对一个简单解释型udf程序的详细解释教学文稿
FLUENTUDF官方培训教程

FLUENTUDF官方培训教程一、引言FLUENTUDF(UserDefinedFunctions)是一种强大的功能,允许用户在FLUENT软件中自定义自己的函数,以满足特定的模拟需求。
为了帮助用户更好地了解和使用UDF功能,FLUENT官方提供了一系列培训教程,本教程将对其中的重点内容进行详细介绍。
二、UDF基础知识1.UDF概述UDF是FLUENT软件中的一种编程接口,允许用户自定义自己的函数,包括自定义物理模型、边界条件、求解器控制等。
UDF功能使得FLUENT软件具有很高的灵活性和扩展性,能够满足各种复杂流动问题的模拟需求。
2.UDF编程语言UDF使用C语言进行编程,因此,用户需要具备一定的C语言基础。
UDF编程遵循C语言的语法规则,但为了与FLUENT软件的求解器进行交互,UDF还提供了一些特定的宏和函数。
3.UDF编译与加载编写完UDF代码后,需要将其编译成动态库(DLL)文件,然后加载到FLUENT软件中。
编译和加载UDF的过程如下:(1)编写UDF代码,保存为.c文件;(2)使用FLUENT软件提供的编译器(如gfortran)将.c文件编译成.dll文件;(3)在FLUENT软件中加载编译好的.dll文件。
三、UDF编程实例1.自定义物理模型cinclude"udf.h"DEFINE_TURBULENCE_MODEL(my_k_epsilon_model,d,q){realrho=C_R(d,Q_REYNOLDS_AVERAGE);realmu=C_MU(d,Q_REYNOLDS_AVERAGE);realk=C_K(d,Q_KINETIC_ENERGY);realepsilon=C_EPSILON(d,Q_DISSIPATION_RATE);//自定义湍流模型计算过程}2.自定义边界条件cinclude"udf.h"DEFINE_PROFILE(uniform_velocity_profile,thread,position ){face_tf;realx[ND_ND];begin_f_loop(f,thread){F_CENTROID(x,f,thread);realvelocity_magnitude=10.0;//自定义速度大小realvelocity[ND_ND];velocity[0]=velocity_magnitude;velocity[1]=0.0;velocity[2]=0.0;F_PROFILE(f,thread,position)=velocity_magnitude;}end_f_loop(f,thread)}3.自定义求解器控制cinclude"udf.h"DEFINE_CG_SUBITERATION_BEGIN(my_cg_subiteration_begin,d ,q){realdt=0.01;//自定义时间步长DT(d)=dt;}四、总结本教程对FLUENTUDF官方培训教程进行了简要介绍,包括UDF 基础知识、编程实例等内容。
Fluent中的UDF详细中文教程(9)

第九章本章扼要介绍了FLUENT中用户自定义标量及它们的用法。
•9.1 介绍•9.2 理论•9.3 UDS的定义,求解,后处理9.1 介绍FLUENT可以用求解诸如质量组分之类标量方程的相同方法来求解任意的用户自定义标量 (UDS)。
在某些类型的应用中,如燃烧模拟或是等离子增强表面反应(plasma-enhanced surface reaction)的模拟中,还需引入新的标量输运方程。
用户自定义标量可被用于磁流体动力(MHD)模拟中。
在MHD中,导电流体(conducting fluid)的流体将会产生磁场,此磁场可以用户自定义标量来求解。
磁场造成的对流体的阻尼(a resistance to the flow),可用用户自定义的源项来模拟。
书中4.3.12和4.3.13介绍了用 UDFs来定义标量输运方程的例子。
to customize scalar transport equations.9.2 理论对于一个任意的标量, FLUENT 可求解方程(9.2.1)此处 和 是用户为N 个标量方程中的每一个方程定义的扩散系数和源项。
对于稳态的情况,根据计算对流通量的方法的不同,FLUENT 可求解以下的三种方程之一:•如果对流通量不用计算,则FLUENT 可解方程(9.2.2)此处 和 是用户为N 个标量方程中的每一个方程定义的扩散系数和源项。
•如果以质量流率来计算对流通量,FLUENT可解方程(9.2.3)•如果选择一个用户自定义函数来计算对流通量,FLUENT可解方程(9.2.4)此处 是用户定义的流率。
!! 在FLUENT中,用户自定义函数只可在流体区域内求解,而不能在固体区域内求解。
9.3 UDS的定义,求解,后处理定义,求解,后处理用户自定义标量的步骤概括如下。
注意UDFs 在多相流体和单项流体中应用的重要不同在于,如果是单相的情况(an individual phase), 用户需要提供用户自定义的标量通量函数。
UDF第3章写UDF详解

