第二章 大气环境化学

合集下载

环境化学第2章 大气环境化学-4-转化

环境化学第2章 大气环境化学-4-转化

NOX在大气光化学过程起着重要的作用, NO 、NO2、
O3之间存在的光化学循环是大气光化学过程的基础。
NO2 + hv → NO + · O · + O2 + M → O3 + M O O3 + NO → NO2 +O2
★ 3.3.3氮氧化物的气相转化
(1)NO的氧化:
O3为氧化剂: NO+O3 → NO2 + O2
3.3.1 大气中的含氮化合物
大气中主要含氮化合物有N2O、NO、NO2、HNO2、HNO3、 亚硝酸酯、硝酸酯、亚硝酸盐等。 ①氧化亚氮(N2O):是无色气体,是清洁空气的组分,
是低层大气中含量最高的含氮化合物。
来源:主要来自天然源,即环境中的含氮化合物在微生物 作用下分解而产生的。土壤中的含氮化肥经微生物分解可 产生N2O,这是人为产生N2O的原因之一。 性质: N2O在对流层中十分稳定,几乎不参与任何化学反
· 如果是环已烯,HO· 和NO3 可加成到它的双键上。O3 与 环烯烃反应迅速,最终可生成小分子化合物和自由基。
(4)单环芳烃的反应:
大气中的单环芳烃有:如苯、甲苯以及其他化合物。它们 能与芳烃反应的主要是HO· , 主要来源于矿物燃料的燃烧以及一些工业生产过程。 其反应机制主要是加成反应和
氢原子摘除反应。
应,进入平流层后,由于吸收来自太阳的紫外光而光解产
生NO,会对臭氧层起破坏作用。
大气污染化学中的
②一氧化氮和二氧化氮(用NOX表示) 天然来源:
氮氧化物
主要是生物有机体腐败过程中微生物将有机氮转化成
为NO,NO继续被氧化成N2O。另外,有机体中的氨基 酸分解产生的氨也可被HO· 氧化成为NOX。

大气环境化学

大气环境化学

2、R和RO2等自由基的来源 R来源是乙醛和丙酮的光解: CH3- CHO + hγ→CH3 + HCO CH3- COCH3 + hγ→CH3 + CH3CO O和HO与烃类发生H摘除: R-H + O →R + HO R-H + HO →R + H2O RO2由烷基与空气中的O2结合而形成的: R + O2 → RO2
例如:大气中氯化氢的光化学反应过程: HCl + hγ → H + Cl ① H + HCl → H2 + Cl ② Cl + Cl → Cl2 (M) ③ ① 为初级过程 ②、③为次级过程
2、大气中重要光物质的光离解
大气中的光物质主要包括: O2、N2、O3、NO2、HNO2、HNO3、SO2、H2CO 和氯代烃。 (1)氧分子和氮分子的光离解:
⑤大气在以太阳为能源的庞大的蒸馏室中起冷凝器的作用, 形成降雨,从而把水从海洋输送到陆地,为陆地生物提 供了必要的生活条件。 ⑥大气还吸收来自外层空间的宇宙射线和来自太阳的大部 分电磁辐射,滤掉了被长小于290纳米的紫外辐射,使 地球上的生物兔受其伤害。
酸雨、温室效应、臭氧空洞是人们关注的主要环境问题。 一、大气层的结构 围绕地球的大气总质量约为5.5x105吨; 地球的总表面积约为5.1x1014平方米; 地球表面的压力,大致为1千克每平方厘米。 1、大气质量在铅直方向的分布: 大气质量在铅直方向的分布是极不均匀的。
环境化学把光化学反应分为: 初级过程和次级过程。 初级过程 : (相当于引发过程) 步骤为: A + hγ → A* 式中:A*—物种A的激发态; hγ—光量子。 次级过程:(传播和终止过程)

