自动控制原理复习资料——卢京潮版第二章

合集下载

大学《自动控制原理》期末复习重点

大学《自动控制原理》期末复习重点

一阶系统的单位斜坡响应 c(t) (t T ) Tet /T , (t 0)
时间常数 T 反映系统的惯性,惯性越小,响应过程越快。
5.二阶系统的时域分析 1)二阶系统的数学模型
传递函数为:
(s) C(s)
n2
R(s) s2 2ns n2
结构图如下图 3-3:
图 3-3 二阶系统结构图
2.信号流图的绘制 1)由微分方程绘制信号流图:首先要对系统的每个变量指定一个节点,并按照系统中变量
的因果关系,从左向右顺序排列。再用标明支路增益的支路,根据数学方程式将各节点变量 正确连接。 2)由系统结构图绘制信号流图:在结构图的信号线上用节点标志所传递的信号,用支路代 替结构图中的方框。
六.MASON 增益公式 梅森公式可以直接从系统的结构图或信号流图得到系统输出量与输入量之间的传递函数。 设系统的传递函数为 P,则梅森公式为
延迟时间 td
td
1 0.7 n
上升时间 tr
tr
d
峰值时间 tp 超调量σ%
tp d % e / 1 2 100%
调节时间 ts
ts
3
(3 23)
3) 比例-微分控制系统:系统结构图如图 3-5
R(s)
E(s)
1
Td s
n2 s(s 2n )
3-5 PD控制系统与原系统比较如下
闭环传递函数
n2 s2 2ns n2
n2 s2 2tns n2
其中
t=
n Kt 2
,表明测速反馈控制不改变系统的自然频率,但可增大
阻尼比。测速反馈控制增大开环增益,加大系统在斜坡输入时的稳态误差。
7.稳定性分析 1)稳定性的基本概念
稳定性:是指系统在扰动消失后,由初始偏差状态恢复到原平衡状态的性能。 线性控制系统的稳定性:在初始扰动的影响下,其动态过程随时间的推移逐渐衰 减并趋于零(原平衡点),则称系统渐近稳定。

自动控制原理第二章

自动控制原理第二章
at
1 te (s a)2 sin t 2 s 2 s cos t 2 s 2
at
拉普拉斯积分下限说明:
在拉氏变换定义中,积分下限0,有左极限和右极限之分,对于在t 0 处连续或只有第一类间断点的函数, 0的左极限与右极限是相同的,对于 t 0处有无穷跳跃的函数,两种极限则是不同的。 在实际中,右极限没有体现出[0 , 0 ]区间内的跳跃性,而左极限包含这 一区间,所以0 型的拉式变换反应了客观事实,因此在拉氏变换过程中, 如不特殊声明,均认为是左极限变换。
2.常用函数拉普拉斯变换
(1) (2) (3) (4) (5)
(t ) 1 1 1(t ) s 1 t 2 s t n 1 1 n (n 1) ! s 1 at e sa
(6) (7) (8)
(9) e sin t ( s a)2 2 sa at (10) e cos t ( s a)2 2
1 周期: T f
K
Tห้องสมุดไป่ตู้
角频率: 2π f 频率: f 初相:

0

2
t

● 正弦信号为单频率信号,适于测试系统频率特性。
1-5 自动控制系统的分析与设计工具
Matlab 草稿纸式编程语言 良好的人机界面 结论可做一定等级的理论论据 Simulink工具箱
求微分方程的特解 .
控制系统建模的MATLAB方法
在控制系统系统分析和设计中,首要任务是建立系统的数学模型。 控制系统数学模型:描述系统内部物理量(或变量)之间关系的数学表达式;
(1)静态数学模型:在静态条件(即变量各阶导数为零)下,描述变量之间关系

自动控制原理(第二章)