UDF 第3章写UDF本章主要概述了如何在FLUENT写UDF。
3.1 概述3.2写解释式UDF的限制3.3 FLUENT中UDF求解过程的顺序3.4 FLUENT网格拓扑3.5 FLUENT数据类型3.6 使用DEFINE Macros定义你的UDF3.7在你的UDF源文件中包含udf.h文件3.8 定义你的函数中的变量3.9函数体3.10 UDF 任务3.11 为多相流应用写UDF3.12在并行中使用你的UDF3.1概述(Introduction)UDF是用来增强FLUENT代码的标准功能的,在写UDF之前,我们要明确以下几个基本的要求。
首先,必须用C语言编写UDF。
必须使用FLUENT提供的DEFINE宏来定义UDF。
UDF必须含有包含于源代码开始指示的udf.h文件;它允许为DEFINE macros和包含在编译过程的其它FLUENT提供的函数定义。
UDF只使用预先确定的宏和函数从FLUENT 求解器访问数据。
通过UDF传递到求解器的任何值或从求解器返回到UDF的值,都指定为国际(SI)单位。
总之,当写UDF时,你必须记住下面的FLUENT要求。
UDF:1.采用C语言编写。
2.必须为udf.h文件有一个包含声明。
3.使用Fluent.Inc提供的DEFINE macros来定义。
4.使用Fluent.Inc提供的预定义宏和函数来访问FLUENT求解器数据。
5.必须使返回到FLUENT求解器的所有值指定为国际单位。
3.2写解释式UDF的限制(Restriction on Writing Interpreted UDF)无论UDF在FLUENT中以解释还是编译方式执行,用户定义C函数(说明在Section 3.1中)的基本要求是相同的,但还是有一些影响解释式UDF的重大编程限制。
FLUENT解释程序不支持所有的C语言编程原理。
解释式UDF不能包含以下C语言编程原理的任何一个:1.goto 语句。
dolphinscheduler使用udf函数-概述说明以及解释

dolphinscheduler使用udf函数-概述说明以及解释1.引言1.1 概述Dolphinscheduler是一款分布式的开源工作流引擎,致力于解决数据处理的自动化调度问题。
它提供了丰富的功能和易于使用的界面,帮助用户简化工作流的设计和管理。
UDF(User Defined Function)函数是一种用户自定义函数,可以在Dolphinscheduler中实现对数据的自定义处理和计算,为用户提供了更强大和灵活的功能。
本文将探讨UDF函数在Dolphinscheduler中的作用以及如何使用UDF函数来提升工作流的功能和效率。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将分为三个主要部分:引言、正文和结论。
- 引言部分将概述本文的背景和目的,引入读者对本文内容的整体认识。
- 正文部分将详细介绍Dolphinscheduler的简介、UDF函数在Dolphinscheduler中的作用以及UDF函数的使用方法。
- 结论部分将总结UDF函数对Dolphinscheduler的优势,展望未来的发展,并对整篇文章做出总结。
通过以上结构,读者可以全面了解和深入理解Dolphinscheduler中UDF函数的应用和优势。
1.3 目的:本文旨在介绍在Dolphinscheduler中使用UDF函数的方法和作用。
通过了解UDF函数在Dolphinscheduler中的作用,可以更好地利用其提供的功能来完成复杂的数据处理和分析任务。
同时,通过学习UDF函数的使用方法,可以帮助读者更加灵活地应用Dolphinscheduler来满足各种数据处理需求。
通过对UDF函数的全面了解,可以为用户提供更好的使用体验,提高工作效率,实现数据处理的自动化和智能化。
2.正文2.1 Dolphinscheduler简介Dolphinscheduler是一款开源的分布式工作流调度系统,旨在解决大数据环境下复杂任务的调度问题。
Fluent中的UDF详细中文教程

第一章.介绍本章简要地介绍了用户自定义函数(UDF)及其在Fluent中的用法。
在1.1到1.6节中我们会介绍一下什么是UDF;如何使用UDF,以及为什么要使用UDF,在1.7中将一步步的演示一个UDF例子。
1.1 什么是UDF?1.2 为什么要使用UDF?1.3 UDF的局限1.4 Fluent5到Fluent6 UDF的变化1.5 UDF基础1.6 解释和编译UDF的比较1.7一个step-by-stepUDF例子1.1什么是UDF?用户自定义函数,或UDF,是用户自编的程序,它可以动态的连接到Fluent求解器上来提高求解器性能。
用户自定义函数用C语言编写。
使用DEFINE宏来定义。
UDF中可使用标准C语言的库函数,也可使用Fluent Inc.提供的预定义宏,通过这些预定义宏,可以获得Fluent求解器得到的数据。
UDF使用时可以被当作解释函数或编译函数。
解释函数在运行时读入并解释。
而编译UDF则在编译时被嵌入共享库中并与Fluent连接。
解释UDF用起来简单,但是有源代码和速度方面的限制不足。
编译UDF执行起来较快,也没有源代码限制,但设置和使用较为麻烦。
1.2为什么要使用UDF?一般说来,任何一种软件都不可能满足每一个人的要求,FLUENT也一样,其标准界面及功能并不能满足每个用户的需要。
UDF正是为解决这种问题而来,使用它我们可以编写FLUENT代码来满足不同用户的特殊需要。
当然,FLUENT的UDF并不是什么问题都可以解决的,在下面的章节中我们就会具体介绍一下FLUENT UDF的具体功能。
现在先简要介绍一下UDF的一些功能:z定制边界条件,定义材料属性,定义表面和体积反应率,定义FLUENT输运方程中的源项,用户自定义标量输运方程(UDS)中的源项扩散率函数等等。
z在每次迭代的基础上调节计算值z方案的初始化z(需要时)UDF的异步执行z后处理功能的改善z FLUENT模型的改进(例如离散项模型,多项混合物模型,离散发射辐射模型)由上可以看出FLUENT UDF并不涉及到各种算法的改善,这不能不说是一个遗憾。
Fluent中的UDF详细中文教程(7)

Fluent中的UDF详细中文教程(7)第七章 UDF的编译与链接编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。
在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。
_ 第 7.1 节: 介绍_ 第 7.2 节: 解释 UDF_ 第 7.3 节: 编译 UDF7.1 介绍解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。
编译后的UDF由C语言系统的编译器编译成本地目标码。
这一过程须在FLUENT运行前完成。
在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。
另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。
这一代码调用时是在内部模拟器或解释器上运行。
与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。
如果执行速度是所关心的,UDF 文件可以不用修改直接在编译模式里运行。
为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。
解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。
编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮” 时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。
当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。
因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。
同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。
只要读取这个case文件,这些函数会被自动编译。
注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。
Fluent中的UDF详细中文教程(7)

第七章 UDF的编译与链接编写好UDF件(详见第三章)后,接下来则准备编译(或链接)它。
在7.2或7.3节中指导将用户编写好的UDF如何解释、编译成为共享目标库的UDF。
_ 第 7.1 节: 介绍_ 第 7.2 节: 解释 UDF_ 第 7.3 节: 编译 UDF7.1 介绍解释的UDF和编译的UDF其源码产生途径及编译过程产生的结果代码是不同的。
编译后的UDF由C语言系统的编译器编译成本地目标码。
这一过程须在FLUENT运行前完成。
在FLUENT运行时会执行存放于共享库里的目标码,这一过程称为“动态装载”。
另一方面,解释的UDF被编译成与体系结构无关的中间代码或伪码。
这一代码调用时是在内部模拟器或解释器上运行。
与体系结构无关的代码牺牲了程序性能,但其UDF可易于共享在不同的结构体系之间,即操作系统和FLUENT版本中。
如果执行速度是所关心的,UDF文件可以不用修改直接在编译模式里运行。
为了区别这种不同,在FLUENT中解释UDF和编译UDF的控制面板其形式是不同的。
解释UDF的控制面板里有个“Compile按钮”,当点击“Compile按钮”时会实时编译源码。
编译UDF的控制面板里有个“Open 按钮”,当点击“Open按钮” 时会“打开”或连接目标代码库运行FLUENT(此时在运行FLUENT之前需要编译好目标码)。
当FLUENT程序运行中链接一个已编译好的UDF库时,和该共享库相关的东西都被存放到case文件中。
因此,只要读取case文件,这个库会自动地链接到FLUENT处理过程。
同样地,一个已经经过解释的UDF文件在运行时刻被编译,用户自定义的C函数的名称与内容将会被存放到用户的case文件中。
只要读取这个case文件,这些函数会被自动编译。
注:已编译的UDF所用到的目标代码库必须适用于当前所使用的计算机体系结构、操作系统以及FLUENT软件的可执行版本。
一旦用户的FLUENT升级、操作系统改变了或者运行在不同的类型的计算机,必须重新编译这些库。
用户自定义函数UDF中文详细讲解

局部变量
局部变量只用于单一的函数中。当函数调用
时,就被创建了,函数返回之后,这个变量 就不存在了,局部变量在函数内部(大括号 内 ) 声 明 。 在 下 面 的 例 子 中 , mu_lam 和 temp是局部变量。
DEFINE_PROPERTY(cell_viscosity, cell, thread) { real mu_lam; real temp = C_T(cell, thread); if (temp > 288.) mu_lam = 5.5e-3; else if (temp > 286.)
DEFINE_PROPERTY 返 回一个 udf.h 中指定的 real 数据类型。两个 real 变量 传入函数:通过函数计算 层 流 粘 度 mu_lam 的 值 , 其是温度 C_T(cell,thread) 的函数。根据单元体温度, 计 算 出 mu_lam , 在 函 数 结 尾 , mu_lam 值 被 返 回 。
用户自定义函数UDF
中文讲解
用户自定义函数
用户自定义函数或UDF
是用户自编的程序它 可以被动态的连接到Fluent 求解器上来提高 求解器性能用户自定义函数用C 语言编写使 用DEFINE 宏来定义UDFs 中可使用标准C 语言的库函数也可使用预定义宏Fluent Inc.提 供通过这些预定义宏可以获得Fluent 求解器 得到的数据
边界条件 材料性质 表面与体积反应速率 输运方程源项 用户标量输运方程(UDS) 调节每次迭代值 初始化流场 异步执行 后处理改善 模型改进(离散项模型,多相混合物模型,辐 射模型等)
UDF举例
上壁面温度 绝 热 壁 面 温度: 315K 300K 绝 热 壁 面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对一个简单解释型u d f程序的详细解释
对一个简单解释型udf程序的详细解释
#include "udf.h"
/*udf.h是一个头文件,如果不写的话就不能使用fluent udf中的宏,函数等*/
DEFINE_PROFILE(pressure_profile, t, i)
/*是一个宏,本例中用来说明进口压力与垂直坐标变量(还可以是其他的变量)的关系。
pressure_profile 是函数名,可随意指定。
t的数据类型是Thread *t ,t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。
i的数据类型是Int,表示边界的位置?或者说是什么每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/
{
real x[ND_ND];
/* 定义了质心的三维坐标,数据类型为real*/
real y;
/*定义了一个变量y, 数据类型为real */
face_t f;
/*定义了一个变量f, 数据类型为face_t,也就是网格面的意思,即f代表一个网格单元的网格面 */
begin_f_loop(f, t)
/*表示遍寻网格面,它的意思是说在计算的时候,要扫描所定义边界的所有网格面,对每个网格面都要赋值,值存储在F_PROFILE(f, t, i)中*/
{
F_CENTROID(x,f,t);
/*一个函数,它的意思是读取每个网格面质心的二维坐标,并赋值给x。
x 为名称,接收三维坐标值。
f为网格面(因为这里只是取的面的二维坐标,所以为f,如果是网格单元的话,这里就为c)。
t为指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针*/
y = x[1];
/*把质心的三维坐标的纵坐标的数值赋给y*/
F_PROFILE(f, t, i) = 1.1e5 - y*y/(.0745*.0745)*0.1e5;
/*赋给每个网格面的数值与网格质心纵坐标的关系。
其实就是赋给质心的速度值(这里只有大小)与质心纵坐标的函数关系,因为fluent在计算的时候是把数据存储到网格质心上的,所以网格质心的速度值就代表网格的速度值。
这里有了网格的质心纵坐标,然后有了质心速度值与纵坐标的函数关系,那么每个进口网格面的速度值也就知道了。
f依然代表网格面。
t表示指向结构体thread(这里的thread表示边界上所有的网格面的集合)的指针。
i每个循环内对位置变量(这里应该是质心的纵坐标)设置的数值标签*/
}
end_f_loop(f, t)/*结束循环*/
}
整体来看:包括两个宏:DEFINE_PROFILE(pressure_profile, t, i)和beginend_f_loop(f, t)。
两个函数:F_CENTROID(x,f,t)和F_PROFILE(f, t, i)。
其他都是变量。
求解思路为,首先看用到的宏,本例中用到的是
DEFINE_PROFILE(name,t,i),它可以给进口或者边壁加载速度,温度,压力等变量。
然后我们知道了进口速度和进口纵坐标的关系,其实也就是每个网格面质心的速度值与质心纵坐标的关系。
这样就好了,现在的关键是如何得到每个网格质心的纵坐标的数值。
程序里是这样做的:首先通过F_CENTROID(x,f,t)函数得到质心的二维坐标并赋给x[ND_ND],然后利用y = x[1]函数得到质心的纵坐标。
;
得到了质心纵坐标以后,知道质心速度值与质心纵坐标的关系,再通过
F_PROFILE(f, t, i)函数,就可以把由函数关系式得到的速度值赋给每个网格面的质心了。
注:1.real类型,在fluent单精度里为float,双精度里为double float。
2.beginend_f_loop(f, t)循环宏,相当于c语言中的循环语句。
因为上述都是说的对每一个网格面的赋值,而进口有很多网格面,所以就需要利用这个宏扫描所有的网格面,然后给所有的网格质心赋值。