《环境化学》课件第二章-2

《环境化学》课件第二章-2

稳定性: C2H5 > (CH3) 3CCH2 > CH2=CH > C6H5 和 CH3 > CF3 D/kJ· mol-1:410 415 431 435 435 443
2-7
《环境化学》 第二章 大气环境化学
(2)自由基的结构和活性 (Structure and Reactivity of Free Radicals) 卤原子夺氢的活性是:F•>Cl•>Br•
增长
终止
2-11
《环境化学》 第二章 大气环境化学
第三节
大气中污染物的转化
(2.3 Transformation of Atmospheric Pollutants)
一、自由基化学基础 (Chemical Foundation for Free Radicals) 二、光化学反应基础 (Foundation for Photochemical Reactions) 三、大气中重要自由基来源 (Source for Important Free Radicals in the
Atmosphere)
四、氮氧化物的转化 (Transformation of NOx) 五、碳氢化合物的转化 (Transformation of Hydrocarbons) 六、光化学烟雾 (Photochemical Smog) 七、硫氧化物的转化及硫酸烟雾型污染 (Transformation of
光化学过程 A* → B1 + B2 +… A* + C → D1 + D2 +… 光解,即激发 态物种解离成 为两个或两个 以上新物种。
2-14
A*与其他分子反应生成新的物种。
《环境化学》 第二章 大气环境化学

环境化学 第二章 大气环境化学

环境化学 第二章 大气环境化学

大气中重要吸光物质的光离解
4 3
(1) O2和N2的光离解
2
1 O2键能493.8KJ/mol。相 应波长为243nm。在紫外区 lgε 0 120-240nm有吸收。
O2 + hν
λ < 240 nm
-1 -2
O· + O·
N2键能:939.4KJ/mol。 对应的波长为127nm。
-3
-4
HNO
3
h ν HO NO
2
2
HO CO CO
H
2
H O 2 M HO 2HO
2
M
(有CO存在时)
H 2O 2 O 2
产生过氧自由基和过氧化氢
(5) SO2对光的吸收
SO2的键能为545.1kJ/mol, 吸收光谱 中呈现三条吸收带,键能大,240 - 400 nm 的光不能使其离解,只能生成激发态:

思考题:
太阳的发射光谱 和地面测得的太阳光 谱是否相同?为什么?
3.3大气中重要自由基来源
自由基 由于在其电子壳层的外层有
一个不成对的电子,因而有很高的活 性,具有强氧化作用。如:
CH 3 C(O)H hv H 3 C HCO
由于高层大气十分稀薄,自由基的半 衰期可以是几分钟或更长时间。自由基参 加反应,每次反应的产物之一是自由基, 最后通过另一个自由基反应使链终止,如:
SO 2 h SO 2
*
240 400 nm
SO2*在污染大气中可参与许多光化学反应。
( P73,图2-32)
(6) 甲醛的光离解
HCHO中H-CHO的键能为 356.5 kJ/mol, 它对 240 – 360 nm 范围内的光有吸收, 吸光后的光解反应为:

第二章 大气环境化学3 自由基反应

第二章 大气环境化学3 自由基反应

在对流层中,由于O2存在,可发生如下反应:
H + O2→ HO2 HCO + O2 → HO2 + CO
甲醛的光离解
可见空气中甲醛光解可产生HO2自由基。其他醛 类的光解也可以同样方式生成HO2,如乙醛光解:
CH3CHO+ hv → H + CH3CO
H+O2→ HO2
所以醛类的光解是大气中HO2的重要来源之一
3 自由基反应
一、自由基化学基础 二、光化学反应基础 三、大气中重要自由基来源
前言
光化学反应:分子、原子、自由基或离子吸收光 子而发生的化学反应。(初级和次级过程) 污染物的转化是污染物在大气中经过化学反应, 如光解、氧化还原、酸碱中和以及聚合等反应, 转化成为无毒化合物,从而去除了污染,或者转 化成为毒性更大的二次污染物,加重了污染。
大 气 中 的 重 要 自 由 基 有 HO 、 HO2 、 R( 烷 基 ) 、 RO(烷氧基)、RO2(过氧烷基)
凡是有自由基生成或由其诱发的反应都叫自由基 反应。
1.大气中HO和HO2自由基的浓度
HO自由基全球 平均值约为 7×105个/cm3 HO自由基最高 浓度在热带, 在两个半球的 HO分布不对称。
(9)卤代烃的光离解
卤代甲烷光解初级过程:
① 紫外光照射,CH3X+ hv →CH3+X
② 键强顺序为CH3-F> CH3-Cl > CH3-Br > CH3-I
③ 高能量的短波长紫外光照射,可能发生两个键断裂,
应断裂两个最弱键,例CF2Cl2离解为 CF2+2Cl
④ 即使最短波长的光,三键断裂也少见。
SO2对光的吸收
(8)甲醛的光离解

