a 7b 9c =__________.
7.
方程 x 2 0 1 6 2016 所有不同解的绝对值之和为__________.
12. 请参考《2016 年“数学花园探秘”科普活动初赛试题评选方法》作答.
试题答案和解析请扫下方二维码查看:
一.填空题Ⅰ(每小题 8 分,共 32 分)
算式 (12 19) (2) 3 + 1 的计算结果是________. 5
5 2
1.
1024
2
2.
满足代数式 ( x 5)
x 4
( x 5)
2 x 5
的整数 x 的个数为__________.
A
3. 如图, AB 平行 CE , ADB = ADC , A =48° , C = 66° .那么, B =__________°.
B D
4.
已知 a
2016
a 2015b2015 2016,a 2015b2015 b2016 2015 .
2016
C
E
则代数式 3b
a 2015b2015 2a2016 的值为__________.
2008-2016迎春杯初赛真题高清汇编

多对一道题,超越1000人
第 9 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2010 迎春杯六年级初赛真题
(测评时间:2010 年 1 月 3 日 9:00—10:00)
一、填空题Ⅰ(每题 8 分,共 32 分)
1.
11 1 22
100 个1 50个 2
多对一道题,超越1000人
第 2 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
9.
A、B 两地相距 22.4 千米.有一支游行队伍从 A 出发,向 B 匀速前进;当游行队伍队 尾离开 A 时,甲、乙两人分别从 A、B 两地同时出发.乙向 A 步行;甲骑车先追向队 头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向 队尾……当甲第 5 次追上队头时恰与乙相遇在距 B 地 5.6 千米处; 当甲第 7 次追上队头 时,甲恰好第一次到达 B 地,那么此时乙距 A 地还有 千米.
关注“帅帅思维”公众号,回复“六年级迎春杯”获取详解!
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2008 迎春杯六年级初赛真题
(测评时间:2007 年 12 月 2 日 11:00—12:00)
一、填空题Ⅰ(每题 8 分,共 40 分)
1. 计算: 2007 8.5 8.5 1.5 1.5 10 160 0.3 = .
12. 国际象棋中 “马” 的走法如图 1 所示, 位于○位置的 “马” 只能走到标有×的格中,类似于中国象棋中的“马走 日” .如果“马”在 8×8 的国际象棋棋盘中位于第一行 第二列 (图 2 中标有△的位置) , 要走到第八行第五列 (图 2 中标有★的位置) ,最短路线有 条.
2016年迎春杯6年级初赛试题(全国卷)含答案及解析

6.
A
B
7.
0 6 1 0 2 0
8.
三.填空题Ⅲ(每小题 12 分,共 48 分)
9. 如图,四边形 CDEF 是平行四边形.如果梯形 ABCD 的面积 是 320, 三角形 AFH 和三角形 GEB 的面积分别为 32 和 48. 那 么三角形 OCD 的面积是__________. A H E
D O M F
C
G B
10. 变形金刚擎天柱以机器人的形态从 A 地出发向 B 地,可按时到达 B 地;如果一开始就变形为汽车, 速度比机器人形态提高 25%,可以提前 1 小时到达 B 地;如果以机器人的形态行驶 150 千米后, 再变形为汽车,并且速度比机器人形态提高 20%,则可以提前 40 分钟到达.那么,A、B 两地相 距________题Ⅱ(每小题 10 分,共 40 分)
5. 小鑫参加了一个奇怪的数学考试. 一共 100 道题, 答对一题得 1 分, 答错一题扣 3 分, 不答扣 2 分. 已 知小鑫一共得了 50 分.那么,小鑫最多答对了__________道题. 如图,半径为 4 厘米的两个圆如图放置,长方形中两块阴影部分面积 相等,A、B 两点为两圆圆心,那么 AB 的长度为__________厘米. (π 取 3) . 如图,一道除法竖式中已经填出了“2016”和“0” ,那么被除 数是__________. 对于自然数 N, 如果在 1~9 这九个自然数中至少有八个数是 N 的因数, 则称 N 是一个 “八仙数” , 则在大于 2000 的自然数中, 最小的“八仙数”是___________.