自动控制原理(第二章)
基本步骤: (1)由系统原理图画出系统方框图或直接确定 系统中各个基本部件(元件) (2)列写各方框图的输入输出之间的微分方程, 要注意前后连接的两个元件中,后级元件对前级 元件的负载效应 (3)消去中间变量
11
一、控制系统的时域数学模型
举例4:
速度控制系统的微分方程
12
一、控制系统的时域数学模型
m
d x(t ) dt 2
2
F (t ) F1 (t ) F2 (t )
dx(t ) F (t ) f Kx(t ) dt
式中 F1(t)是阻尼器的阻尼力, F2(t)是弹簧反力
9
一、控制系统的时域数学模型
比较: R-L-C电路运动方程与 M-S-D机械系统 运动方程
LC
d 2 uC (t ) dt 2
1
本章内容:
一、控制系统的时域数学模型 二、控制系统的复数域数学模型 三、控制系统的结构图与信号流图
数学模型
时域模型
频域模型
方框图和信号流图
状态空间模型
2
控制系统的数学模型是描述系统内部 物理量之间关系的数学表达式。
模型
静态数学模型 动态数学模型
分析法
建模方法
实验法
3
本章要求:
1、了解建立系统微分方程的一般方法; 2、掌握运用拉氏变换解微分方程的方法; 3、牢固掌握传递函数的概念、定义和性质; 4、明确传递函数与微分方程之间的关系; 5、能熟练地进行结构图等效变换; 6、明确结构图与信号流图之间的关系;
7、熟练运用梅逊公式求系统的传递函数;
8、掌握从不同途径求传递函数的方法。
4
一、控制系统的时域数学模型
主要着重研究描述线性、定常、集总参量控制 系统的微分方程的建立和求解方法。

自动控制原理第二章习题课答案

自动控制原理第二章习题课答案

第二章习题课 (2-11d)
2-11d 求系统的闭环传递函数 。
解: (1)
R(s) G1 + G2
C(s)
_
HG2
R(s)
_
C(s) G1 + G2
L1 H
C(s) R(s)
=(G1+G2
)
1 1+G2H
(2) L1=-G2H P1=G1 Δ1 =1
P2=G2 Δ2 =1
第二章习题课 (2-11e)
+6y(t)=6
,初始条件:
y(0)=y·(0)=2 。
A1=1 , A2=5 , A3=-4 ∴ y(t)=1+5e-2t-4e-3t
解:s2Y(s)-sY(0)-Y(′0)+5sY(s)-5Y(0)+6Y(s)=
1 s

Y(s)=
6+2s2+12s s(s2+5s+6)
A1=sY(s) s=0
(2-4-2) 求下列微分方程。
UC(s) Cs
Ui
-
1 I1
IL
R1
-
IC
UO R2
UL sL +
Cs UC=UO+UL
2-6-a 用运算放大器组成的有源电网络如图 所示,试采用复数阻抗法写出它们的传递函数。
解:电路等效为:
=-
UO R2SRC2+1+R3
UR1I =-
UO RR22+·SS1C1C+R3
=-( R1(RR22SC+1)+ RR31)
H
第二章习题课 (2-11c)
2-11c 求系统的闭环传递函数 。
解:
R(s)

自动控制原理_卢京潮_二阶系统的时间响应及动态性能

自动控制原理_卢京潮_二阶系统的时间响应及动态性能

自动控制原理_卢京潮_二阶系统的时间响应及动态性能3.3 二阶系统的时间响应及动态性能3.3.1 二阶系统传递函数标准形式及分类常见二阶系统结构图如图3-,所示其中,为环节参数。

系统闭环传递函数为 KT K ,s, ()2Ts,s,K1化成标准形式2,n (首1型) (3-5) ,(s),22s,2,,s,,nn1,(s), (尾1型) (3-6) 22Ts,2T,s,111T1K1式中,,,。

,,,,,,Tn2KTTTK11、分别称为系统的阻尼比和无阻尼自然频率,是二阶系统重要的特征参数。

二阶系统的首,,n1标准型传递函数常用于时域分析中,频域分析时则常用尾1标准型。

二阶系统闭环特征方程为22 D(s),s,2,,s,,,0nn其特征特征根为2,,,,,,,,,1 nn1,2若系统阻尼比取值范围不同,则特征根形式不同,响应特性也不同,由此可将二阶系统分类,见,表3-3。

表3-3 二阶系统(按阻尼比)分类表 ,分类特征根特征根分布模态,t1e ,,12,,,,,,,,,1 nn 1,2,t2e过阻尼,,tn ,,1e,,,, 1,2n,,tnte临界阻尼,,t,2n,,esin1,t0,,,1 n2,,,,,,j,1,, nn1,2t,,,2necos1,,,t欠阻尼 n57,sint ,,0n ,,,j, 1,2ncos,tn零阻尼数学上,线性微分方程的解由特解和齐次微分方程的通解组成。