第二篇大气环境化学4大气颗粒物

第二篇大气环境化学4大气颗粒物
4
4.1 大气颗粒物的分类
总悬浮颗粒物(Total Suspended Particulate TSP):
用标准大容量颗粒采样器在滤膜上所收集的颗粒物的总质量 作为大气质量评价中的一个通用的重要污染指标。
长期飘 泊 在 大气中 颗 粒 直径小 于 l0m的 悬 浮 物 称为飘 尘 (Airborne particle),大于l0m的微粒,由于自身的重力作用而 很快沉降下来的这部分微粒称为降尘(Dustfall)。
19
4.6 大气中的放射性核素
2、人工产生的放射性核素
(1)核武器 (2)核电站 (3)燃煤的排放物
二、放射性核素对健康的效应
具中等半衰期的放射性核素危害最大 。
20
4.7 颗粒物对人体健康的影响
颗粒物通过呼吸道进入人体,较大的粒子可能停留在鼻腔及 鼻咽部,很小的颗粒可以进入并停留在肺部。
目前,世界上对可吸入粒子的粒径大小有两种意见,一种定 为l0m以下,一种定为l5m以下。
由于中国城市空气污染以煤烟型污染为主,目前计入空气污 染指数的项目暂定为二氧化硫、氮氧化物和总悬浮颗粒物(TSP)。
23
4.8 环境空气的质量
24
15min测验
问答题: 简述大气环境中臭氧的化学过程。
25
16
4.4 大气中的无机颗粒物
天然源
颗粒物的天然源一般大于人为源载带量。由于颗粒物是易消 失的粉尘和海浪溅沫,其中大颗粒占优势,沉降迅速,对环境影 响不大,除非在散发源附近如火山爆发将大量颗粒物散发达数公 里之遥。
17
4.5 大气颗粒物中的有机化合物
大气有机颗粒物的来源及类型
大气颗粒有机污染物是指吸附和沉积在各种大气颗粒上的有 机物,大气中的另一类有机物为挥发性有机物。