2016 年“数学花园探秘”科普活动 六年级组初试试卷 C
(测评时间: 2015 年 12 月 19 日 8:30— 9:30) 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我
2016年“迎春杯”数学花园探秘决赛试卷(小中组C卷)

2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是. 2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为厘米. 3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生人. 4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是平方厘米.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是. 6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 .7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐只. 8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有种不同的拼法.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是. 1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE=.2016年“迎春杯”数学花园探秘决赛试卷(小中组C 卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(分)算式(1+3+5+1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63)的计算结果是)的计算结果是)的计算结果是 9 9 ..【分析】首先根据等差数列的求和公式,分别求出1+3+5+1+3+5+……+89+89、、1+2+3+1+2+3+……+63的值各是多少;然后把它们相减,求出算式(1+3+5+1+3+5+……+89+89))﹣(1+2+3+1+2+3+……+63+63))的计算结果是多少即可.【解答】解:(1+3+5+1+3+5+……+89+89)﹣()﹣()﹣(1+2+3+1+2+3+1+2+3+……+63+63))=(1+891+89)×)×)×[[(8989﹣﹣1)÷)÷2+1]2+1]2+1]÷÷2﹣(﹣(1+631+631+63)×)×)×636363÷÷2=90=90××4545÷÷2﹣6464××6363÷÷2=2025=2025﹣﹣2016=9故答案为:故答案为:99.【点评】此题主要考查了加减法中的巧算问题,此题主要考查了加减法中的巧算问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是解答此题的关键是要明确等差数列的求和公式:和要明确等差数列的求和公式:和==(首项(首项++末项)×项数÷末项)×项数÷22.2.(8分)沿长方形ABCD 中的虚线将长方形剪成两部分,会发现两部分形如汉字“凹凸”.已知长方形AD=10厘米,宽AB=6厘米,厘米,EF=GH=2EF=GH=2厘米;那么剪成的“凹凸”两部分的周长和为成的“凹凸”两部分的周长和为 52 52 厘米.厘米.【分析】观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH)). 【解答】解:观察图象可知:剪成的“凹凸”两部分的周长和解:观察图象可知:剪成的“凹凸”两部分的周长和=AB+CD+AD+BC+2=AB+CD+AD+BC+2(ME+FH+GN ME+FH+GN))+2+2((EF+GH EF+GH))=6+6+10+10+2=6+6+10+10+2××6+26+2××4=52cm =52cm,,故答案为52【点评】本题考查剪切和拼接、本题考查剪切和拼接、长方形的性质等知识,长方形的性质等知识,长方形的性质等知识,解题的关键是学会用整体解题的关键是学会用整体的思想思考问题.3.(8分)蓉蓉从一班转到了二班,蕾蕾从二班转到了一班,于是一班学生的平均身高增加了2厘米,二班学生的平均身高减少了3厘米,如果蕾蕾身高158厘米,蓉蓉身高140厘米,那么两个班共有学生厘米,那么两个班共有学生 15 15 人.