通解由微分方程的特征根决定,,t,t,tn12代表自由响应运动。

如果微分方程的特征根是,,且无重根,则把函数,,eee,,,?,?,12n称为该微分方程所描述运动的模态,也叫振型。

,t2,t,如果特征根中有多重根,则模态是具有,形式的函数。

tete,?(,,j,)t(,,j,)t如果特征根中有共轭复根,则其共轭复模态与可写成实函数模态ee,,,,j,,t,t与。

esin,tecos,t每一种模态可以看成是线性系统自由响应最基本的运动形态,线性系统自由响应则是其相应模态的线性组合。

(2017.9.12用)自动控制原理第二章

(2017.9.12用)自动控制原理第二章
m 1

k1,1 ( s s1 )
其中
k1,m [(s s1 ) m F ( s )]s s1 d k1,m 1 [(s s1 ) m F ( s )] ds s s1 k1 , m i k1 , 1
k m 1 kn ( s sm 1 ) ( s sn )
20
2-2 控制系统的复数域数学模型
二、 传递函数的定义及求取
系统的结构图 输入
r(t)
R(S) C(S) 输出拉氏 输入拉氏 变换 变换 传递函数的定义: 零初始条件下,系统输 出量拉氏变换与系统输入 C(s) G(s) = R(s) 量拉氏变换之比。
21
G(S)
c(t)
输出
2-2 控制系统的复数域数学模型
记为 f ( t ) L1[ F ( s )]
4. 卷积定理: 若 f1 ( t ) f 2 ( t ) f1 ( ) f 2 ( t )d




f1 ( t ) f 2 ( )d L[ f 2 ( t )] F2 ( s )
并且 L[ f1 ( t )] F1 ( s )
一、建立微分方程的一般步骤 二、常见环节和系统的微分 方程的建立
三、线性微分方程式的求解
3
2-1 控制系统的时域数学模型
一、 建立系统微分方程的一般步骤
( 2) 建立初始微分方程组。 一个系统通常是由一些环节连接而成 的,将系统中的每个环节的微分方程求出 根据各环节所遵循的基本物理规律,分 别列写出相应的微分方程,并构成微分方 来 ,便可求出整个系统的微分方程。 程组。
1)列写系统微分方程(非线性方程需线性化);
2)设全部初始条件为零,对微分方程两边取拉氏变换; 3)求输出量与输入量的拉氏变换之比——系统传递函数。

控制系统的数学模型(卢京潮课件)

控制系统的数学模型(卢京潮课件)
取一次近似,且令
y( x ) y( x ) y( x0 )
E0 sin x0 ( x x0 )
即有
y E0 sin x0 x
线性定常微分方程求解
微分方程求解方法
复习拉普拉斯变换有关内容(1)
1 复数有关概念
(1)复数、复函数 复数
s j
复函数 F ( s ) Fx ( s ) jF y ( s ) 例1 F ( s ) s 2 2 j
§2.2 控制系统的数学模型—微分方程
§2.2.1 线性元部件及系统的微分方程
例1 R-L-C 串连电路
ur ( t ) L di ( t ) Ri( t ) uc ( t ) dt du ( t ) i (t ) C c dt
d 2 uc ( t ) duc ( t ) LC RC uc ( t ) 2 dt dt

例7 例8 例9
1 1 L 1 t e Le ss sa sa s3 s - 3t 2 L e cos 5t 2 2 2 s 3 5 s 5 s s 3
f (t ) e
F ( s ) F ( s A) 右 dt源自00
0
0-f 0 s f t e st dt sF s f 0 右

L f n t s n F s s n-1 f 0 s n- 2 f 0 sf n- 2 0 f n1 0
d 2 uc ( t ) R duc ( t ) 1 1 u ( t ) ur ( t ) c 2 dt L dt LC LC
§2.2.1 线性元部件及系统的微分方程(1)

自动控制原理第二章-2

自动控制原理第二章-2

g ( )e
s
d

0
r ( )e
d
G (s)R (s)
G (s)

C (s) R (s)



g ( t )e
0
st
dt
称G(s)为系统的传递函数。
《自动控制原理》 第二章 数学描述 4
2012-6-21
结论:

传递函数是单位脉冲响应函数在拉氏变换下的 象函数。

传递函数是零初始条件下,线性定常系统输出 拉氏变换和输入拉氏变换的比。
n
n 1
N(s)=0 系统的特征方程,特征根
特征方程决定着系统的动态特性。 N(s) 中 s 的最高阶次 n 等于系统的阶次。
2012-6-21
《自动控制原理》 第二章 数学描述
10
零点和极点
G (s) b0 s a0 s
G (s)
m m
b1 s
m 1 n 1
... b m 1 s b m ... a n 1 s a n
(b) 对电气网络,列写电路方程如下:
R2i 1 C2
idt
R1i
1 C1
idt
U
r
② ③ ④
18
C 1U
c1
C 2U
c2
U c R 1 i U c1
( R1 R 2 ) i U c1 U c2 U r
2012-6-21 《自动控制原理》 第二章 数学描述
天行健,君子以自强不息;
地势坤,君子以厚德载物。
——《周易》
数学模型的几种表示方式
数学模型 时域模型 频域模型 方框图和信号流图 状态空间模型
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章:控制系统的数学模型§ 引言·系统数学模型-描述系统输入、输出及系统内部变量之间关系的数学表达式。

·建模方法⎩⎨⎧实验法(辩识法)机理分析法·本章所讲的模型形式⎩⎨⎧复域:传递函数时域:微分方程§控制系统时域数学模型1、 线性元部件、系统微分方程的建立 (1)L-R-C 网络11cc c r Ru u u u LLC LC'''∴++= ── 2阶线性定常微分方程 (2)弹簧—阻尼器机械位移系统 分析A 、B 点受力情况 由 A 1A i 1x k )x x (k =- 解出012i A x k k x x -= 代入B 等式:020012i x k )x x k k x f(=--&&& 得:()i 1021021x fk x k k x k k f &&=++ ── 一阶线性定常微分方程(3)电枢控制式直流电动机 电枢回路:b a E i R u +⋅=┈克希霍夫 电枢及电势:m e b C E ω⋅=┈楞次 电磁力矩:i C M m m ⋅=┈安培力矩方程:m m m m m M f J =+⋅ωω& ┈牛顿变量关系:m mb a M E i u ω----消去中间变量有:(4)X-Y 记录仪(不加内电路)消去中间变量得:a m 321m 4321m u k k k k k k k k k T =++l l l &&&─二阶线性定常微分方程即:a mm 321m m 4321m u T k k k k l T k k k k k l T 1l =++&&&2、 线性系统特性──满足齐次性、可加性 ● 线性系统便于分析研究。

● 在实际工程问题中,应尽量将问题化到线性系统范围内研究。

● 非线性元部件微分方程的线性化。

例:某元件输入输出关系如下,导出在工作点0α处的线性化增量方程解:在0αα=处线性化展开,只取线性项: 令 ()()0y -y y αα=∆ 得 αα∆⋅-=∆00sin E y 3、 用拉氏变换解微分方程 a u l l l 222=++&&& (初条件为0)复习拉普拉斯变换的有关内容1 复数有关概念 (1)复数、复函数 复数 ωσj s += 复函数 ()y x jF F s F += 例:()ωσj 22s s F ++=+= (2)复数模、相角 (3)复数的共轭(4)解析:若F(s)在s 点的各阶导数都存在,称F(s)在s 点解析。

2 拉氏变换定义3 几种常见函数的拉氏变换 1. 单位阶跃:()⎩⎨⎧≥<=0 t 10t 0t 1 2. 指数函数:⎩⎨⎧≥<=0t e 0 t 0)t (f at3. 正弦函数:⎩⎨⎧≥<=0t t sin 0 t0)t (f ω4 拉氏变换的几个重要定理(1)线性性质: [])s (bF )s (aF )t (bf )t (af L 2121+=+ (2)微分定理: ()[]()()0f s F s t f L -⋅='()()()()()()()()()n n-2n 1n n-1n-2 L f t s F s s f 0s f 0sf 0f 0-⎡⎤'=-----⎣⎦L 进一步: 零初始条件下有:()()[]()s F s t f L n n ⋅= ● 例1:求()[]t L δ ● 例2:求[]t cos L ω 解:[]2222s ss s 1t n si L 1t cos ωωωωωωω+=+⋅⋅='=Θ(3)积分定理:()[]()()()0f s1s F s1dt t f L 1-+⋅=⎰ (证略) 零初始条件下有:()[]()s F s1dt t f L ⋅=⎰ 进一步有: ● 例3:求L[t]=? 解:()dt t 1t ⎰=Θ● 例4:求⎥⎦⎤⎢⎣⎡2t L 2解:⎰=tdt 2t 2Θ(4)位移定理实位移定理:()[]()s F e -t f L s ⋅=-ττ● 例5:()()s F0 t 01 t 0 10 t 0t f 求⎪⎩⎪⎨⎧><<<= 解:)1t (1)t (1)t (f --=虚位移定理:()[]()a -s F t f e L at =⋅ (证略) ● 例6:求[]at e L ● 例7:[]()223s s 223t -53s 3s 5s s cos5t e L +++=+=⋅+→● 例8:⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---)15t (5cos e L )35t (cos e L 2t2t ππ (5)终值定理(极限确实存在时) 证明:由微分定理()()()0f s sF dt e t f st 0-='-∞⎰取极限:()()()0f s sF lim dt e t f lim 0s st 00s -='→-∞→⎰∴有:()() s sF lim f 0s →=∞证毕● 例9:()()()b s a s s 1s F ++=求()f ∞● 例10:()0s s lim t sin f 220s t =+≠=∞→∞→ωωω 拉氏变换附加作业 一. 已知f(t),求F(s)=? 二.已知F(s),求f(t)=? 5.拉氏反变换 (1) 反变换公式:⎰∞+∞-=j j stds e ).s (F j21)t (f σσπ (2) 查表法——分解部分分式(留数法,待定系数法,试凑法) 微分方程一般形式:)s (F 的一般表达式为:[]r b r b r b r b C C a C a C m 1-m )1-m (1)m (01-n )1-n (1)n (+'+++=+'+++ΛΛ来自:(I )其中分母多项式可以分解因式为:)p s ()p s )(p s ()s (A n 21---=Λ (II))s (A p i 为的根(特征根),分两种情形讨论:I :0)s (A =无重根时:(依代数定理可以把)s (F 表示为:) 即:若i c 可以定出来,则可得解:而i c 计算公式: )s (F ).p s (lim c i p s i i-=→(Ⅲ)ip s 'i )s (A )s (B c ==(Ⅲ′)(说明(Ⅲ)的原理,推导(Ⅲ′) ) ● 例2:34s s 2s )s (F 2+++=求?)t (f =解:3s c1s c 3)1)(s (s 2s )s (F 21+++=+++=● 例3:34s s 55s s )s (F 22++++= ,求?)t (f =解:不是真分式,必须先分解:(可以用长除法) ● 例4:j 1s c j -1s c j)1j)(s -1(s 3s 22s s 3s )s (F 212++++=++++=+++=解法一:[]jt-jt t e )j 2(e )j 2(e 2j1--+=- (t cos j 2e e ,t sin j 2e e jt jt jt jt =+=---Θ) 解法二:II :0)s (A =有重根时:设1p 为m 阶重根,n 1m s ,s Λ+为单根 .则)s (F 可表示为: 其中单根n 1m c ,c Λ+的计算仍由(1)中公式(Ⅲ) (Ⅲ′)来计算. 重根项系数的计算公式:(说明原理) ●例5 3)(s 1)s(s 2s )s (F 2+++=求?)t (f =解:3s c s c 1s c 1)(s c )s (F 43122++++++=3.用拉氏变换方法解微分方程 ● 例 :u l l r l 222...=++ 解:s2L(s)22s s L 2=++]:[举例说明拉氏变换的用途之一—解线性常微分方程,引出传函概念。

如右图RC电路:初条件:c0c u )0(u = 输入 []t 1.E )t (u 0r = 依克西霍夫定律:L 变换:依(*)式可见,影响CR电路响应的因素有三个:r c01:u (t)2:u ⎫⎬⎭输入初条件分析系统时,为在统一条件下衡量其性能输入都用阶跃,初条件影响不考虑 3:系统的结构参数 ――只有此项决定系统性能c r U (s)1CRs 1U (s)=+零初条件下输入/出拉氏变换之比(不随输入形式而变) §2-3 线性定常系统的传递函数——上述CR电路的结论适用于一般情况 一般情况下:线性系统的微分方程:r(t)b (t)r b (t)r b (t)r b C(t)a (t)C a )t (C a )t (C m 1-m )1-m (1)m (0n 1-n )1-n (1)n (+'+++=+'+++ΛΛ简单讲一下: 传递函数的标准形式: I:D(s)为首1多项式型:根轨迹增益:K S K T1S T K G (s)**α+=+= II:D(s)为尾1多项式型: 开环增益:K 1TS KG(s)+= 开环增益的意义: 一般情况下:首1型:[][]*1n *1n *m1m *1m *-n 1m 1*n as a s s b s b s K )p s ()p s (s )z s ()z s (K G(s)ll l l l l -++++++=----=----ΛΛΛΛ (1)尾1型:[][]1s a s a s 1s b s b )1s T ()1s T (s )1s ()1s (K G(s)1n 1n 01m 1m 01m 1n ++++++=++++=-----ΛΛΛΛl l l l lττ (2)由(1)式:⎪⎩⎪⎨⎧-=-=∏∏==为极点为零点i -n 1i i *-n im 1i i *m p )p (a z )z (b ll (3) 比较(1)(2):)p ()z (K a b K K a b K -n 1i im1i i**-n *m *-n *m *∏∏==--===⋅lll (4)首1型多用于根轨迹法中. 尾1型多用于时域法,频域法中. 一 .传递函数定义:条件:⎪⎩⎪⎨⎧==='===='=--0)0(c)0(c )0(c 0)0(r)0(r )0(r )1m ()1n (ΛΛ 定义:有关概念:特征式,特征方程,特征根 零点i z ——使0G(s)=的s 值 极点j p ——使∞=G(s)的s 值n m a b K =:传递函数,增益,放大倍数→[])s (G s1.s lim)c(K a b 0s t 1r(t)n m →==∞== 结构图——系统的表示方法 G(s)分子分母与相应的微分方程之间的联系:⎭⎬⎫前面的系数式分子:前面的系数式分母:)s (R (*))s (C (*)完全取决于系统本身的结构参数注(1)为何要规定零初始条件?分析系统性能时,需要在统一条件下考查系统:输入:都用阶跃输入.初条件:都规定为零——为确定一个系统的起跑线而定.则系统的性能只取决于系统本身的特性(结构参数)(2) 为何初条件可以为零?1)我们研究系统的响应,都是从研究它的瞬时才把信号加上去的.2)绝大多数系统,当输入为0时,都处于相对静止状态.3)零初始条件是相对的,常可以以平衡点为基点(如小扰动为线性化时)(3) 零初条件的规定,并不妨碍非零初条件时系统全响应的求解.可以由G(s)回到系统微分方程,加上初条件求解.二 .传递函数的性质:b,a均为实常1.G(s) : 复函数,是自变量为s的有理真分式(m≤n)ii 数.m<n的解释:1). 实际系统都存在惯性,从微分方程上反映出来,即C(s)的阶次比R(s)阶次高.反映到G(s)上即有分母阶次n≥分子阶次m.2).反证法:设m>n则:说明:2.G(s): 只与系统本身的结构参数有关与输入的具体形式无关.输入变时,C(s)=G(s)R(s)变,但G(s)本身并不变化但G(s)与输入、输出信号的选择有关.r(t),c(t)选择不同,G(s)不同.(见前CR电路.)3. G(s)与系统的微分方程有直接联系4. [])t (k L G(s)(t)r(t)δ==→G(s)是系统单位脉冲响应的拉氏变换 5. G(s)与系统相应的零极点分布图对应G(s)的零极点均是复数,可在复平面上表示: 若不计传递函数,G(s)与其零极点分布图等价. 例:*2(2)G(s)(3)(22)s s s s K +=+++G(s)⇔系统零极点分布图 ⇔系统性能⎩⎨⎧.动态特性稳定性;若当系统参数发生变化时,分析其特性:1) 用解微分方程法十分繁琐——一个元部件参数改变,影响i i b ,a ,得反复解2) 若掌握了零极点分布与系统性能之间的规律性,则当某个元部件的参数改变时,i i b ,a 变化,零极点位置变化,系统性能的变化规律就能掌握了,这样,我们可以有目的地改变某些参数,改善系统的性能,且免除了解微分方程的烦恼。

相关文档
最新文档