第二章大气环境化学_4.影响大气中污染物迁移的主要因素是什么-_甲苯

第二章大气环境化学_4.影响大气中污染物迁移的主要因素是什么-_甲苯

第二章大气环境化学_4.影响大气中污染物迁移的主要因素是什么?_甲苯第二章大气环境化学4.影响大气中污染物迁移的主要因素是什么?主要有:空气的机械运动如风和大气湍流的影响;天气和地理地势的影响;污染源本身的特性.5.大气中有哪些重要的吸光物质?其吸光特征是什么? 大气组分如N2、O2、O3、H2O和CO2等能吸收一定波长的太阳辐射.波长小于290 nm的太阳辐射被N2、O2、O3分子吸收,并使其解离.故波长小于290 nm 的太阳辐射不能到达地面,而800~2000 nm的长波辐射则几乎都被水分子和二氧化碳所吸收.因此,只有波长为300~800 nm的可见光能透过大气到达地面,这部分约占太阳光总能量的41%.7.大气中有哪些重要的自由基?其来源如何?大气中存在的重要自由基有HO、HO2、R、RO和RO2等.它们的来源如下:HO来源对于清洁大气而言,O3的光离解是大气中HO的重要来源:对于污染大气,如有HNO2和H2O2存在,它们的光离解也可产生HO:其中HNO2的光离解是大气中HO的重要来源. HO2的来源大气中HO2主要来源于醛的光解,尤其是甲醛的光解:任何光解过程只要有H或HCO自由基生成,它们都可与空气中的O2 结合而导致生成HO2.亚硝酸酯和H2O2 的光解也可导致生成HO2:如体系中有CO存在:R的来源大气中存在量最多的烷基是甲基,它的主要来源是乙醛和丙酮的光解:这两个反应除生成CH3外,还生成两个羰基自由基HCO和CH3CO.O和HO与烃类发生H摘除反应时也可生成烷基自由基:RO的来源大气中甲氧基主要来源于甲基亚硝酸酯和甲基硝酸酯的光解:RO2的来源大气中的过氧烷基都是由烷基与空气中的O2结合而形成的:9.叙述大气中NO转化为NO2的各种途径.①NO + O3 NO2 + O2②HO + RH R + H2OR + O2 RO2NO + RO2 NO2 + RORO + O2 R`CHO + HO2NO + HO2 NO2 + HO10.大气中有哪些重要的碳氢化合物?它们可发生哪些重要的光化学反应?甲烷、石油烃、萜类和芳香烃等都是大气中重要的碳氢化合物.它们可参与许多光化学反应过程.烷烃的反应:与HO、O发生H摘除反应,生成R氧化成RO2与NO反应R H + OH → R + H2ORH + O → R + HOR + O2 → RO2RO2 + NO → RO + NO2烯烃的反应:与OH主要发生加成、脱氢或形成二元自由基加成:RCH=CH2 + OH → RCHCH2RCHCH2 + O2 → RCHCH2O2RCHCH2O2 + NO → RCHCH2O + NO2脱氢:RCH=CH2 + HO → RCHCH2 + H2O生成二元自由基:二元自由基能量很高,可进一步分解为两个自由基以及一些稳定产物.另外,它可氧化NO和SO2等:R1R2COO + NO → R1R2CO + NO2R1R2COO + SO2 → R1R2CO + SO3环烃的氧化:以环己烷为例芳香烃的氧化单环芳烃:主要是与HO发生加成反应和氢原子摘除反应.生成的自由基可与NO2反应,生成硝基甲苯:加成反应生成的自由基也可与O2作用,经氢原子摘除反应,生成HO2和甲酚:生成过氧自由基:多环芳烃:蒽的氧化可转变为相应的醌它可转变为相应的醌:醚、醇、酮、醛的反应它们在大气中的反应主要是与HO发生氢原子摘除反应:CH3OCH3 + HO → CH3OCH2 + H2OCH3CH2OH + HO → CH3CHOH + H2OCH3COCH3 + HO → CH3COCH2 + H2OCH3CHO + HO → CH3CO + H2O上述四种反应所生成的自由基在有O2存在下均可生成过氧自由基,与RO2有相类似的氧化作用.13.说明烃类在光化学烟雾形成过程中的重要作用.烷烃可与大气中的HO和O发生摘氢反应.RH + HO R + H2ORH + O R + HOR + O2 RO2RO2 + NO RO + NO2RO + O2 R`CHO + HO2RO + NO2 RONO2另外:RO2 + HO2 ROOH + O2ROOH +hr RO + HO稀烃可与HO发生加成反应,从而生成带有羟基的自由基.它可与空气中的O2结合成相应的过氧自由基,由于它有强氧化性,可将NO氧化成NO2,自身分解为一个醛和CH2OH.如乙烯和丙稀.CH = CH + HO CH2CH2OHCH3CH = CH2 CH3CHCH2OH + CH3CHCH2CH2CH2OH + O2 CH2CH2OHCH2CH2OH + NO CH2CH2OH + NO2CH2CH2OH CH2O + CH2OHCH2CH2OH + O2 HCOCH2OH + HO2CH2OH + O2 H2CO + HO2稀烃还可与O3发生反应,生成二元自由基,该自由基氧化性强,可氧化NO和SO2等生成相应的醛和酮.光化学反应的链引发反应主要是NO2的光解,而烷烃和稀烃均能使NO转化为NO2,因此烃类物质在光化学反应中占有很重要的地位.18.确定酸雨pH界限的依据是什么?国际上把pH为5.6作为判断酸雨的界限.依据以下过程得出:在未污染大气中,可溶于水且含量比较大的酸性气体是CO2,所以只把CO2作为影响天然降水pH的因素,根据CO2的全球大气浓度330ml/m3与纯水的平衡: CO2 + H2OCO2 + H2OCO2 + H2OH+ + HCO3-HCO3- H+ + CO32-根据电中性原理:[H+]=[OH-] + [HCO3-] + 2[CO32-],将用KH、K1、K2、[H+]表达的式子代入,得:[H+]3 –[H+ ] – 2KHK1K2pCO2=0在一定温度下,KW、KH、K1、K2、pCO2都有固定值,将这些已知数值带入上式,计算结果是pH=5.6. 19.论述影响酸雨形成的因素.影响酸雨形成的因素主要有:酸性污染物的排放及其转化条件.大气中NH3的含量及其对酸性物质的中和性.大气颗粒物的碱度及其缓冲能力.天气形势的影响.20.什么是大气颗粒物的三模态?如何识别各种粒子模?Whitby等人依据大气颗粒物表面积与粒径分布的关系得到了三种不同类型的粒度模.按这个模型,可把大气颗粒物表示成三种模结构,即爱根核模、积聚模和粗粒子模.爱根核模主要源于燃烧产生的一次颗粒物以及气体分子通过化学反应均相成核而生成的二次颗粒物.由于它们的粒径小、数量多、表面积大而很不稳定,易于相互碰撞结成大粒子而转入积聚模.也可在大气湍流扩散过程中很快被其他物质或地面吸收而去除.积聚模主要由核模凝聚或通过热蒸汽冷凝再凝聚长大.这些粒子多为二次污染物,其中硫酸盐占80%以上.它们在大气中不易由扩散或碰撞而去除.积聚模与爱根核模的颗粒物合称细粒子.粗粒子模的粒子称为粗粒子,多由机械过程所产生的扬尘、液滴蒸发、海盐溅沫、火山爆发和风沙等一次颗粒物所构成,因此它的组成与地面土壤十分相近,主要靠干沉降和湿沉降过程而去除.。