人.【分析】首先用蕾蕾的身高减去蓉蓉的身高,首先用蕾蕾的身高减去蓉蓉的身高,求出两人的身高的差是多少;求出两人的身高的差是多少;求出两人的身高的差是多少;然后然后分别用两人的身高的差除以2、3,求出一班、二班的人数各是多少,再把一班、二班的人数相加,求出两个班共有学生多少人即可.【解答】解:解:158158158﹣﹣140=18140=18(厘米)(厘米), 1818÷÷2+182+18÷÷3=9+6=15=15(人)(人)答:两个班共有学生15人.故答案为:故答案为:151515..【点评】此题主要考查了平均数问题,此题主要考查了平均数问题,要熟练掌握,要熟练掌握,要熟练掌握,解答此题的关键是分别求出解答此题的关键是分别求出一班、二班的人数各是多少.4.(8分)大正方形ABCD 的边长为10厘米,小正方形边长为1厘米;如图小正方形沿着大正方形的AB 边从A 滑动到B ,再从B 沿着对角线BD 滑动到D ,再从D 沿着DC 边滑动到C ;小正方形经过的面积是;小正方形经过的面积是 36 36 平方厘米.平方厘米.【分析】可以将图画出,可以将图画出,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,用虚线表示小正方形经过的区域,可以用大正方形的面可以用大正方形的面积减去其它空白部分的面积,而其它空白部分是两个相等的直角三角形,刚好可以拼接成一个边长为1010﹣﹣2=8厘米的正方形,故不难求得小正方形经过的区域的面积.【解答】解:根据分析,如图所示,a 和b 部分的面积刚好可以拼接成一个边长为:部分的面积刚好可以拼接成一个边长为:101010﹣﹣2×1=8厘米的正方形, 小正方形经过的区域的面积小正方形经过的区域的面积=10=10=10××1010﹣﹣8×8=368=36(平方厘米)(平方厘米). 故答案是;故答案是;363636..【点评】本题考查剪切和拼接,突破点是:利用剪切和拼接,将图形简化,不难求得小正方形经过的区域的面积.二、填空题(共4小题,每小题10分,满分40分)5.(10分)今天是1月30日,我们先写下130130;后面写数的规则是:如果刚写;后面写数的规则是:如果刚写下的数是偶数就把它除以2再加上2写在后面,如果刚写下的数是奇数就把它乘以2再减去2写在后面,于是得到:写在后面,于是得到:130130130、、6767、、132132、68…,那么这列数、68…,那么这列数中第2016个数是个数是 6 6 ..【分析】首先发现数字求的是2016项,那么一定是有规律的计算,找到周期规律即可.【解答】解:依题意可知:数字规律是130130、、6767、、132132、、6868、、3636、、2020、、1212、、8、6、5、8、6、5、8、6、5、 去掉钱7项是循环周期数列20162016﹣﹣7=20097=2009..每3个数字一个循环20092009÷3=667…2÷3=667…2 循环数列的第二个数字就是6.故答案为:故答案为:66【点评】本题考查对数字规律的理解和运用,关键问题是根据枚举法找到周期规律.问题解决.6.(10分)将数字1~6分别填入图中的6个方框中,能得到的最小结果是能得到的最小结果是 342 342 ..【分析】要使得数最小,由于有乘法,所以两个两位数,要用最小的四个数字1、2、3、4组成,且最高位放最小的数字;剩下的为5×6;据此解答即可.【解答】解:最小的1和2,分别放在十位上,剩下的3与1组成1313,,2和4组成2424,最后,最后5和6组成算式5×6,所以得数最小是:1313××24+524+5××6=312+30=342答:能得到的最小结果是答:能得到的最小结果是 342 342. 故答案为:故答案为:342342342..【点评】本题重点是理解,要使两个数的积最小,尽量把小的数字放在最高位上.7.(10分)仙山上只有九头鸟和九尾狐这两种传说中的神兽;九头鸟有九头一尾,九尾狐有九尾一头,一只九头鸟发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的4倍;一只九尾狐发现,仙山上除它自己之外的其它神兽所有尾巴总数是头数的3倍,那么仙山上共有九尾狐倍,那么仙山上共有九尾狐 14 14 只.只.