大气环境化学

大气环境化学

Ⅱ 大气化学反应
2 1 0 -1
Absorption spectrum of O3
lgε
-2
300
400
500
600
700
图2-2. O3吸收光谱 (R. A. Bailey, 1978)
λ(nm)
Ⅱ 大气化学反应
80 60
ε
(mPa-1· cm-1)
40 20
350
λ(nm)
400
450
吸收光谱(R. A. Bailey, 1978) 图2-3. NO2吸收光谱
Ⅱ 大气化学反应
五、 卤代烃的光的解
CH3X + hv → CH3 + X
规律: 规律:
最弱的C-X键先断裂; 键先断裂; 最弱的 键先断裂 高能量的光照射,可能发生两个键断裂; 高能量的光照射,可能发生两个键断裂; 三个键同时断裂不常见; 三个键同时断裂不常见;
Ⅱ 大气化学反应
六、硝酸和亚硝酸的光解的
烟(烟气,Fume) 烟气,
颗粒直径: 颗粒直径:0.01 ~ 1 µm; ; 物态:固体; 物态:固体; 生成机制、现象:由升华、蒸馏、 生成机制、现象:由升华、蒸馏、熔融及化学反应等产 生的蒸气凝结而成的固体颗粒。如熔融金属、 生的蒸气凝结而成的固体颗粒。如熔融金属、凝结的 金属氧化物、汽车排气、烟草燃烟、硫酸盐等。 金属氧化物、汽车排气、烟草燃烟、硫酸盐等。
Ⅰ概 述 三、大气的基本性质
1、多组分气溶胶体系; 、多组分气溶胶体系; 2、大气处于氧化状态; 、大气处于氧化状态; 3、 随海拨高度 、 季节 、 纬度 、 时间等的 、 随海拨高度、 季节、 纬度、 变化,大气性质改变。 变化,大气性质改变。 4、大气成分参与生物介质循环 、 5、 大气经光化学反应电离成带电离子 , 、 大气经光化学反应电离成带电离子, 利于无线电波的传输。 利于无线电波的传输。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

存在季节变化或区域变化。
(5)NOx的危害

毒性:NO<NO2 NO能与血红蛋白结合,减弱血液输氧能力。 NO2不仅是光化学污染的重要物质,而且严重危害植物 和人体健康。


3. 含碳化合物
(1)CO ①CO的人为来源 燃料的不完全燃烧。 C+1/2O C+CO2 ② CO的天然来源 2CO 2CO

(4)热层(Therosphere) 在离地85-800km的这一空间称为热层。
(5)逸散层(Stratopause)
大气压力的变化:

ph=p0e-Mgh/RT 两边取对数: lgph=lgp0-Mgh/2.303RT

若p0为1,则 lgph=-Mgh/2.303RT
大气的压力随海拔高度的增加而减小。

甲烷的转化、海水中 CO 的挥发、植物的排放、森林火 灾等。 CH4 +HO· CH3·+O2 CH3·+H2O HCHO+HO·
HCHO+hv
CO+H2
③ CO的去除

土壤吸收 CO+1/2O2 CO+3H2 与HO·的 反应 CO+HO· H·+O2+M CO2+H· HO2+M CO2 CH4+H2O
(2)H2S

天然来源:火山喷射、海浪作用、生物活动。 人为源。 由COS、CS2、HO·的反应而产生。 去除反应主要与HO ·反应.