【分析】首先根据题意,设仙山上共有九尾狐x 只,九头鸟y 只,然后根据:九尾狐的数量×尾狐的数量×9+9+9+九头鸟的数量﹣九头鸟的数量﹣九头鸟的数量﹣1=[1=[1=[(九头鸟的数量﹣(九头鸟的数量﹣(九头鸟的数量﹣11)×)×9+9+9+九尾狐的数量九尾狐的数量九尾狐的数量]]×4,(九尾狐的数量﹣(九尾狐的数量﹣11)×)×9+9+9+九头鸟的数量九头鸟的数量九头鸟的数量=[=[=[九头鸟的数量×九头鸟的数量×九头鸟的数量×9+9+9+九尾狐的数九尾狐的数量﹣量﹣1]1]1]××3,列出二元一次方程组,求出仙山上共有九尾狐多少只即可.【解答】解:设仙山上共有九尾狐x 只,九头鸟y 只, 则由(由(11),可得:,可得:x x ﹣7y+7=07y+7=0((3)由(由(22),可得:,可得:3x 3x 3x﹣﹣13y 13y﹣﹣3=03=0((4)(4)×)×77﹣(﹣(33)×)×131313,可得,可得8x ﹣112=08x 8x﹣﹣112+112=0+1128x=1128x ÷8=1128=112÷÷8x=14答:仙山上共有九尾狐14只.故答案为:故答案为:141414..【点评】此题主要考查了差倍问题,考查了分析推理能力的应用,要熟练掌握,首先要把题意弄清,再根据等量关系列出方程组解答即可.8.(10分)图③是由6个图①这样的模块拼成的,如果最底层已经给定两块的位置(如图②),那么剩下部分一共有,那么剩下部分一共有 2 2种不同的拼法.【分析】因最底层已经给定两块的位置,因最底层已经给定两块的位置,且拼成生图③是上下两层的,且拼成生图③是上下两层的,且拼成生图③是上下两层的,所以剩下所以剩下部分的拼法有只能是把图①立起来拼,且两个一组的在上面,从一个缺口处两块的位置有两种拼法,所以共有两种拼法.【解答】解:如图:答:剩下部分一共有2种不同的拼法.故答案为:故答案为:22.【点评】本题主要考查了学生对图形拼法的掌握情况,重点是根据最底层给定的两块的位置,再进行拼.三、填空题(共3小题,每小题12分,满分36分)9.(12分)在如图所示每个格子里填入数字1~4中的一个,使得每一行和每一列数字都不重复,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和(如图给出了一个填1~3的例子,如图中第3行从左到右三格依次为2,3,1),那么如图中最下面一行的两个数字按从左到右的顺序依次组成的四位数是的顺序依次组成的四位数是 2143 2143 ..【分析】按照题目要求,每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和填入具体的数字,即可得出结论.【解答】解:如图所示,根据每个“L”状大格子跨了两行和两列,线上圆圈中的数表示相邻两个格子内数字的和,由于1+2=31+2=3,,4+2=64+2=6,,3+2=53+2=5,结合每一行,结合每一行和每一列数字都不重复,可得最下面一行的两个数字按从左到右的顺序依次组成的四位数是21432143..故答案为21432143..【点评】本题考查凑数字,考查学生的动手能力,正确理解题意,得出图形是关键.1010..(12分)自然数1、2、3、…、、…、201420142014、、20152015、、2016顺时针排成一圈,由数1开始,顺时针如下操作.第一步:划掉1,保留2;第二步:依次划掉3、4,保留5;第三步:依次划掉6、7、8,保留9;第四步:依次划掉1010、、1111、、1212、、1313,保留,保留1414;…;;…;即第几步操作就先依次划掉几个数,即第几步操作就先依次划掉几个数,再保留再保留1个数,个数,这样操作,这样操作,这样操作,直到将所有的数直到将所有的数划掉为止,那么最后一个被划掉的数是划掉为止,那么最后一个被划掉的数是 2015 2015 ..【分析】首先分析题意首项数字保留的是2,可分析出保留的数字的规律,进而得出最后一个保留的数字是多少.【解答】解:依题意可知:第一轮保留的数字是2,5,9,…那么第一轮保留的最大数字为:2+3+4+2+3+4+……+n=当n=63时,数列和是20152015.说明.说明2015是保留的数字.此时数字没有全部划掉还需要继续划.此时数字没有全部划掉还需要继续划.但由于是圆圈,但由于是圆圈,但由于是圆圈,继续划掉的话,继续划掉的话,继续划掉的话,划掉的顺划掉的顺序是20162016,,2,5,9…,这次是第63次操作,次操作,20152015是最后一个被划掉的. 故答案为:故答案为:201520152015..【点评】本题考查对数字问题的理解和运用,关键问题是理解数字和的规律即运用.问题解决.1111..