2. 含氮化合物

N2 O NO3-+2H2+H+ 1/2N2O+5/2H2O
(1)NOx的来源与消除 来源:燃料的燃烧(固定源、流动源) 消除:干、湿沉降。
三、大气中的主要污染物

大气污染物 由人类活动和自然过程排放到大气中某种物质的含量 超过正常水平而对人类和生态环境产生不良影响时, 就构成了大气污染物。
大气污染物的分类: 按物理状态分:气态污染物、颗粒物。 按形成过程分:一次污染物、二次污染物
按化学组成分:含硫化合物、含氮化合物、含碳化合物、含 卤素化合物、颗粒物。
第二章 大气环境化学

讨论: 1.大气质量和人体健康的关系? 2.当前的大气环境问题有哪些?应如何
控制?
第二章 大气环境化学
1
大气的组成及其主要污染物
大气中污染物的迁移
2
3
大气中污染物的转化 大气颗粒物
4
本章要点:

了解大气层结结构和基本运动规律; 了解大气中的主要污染物; 掌握主要大气污染物的迁移转化过程和主要大气污染事 件的形成机制(光化学烟雾、硫酸型烟雾、酸雨等)。 了解其他大气环境问题。
6 7
性质 永 久 性 气 不 体 可 变 成 半 分 永 久 气 体 可 变 成 分
多量成分
少量成分
微量成分
成为大气污染物的条件

在大气中含量较低

在大气中的停留时间较长
有较多的污染源排放,其在大气中的浓度较高 容易跟其他物质发生反应



停留时间: 某种组分在大气中的平均时间。 停留时间=大气中总量/输入速率或输出速率
1. 含硫化合物
(1)SO2

①SO2的危害
形成酸雨
刺激呼吸道
损害植物叶片

② SO2的来源和消除
来源: 天然源(火山喷发) 人为源(矿物燃料燃烧、含硫矿石的冶炼、硫 酸生产过程等)
消除:
形成硫酸或硫酸根;以干湿沉降去除。

③ SO2的浓度特征 其本底值存在地区变化和高度变化,其浓度变化与污染 源和当地的气象条件(风向、风速、大气稳定度、低层逆 温等)有关。
图2-1 大气温度的垂直分布
大气主要层次及其特征 层次 对流层 平流层 中层 热层 温度范围( C) 高度范围(km) 主要化学形态 15 -56 -56 -2 -2 -92 -92 1200 0 17 17 55 55 85 85 500 N2、O2、CO2、H2O O3 O2+、NO+ O2 、NO 、NO来自第一节 物
大气的组成及其主要污染

大气的组成及层结结构;
大气中的主要污染物及主要性质;
一、大气的主要成分
干空气的混合物
组成 水物质 颗粒物 自由基
干空气的混合物
成分 N2 O2 Ar CO2 Ne He Kr Xe CH4 CO H2 N2O O3 H2 S SO2 NH3 NO2 浓度(10-6体积分数) 780840 209460 9300 360 18 5 1 0.09 1.7 0.1 0.5 0.31 0.005~0.05 0.0002 0.0002 0.006 0.001 大气中滞留时间(估计值) 10 ~210 a 5103~104a (随时间累积) 5~10a (随时间累积) 107a (随时间累积) (随时间累积) 4~7a 0.2~0.5a 4~8a 2.5~4a 0.3~2a 0.5~4d 2~4d 5~6d 8~11d
(2)燃烧过程中NOx的形成机理
① 含氮化合物+O2 NOx

O2 O·+N2 N·+O2
O·+O· NO+N· NO+O·

N·+·OH
NO+1/2O2
NO+H·
NO2

(3)燃料燃烧过程中NOx影响形成的因素
① 燃烧温度 燃烧温度越高,NO气体数量越大。 ② 空燃比 空燃比等于计量空燃比时,氮氧化物量最大。 (4)NOx的环境浓度
+ + + 0
(1)、对流层(Troposphere)

高度从地面到离地10-12km;
气温随高度上升而降低(约0.6℃/ 100 m ); 密度大,75%以上的大气总质量和 90%的水蒸气在对流层;
污染物的迁移转化过程及天气过程均发生 在对流层。 阻挡大气氢的损失。
(2)平流层(Stratosphere)

平流运动占显著优势; 空气比对流层稀薄得多,水汽、尘埃含量甚微;


15-35 km 范围内有厚有约20 km的臭氧层。
O2 O3 O· +O· O3 2O2
形成
O2+O· O3+O·
O· +O2
消除
(3)中间层 (Meosphere)

气温随高度的增加而降低,顶部可达-92℃左右。 垂直温度分布与对流层相似。

甲烷在对流层平均浓度 c为1.55×10-6,不随时间变化,且 输入速率等于输出速率为1.5×1014mol/a,求其停留时间。
二、大气层的结构
1. 大气层的结构
在自然地理学上,把由于地心引力而随地球旋 转的大气层称为大气圈。 根据大气在垂直方向上物理性质和运动情况的 变化可将大气分为对流层、平流层、中间层、热 层、逸散层(见图2-1)。
相关文档
最新文档