(12分)如图,有编号1~9的9个小正方形狗舍,每个狗舍至多住1只小狗;原有3只小狗,它们所在的狗舍互不相邻(相邻的小正方形有公共边);当有新的小狗入住时,与之相邻的小狗就会喊一声表示欢迎;现在又先后依次新入住5只小狗,每只小狗入住时都恰好有2只小狗喊一声;已知第1只新入住的小狗住2号狗舍,第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;就这5只新入住小狗所住狗舍号依次为A 、B 、C 、D 、E ,那么五位数ABCDE= ABCDE= 25649 25649 25649 ..【分析】首先分析新二只和新三只能放在哪一个狗舍,推理出原来的不相邻的狗舍位置继续推理即可求解.【解答】解:依题意可知:①首先第一只小狗在2号狗舍.第2只新入住的小狗喊了2声.第4只新入住的小狗住4号狗舍,它没喊过;说明第2只小狗旁边进来2只小狗.小狗入住时都恰好有2只小狗喊一声,所以新2号小狗不能在角落1,3,6,7,8,9狗舍.只能在5号狗舍.②第4只新入住的小狗住4号狗舍,它没喊过;小狗入住时都恰好有2只小狗喊一声说明1和7是有一个是空的,如果是1空那么小狗舍会相邻.只能是7空.③新2号小狗喊2声,那么说明在6号或者8号入住一只小狗原来也是有1只小狗.那么只能是8号是原来的,号是原来的,66号是新入住的.④那么原来的三个不相邻的狗舍就是在1,3,8狗舍.第五只在9号. 故答案为:故答案为:2564925649【点评】本题考查对逻辑推理的理解和运用,关键问题是找到新2和新3的位置.问题解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
4
3.
已知 x 、 y 均为有理数,且满足 2 x y
x 2 xy y 2 2 2 ,则 y __________. y y 2 x2 y 2
C B
4.
如图, 平行四边形 ABCD 中,A 66 ,CE 平分 BCF ,CF 平 分 DFE , CEF B ,则 CFE __________°.
O
F
E
A
C B
11. 2016 年某天,某个国家的四位老数学家朋友聚在一起聊天.他们聊起了各自评上教授时的年龄: 甲对乙说:真巧啊,我当教授的年数,恰好是你当教授时的年龄; 乙说:是啊,我评上教授的时候,丙年龄才是我一半;现在他也已经当教授二十多年了! 丙说:我活到甲评上教授年龄的时候,甲已经当教授十多年了,当时真是令人羡慕啊!后来又过了 正好十年,我也评上教授了. 丁说:更有意思的是,乙、甲、丙出生的年份正好是一个等差数列,而且甲乙两位当教授的年数的 乘积,正好是今年的年份! 那么丙当上教授时是_________岁.
E
二.填空题Ⅱ(每小题 10 分,共 40 分)
D
F
A
5.
正实数 x 和 y 满足 2 x 3 y
1 1 1 ,那么 2 3 的最小值为__________. x y 2
6.
若多项式 x 2 kxy 4 y 2 3x 6 y 2 可以在有理数范围内分解为两个一次因式的乘积, 则 k 的值为__________.
7.
正 N 边形某两边所在直线成 28°角,那么 N 的最小值是__________.
8.
在空格里填入数字 1~ 6,使得每行和每 列数字都不重复. 每行或列外面给出的两 个数字表示该方向上第一个奇数和第一 个偶数,数字顺序不定.那么,第三行前 五个数字依次组成的五位数是 __________.
三.填空题Ⅲ(每小题 12 分,共 48 分)
2016 年“数学花园探秘”科普活动 初二年级组初试试卷 C
(测评时间: 2015 年 12 月 19 日 10:30— 11:30) 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我
确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚. 我同意遵守以上协议 签名:____________________
9.
满足 n 整除 n 1 且不超过 2015 的正整数 n 的个数是__________.
10. 如图,O 为半圆的圆心,半径 OB 20 ,点 A,C 都在 OB 上, 且 OA 16 ,四边形 ACEF 为正方形,点 E 在半圆上.则阴 影△FOC 面积为__________.
一.填空题Ⅰ(每小题 8 分,共 32 分)
1. 化简
3x 6 y 5 x 6 y 4 x 5 y 7 x y x y x y yx
2.
1 5 1 5 计算 + = __________. 2 2
12. 请参考《2016 年“数学花园探秘”科普活动初赛试题评选方法》作答.
试题答案和解析请扫下方二维码查看: