数字找规律30题(入门)
找规律的数学题一年级

找规律的数学题一年级引言数学作为一门学科,对于孩子的综合素质培养具有重要意义。
其中,找规律是培养孩子逻辑思维和数学思维的关键环节之一。
本文将介绍一些适合一年级学生的找规律数学题目,帮助孩子在学习中培养对数学的兴趣和理解能力。
问题一题目:在下面的数列中找规律,然后填空。
2, 4, 6, ,解法:这个数列中的规律是每个数都比前一个数增加2。
所以下一个数应该是8,再下一个数是10。
因此,填空处的答案是8和10。
问题二题目:下面的图形中有一个数字缺失,找出规律并填写缺失的数字。
12 34 5 67 _ 8 9解法:观察每一行的数字,我们可以发现第一行有1个数字,第二行有2个数字,第三行有3个数字,以此类推。
所以第四行应该有4个数字,而图中缺失的位置处应该填上数字10。
因此,填空处的答案是10。
问题三题目:以下是一个数表,请找出规律,在空格中填写正确的数字。
数字结果1 32 63 __4 __5 __解法:观察数字列和结果列,我们可以发现结果列中的数字是数字列中的数字乘以2得到的。
所以,对于空格处应填写的数字分别是6、8和10。
因此,填空处的答案是6、8和10。
问题四题目:数字序列2, 4, 8, 16, 32, _中的数字遵循着什么规律?找出规律并填写下一个数字。
解法:观察这个数列,可以发现每个数字都是前一个数字乘以2得到的。
所以下一个数字应该是32乘以2得到的64。
因此,下一个数字是64。
结论通过以上几个例子,我们可以看到通过找规律可以帮助孩子培养逻辑思维和数学思维能力。
在一年级学习阶段,适当引导孩子进行这样的练习,能够激发他们对数学的兴趣,提高他们的数学能力。
希望本文提供的找规律数学题目能够帮助到您和孩子们的学习。
(完整版)七年级数学找规律题

归纳—猜想~~~找规律给出几个具体的、特殊的数、式或图形,要求找出其中的变化规律,从而猜想出一般性的结论.解题的思路是实施特殊向一般的简化;具体方法和步骤是(1)通过对几个特例的分析,寻找规律并且归纳;(2)猜想符合规律的一般性结论;(3)验证或证明结论是否正确,下面通过举例来说明这些问题. 一、数字排列规律题 1、观察下列各算式:1+3=4=2的平方,1+3+5=9=3的平方,1+3+5+7=16=4的平方… 按此规律(1)试猜想:1+3+5+7+…+2005+2007的值?(2)推广: 1+3+5+7+9+…+(2n-1)+(2n+1)的和是多少 ?2、下面数列后两位应该填上什么数字呢?2 3 5 8 12 17 __ __3、请填出下面横线上的数字。
1 1 2 3 5 8 ____ 214、有一串数,它的排列规律是1、2、3、2、3、4、3、4、5、4、5、6、……聪明的你猜猜第100个数是什么?5、有一串数字 3 6 10 15 21 ___ 第6个是什么数?6、观察下列一组数的排列:1、2、3、4、3、2、1、2、3、4、3、2、1、…,那么第2005个数是( ). A .1 B .2 C .3 D .47、100个数排成一行,其中任意三个相邻数中,中间一个数都等于它前后两个数的和,如果这100个数的前两个数依次为1,0,那么这100个数中“0”的个数为 _________个. 二、几何图形变化规律题1、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●…… 从第1个球起到第2004个球止,共有实心球 个.2、观察下列图形排列规律(其中△是三角形,□是正方形,○是圆),□○△□□○△□○△□□○△□┅┅,若第一个图形是正方形,则第2008个图形是 (填图形名称). 三、数、式计算规律题 1、已知下列等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62;④ 13+23+33+43=102 ;由此规律知,第⑤个等式是 . 2、观察下面的几个算式: 1+2+1=4, 1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果: 1+2+3+…+99+100+99+…+3+2+1=____.3、1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+()121+=n n n ,其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…()1+n n = ? 观察下面三个特殊的等式()2103213121⨯⨯-⨯⨯=⨯()3214323132⨯⨯-⨯⨯=⨯()4325433143⨯⨯-⨯⨯=⨯将这三个等式的两边相加,可以得到1×2+2×3+3×4=2054331=⨯⨯⨯读完这段材料,请你思考后回答:⑴=⨯++⨯+⨯1011003221⑵()()=++++⨯⨯+⨯⨯21432321n n n ⑶()()=++++⨯⨯+⨯⨯21432321n n n 4、,,,,已知:24552455154415448338333223222222⨯=+⨯=+⨯=+⨯=+=+⨯=+b a aba b 则符合前面式子的规律,,若…21010 参考答案:一、1、(1)1004的平方(2)n+1的平方2、23 30。
一年级找规律的题20道数字

一年级找规律的题20道数字一年级学生被要求做找规律的数字题,对他们来说是一项挑战。
所谓“找规律”,即根据数字的变化,找出数字之间的联系,从而推算出究竟有怎样的规律。
找规律是孩子们学习数理化中最具挑战性的一项内容。
下面,是20道备受一年级学生欢迎的找规律的数字题:1. 8、8、16、24、___,接下来的数字是?2. 10、20、30、___,接下来的数字是?3. 4、12、36、___,接下来的数字是?4. 12、6、3、___,接下来的数字是?5. 3、4、6、8、____,接下来的数字是?6. 18、___、36、72,接下来的数字是?7. 14、___、28、56,接下来的数字是?8. 6、10、14、___,接下来的数字是?9. 8、___、64、512,接下来的数字是?10. 20、___、80、320,接下来的数字是?11. 5、10、___、40,接下来的数字是?12. 9、___、81、729,接下来的数字是?13. 16、32、___、256,接下来的数字是?14. 6、___、54、432,接下来的数字是?15. 4、___、64、1024,接下来的数字是?16. 14、___、112、896,接下来的数字是?17. 5、15、45、___,接下来的数字是?18. 7、21、___、84,接下来的数字是?19. 2、6、18、___,接下来的数字是?20. 3、___、63、504,接下来的数字是?答案分别为:1. 32 2. 40 3. 108 4. 1.5 5. 12 6. 27 7. 21 8.18 9. 16 10. 40 11. 20 12. 27 13. 64 14. 9 15. 16 16. 28 17. 135 18. 42 19. 54 20. 126。
一年级学生可以通过不同的方式来解决这些找规律的数字题。
最重要的是,他们需要仔细观察数字的排列,尝试找到数字之间的相似性,以及它们的变化规律。
找规律填数含答案

找规律填数小朋友们,在学习和生活中,我们经常会遇到许多按一定顺序排列起来的数。
在数学上,我们把这样的一组数叫做“数列”。
找规律填数,就是先通过对数列的观察,再经过严密的逻辑推理,然后发现数列中数的排列规律,并依据这个规律把所缺的数填写出来,从而达到解决问题的目的。
这一讲,就让我们一起来探讨数列中的奥秘吧!例1.找出下面各数的排列规律,在括号里填上合适的数。
〈1〉1,2,3,4,(),()〈2〉2,4,6,8,(),()〈3〉45,40,35,(),()点拨:〈1〉在这个数列中,通过观察可以发现,这一列数越来越大,而且后一个数都比前一个数多1,也就是说相邻两个数的差都是1,因此,括号里应按顺序填上5,6.〈2〉根据上题的方法,依次求出相邻两数的差,可以发现这列数的排列规律是:从第二个数起,后一个数都比前一个数多2,因此,括号里应按顺序填上10,12.〈3〉也可以用下面的计算过程来推算45 40 35 30 (25) (20)-5 -5 -5 -5 -5例2.找规律填数.〈1〉1,2,4,7,11,(),()〈2〉1,3,7,13.21,(),()〈3〉1,2,4,8,16,(),()点拨:〈1〉通过观察和计算我们发现,在这一列数中,数也在逐渐增加,但每次增加的数并不相同,具体变化如下:第一个数加1得到第二个数,第二个数加2得到第三个数,第三个数加3得到第四个数,第四个数加4得到第五个数,依次推算,第五个数应该加5得到第六个数是16,第六个数加6得到第七个数是22,也就是说,每次增加的数都比上次增加的数多1,也可以用下面的计算过程来推算:1 2 4 7 11 (16)(22)+1 +2 +3 +4 +5 +6〈2〉这一列数每次增加的数都比上次增加的数多2.1 3 7 13 21 (31) (43)+2 +4 +6 +8 +10 +12〈3〉这一列数每次增加的数都是它本身,第一个数是1,再加上1得到第二个数,第二个数是2,再加上2得到第三个数,第三个数是4,再加上4得到第四个数,第四个数是8,再加上8得到第五个数,依次推算,第五数是16,也应该加上16得到第六个数是32,第六个数是32,也应该加上32得到第七个数是64.可以用下面的计算过程来推算:1 2 4 8 16 (32)(64)+1 +2 +4 +8 +16 +32例3.寻找下面一列数的规律,在()填上合适的数.〈1〉1,3,1,5,1,7,(),()〈2〉17,2,14,2,11,2,(),()〈3〉25,6,20,7,15,8,(),()点拨:〈1〉通过观察可以发现,这一列数是间隔着变化的。
奥数 找规律(30道选择题、20道解答题)试题及解析

找规律一、选择题(共30小题)1.一个数串219⋯,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有( )个不出现在该数串中.A.1B.2C.3D.42.有一种数,是以法国数学家梅森的名字命名的,它们就是形如21(n n -为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如2213-=就是第一个梅森质数,第一个梅森合数是( )A.4B.15C.127D.20473.一些小球按下面的方式堆放,第7堆小球有( )个.A.19B.20C.21D.22 4.如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是( )A.猜想与尝试B.特例找规律C.画图D.列表5.如图,一张桌子可以坐4人,两张桌子拼起来可以坐6人,三张桌子拼起来可以坐8人.像这样( )张桌子拼起来可以坐40人.A.17B.18C.19D.206.先找出规律,然后在括号里填上适当的数:23,4,20,6,17,8,14,10,( ),()( )A.12,13B.13,12C.11,12D.12,147.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是( )米.A.2.6B.2.4C.2.2D.2.08.在下面的两个图形中发现其中四个数的关系,进而在第三个图形中的空白三角形中填入适当的数( ),使该图中四个数也符合上述关系.A.9B.12C.10D.119.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,⋯,依此类推,由正n 边形“扩展”而来的多边形的边数记为(3n a n … ),则345111120146051n a a a a +++⋯+=,那么(n = )A.2014B.2015C.2016D.201710.观察下列图形,“?”位置对应的图形是( )A. B. C. D.11.把足够大的一张厚度为0.1mm纸连续对折,要使对折后的整叠纸总厚度超过12mm,至少要对折()A.6次B.7次C.8次D.9次12.有一组式子:2a,32a-,43a,54a-⋯从左往右数的第10个式子是下面算式的第()个.A.1110aB.1110a- C.1011a- D.1111a-13.找出规律,将你认为合适的数填入(),2、4、3、9、4、16、5、()、()、36、7、⋯那么正确的数是()A.18、6B.22、6C.25、6D.2514.有一列数,开头四个是2,0,1,3;从第5个数开始,每个数是前面四个数的和除以4所得的余数,那么这列数中的第2013个数是()A.0B.1C.2D.315.有一列数,第1个数是22,第2个数是12,从第3个数开始,每个数是它前面两个数的平均数,这列数的第10个数的整数部分是()A.17B.14C.15D.1616.杰克和吉莉每人各有一只水壶,其中都装有1升水.第一天,杰克把他壶中的1毫升水倒入吉莉的壶中,第二天吉莉把她的壶中的3毫升水倒入杰克的壶中,第三天杰克把他壶中的5毫升水倒入吉莉的壶中,这样继续做下去,其中每个人倒出的水比前一天从对方得到的水多2毫升.那么第101天结束后,杰克壶中有()毫升水?(1升1000=毫升)A.799B.899C.900D.100017.下列图形,第10个图中△比〇多()个A.44B.60C.56D.4518.根据1()1A,1()8B,1()27C,1()64D,(E)⋯⋯中数的变化规律,E中的数是()A.165B.181C.1125D.121619.一本童话书,每两页之间有3页插图,也就是说3页插图前后各有1页文字.那么第36页是()A.插图B.文字20.下面空白的椭圆内应填入的数是()A.1730B.1750C.1780D.179021.观察下面图形我们发现:第一个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第6个图形中正方形的个数是()A.80B.81C.90D.9122.下列一列数中:5、8、11、14⋯,第()个数为2009.A.667B.668C.669D.70023.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入⋯12345⋯输出⋯1225310417526⋯那么,当输入数据是8时,输出的数据是()A.861B.863C.865D.86724.动物园里猩猩比狒狒多,猴子比猩猩多.一天,饲养员拿了十箱香蕉分给它们.每只猩猩比每只狒狒多分一根,每只猴子比每只猩猩多分一根.分完后,只剩下2根香蕉.如果每箱香蕉数量相同,都是40多个,而且猴子比狒狒多6只,猩猩有16只.那么,动物.园里有( )只猴子.A.18B.19C.20D.1725.数列1,2,4,5,10,11,22,23,46,47⋯,它形成的规律:第2项等于第1项加1的和,第3项等于第2项的2倍,第4项等于第3项加1的和,第5项等于第4项的2倍,⋯,如此继续下去,得到上面的数列.那么,这个数列的第100项的个位数字是( )A.2B.5C.7D.826.盒中原有7个小球,魔术师从中取出若干个球,把每个球都变成7个小球,将其放回盒中;他又由其中取出若干个球,把每个球都变成7个小球,再将其放回盒中;⋯,如此进行到某一时刻,当魔术师停止变魔术时,盒中球的总数可能是()A.2003个B.2004个C.2005个D.2006个27.在一个没有余数的除法算式里,如果被除数扩大6倍,除数缩小2倍,那么商的变化是()A.扩大12倍B.缩小2l倍C.扩大3倍D.缩小3倍28.按照如图所示的规律,图6中小三角形共有()个.A.53B.51C.49D.4729.给出一列11,21,12,31,22,13,L,1k,12k-,L,1k.在这列数中,第40个值等于1的项是这列数中第()项.A.3120B.3121C.3200D.320130.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,那么第10个图形中的小黑点个数是( )个.A.100B.90C.91D.101二、解答题(共20小题)31.以下一串密码代表一句话,数字代表拼音字母顺序,其中(28,20)代表“我”,那么这串密码代表的这句话是什么?(28,20)(6,14)(19,14)(31,13,20,19,12)(12,26,20)32.小强编了一个程序:从a 开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法).每次做加法时,将上次运算的结果加2或加(3)-;每次做乘法时,将上次运算的结果乘以2或乘以3.例如:24a 可以这样得到3a ⨯−−→2232322332646112212124224a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→请你用此程序得到8a ,写出过程.33.有12个位置,每个位置放一个自然数.若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”.请问含1992这个数的好串数共 个.34.称分母是分子的3倍少1的分数为“可儿”,例如25就是“可儿”,将分数320写成两个“可儿”之积,这两个“可儿”是 .35.2017位同学排成一列依次报数.若某位同学报的是一位数,后面的同学就报这个数的2倍;若某位同学报的是两位数,后面的同学就报其个位数字与5的和.已知一位同学报1,到了第100位同学,他却把前面那位同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规则继续报数,直到最后一位同学报的数是5.那么第100位同学所报的数是把前一位同学报的数加上了多少?36.有一列数2,9,8,2,6,⋯从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9872⨯=的个位数字是2.问这一列数第2003个数是几?37.2017位同学从左到右排成一行,然后按如下规律从左向右报数:先让第一位同学报4,第二位同学报9,然后从第三位同学开始,每位同学都把自己前面两位同学所报的数相乘,再报出乘积的个位来.试问,最后一位同学报的是几?38.(1)今天是3月1日,小明买了一些橙子,他如果每天吃3个,十多天能吃完,最后一天只吃2个;如果小明每天吃4个,不到十天就吃完了,最后一天吃了3个,那么,这些橙子原来有多少个?(2)小明好奇地看了看这一年3月份的日历,发现3月份有四个星期日,却有五个星期六,那么今天(3月1日)是星期几?39.黑板上先写下一串数:1,2,3,⋯,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?40.例2.根据下表中数的排列规律,在空格里填上适当的数.(1)13207917859(2)247536126141641.按照下面的规律在黑板上写整数,:一开始写1,然后每一次操作在它后面写上比它大1的数.例如,一开始的时候,黑板上的数是1.第一次操作:比1大1的数是2,就在它后面写上2,现在黑板上的数是12;第二次操作:比黑板上的12大1的数是13,就在它后面连写上13,现在黑板上的数就是1213;以此类推⋯(1)请求出第三次操作后黑板上的数是多少?(2)当黑板上第一次出现“321”时,是在第几次操作之后?(3)请求出从左数第2016位数字是多少?42.某年,端午节距离儿童节和父亲节的天数相同,在月历中与六月最后一天同列,父亲节是六月的第三个星期日,则该年的父亲节是六月日.(如图是某个月的月历示意图)43.将自然数1,2,3,4,从小到大无间隔地排列起来,得到:1234567891011121314,这串数码中,当偶数数码首次连续出现5个时,其中的第一个(偶)数码所在位置从左数是第多少位?44.等边三角形的边长3厘米,现将三角形ABC沿一条直线翻滚30次,如图:求A点经过的路程的长是多少厘米?(π取3.14).45.一棵生命力极强的树苗,第一周在树干上长出2条树枝(如图1),第二周在原先长出的每条树枝上又长出2条新的树枝(如图2),第三周又在第二周新长出的每条树枝上再长出2条新枝(如图3),这棵树苗按此规律生长,到第十周新的树枝长出来后,共有条树枝.46.1,1,3,2,5,4,7,8,9,16, , ,13,64.47.一列数,其前七项依次为1,1,3,4,5,9,7,第8项是什么?说明理由.48.在棋盘上滚动骰子,使骰子的一面和棋盘格的大小相等,然后将骰子以棱为轴,滚动到邻近的棋盘格,每滚动一次,骰子朝上一面的数字就会变化.如果骰子的初始位置如图1,当骰子滚动六次到达对角顶点时(如图2),那么,第一步、第四步、第六步朝上的面分别是几点?(说明:骰子的相对两个面的点数之和为7)49.在平面上用长度为5cm 的火柴棒摆正方形,摆出1个边长为5cm 的正方形需要4根火柴,摆出2015个这样的正方形最少需要多少根火柴?说明你的摆法(不必画图).50.如图所示,圆周上的两个点1A 、2A 将圆等分成2份,在这两个点处写上14;圆周上的两个点1A 、2A 再将两段半圆弧等分,在点3A 、4A 处分别写上相邻2个数之和;如此继续这样操作,问能否出现圆周上所有数字之和2015?若可能,请求出经过了多少次操作?若不能,请说明理由.参考答案与试题解析一、选择题(共30小题)1.一个数串219⋯,从第4个数字开始,每个数字都是前面3个数字和的个位数.下面有4个四位数:1113,2226,2125,2215,其中共有( )个不出现在该数串中.A.1B.2C.3D.4【答案解析】枚举法219的数字和是12,接下来就是2192数字和是12,接下来就是2922的数字和是13,接下来就是3223的数字和为7,接下来就是7237的数字和为12,接下来的数2以此类推数字为:2192237221584790651281102⋯规律总结数字和的尾数呈现两奇数两个偶数的周期规律.故选:C .2.有一种数,是以法国数学家梅森的名字命名的,它们就是形如21(n n -为质数)的梅森数,当梅森数是质数时就叫梅森质数,是合数时就叫梅森合数.例如2213-=就是第一个梅森质数,第一个梅森合数是( )A.4B.15C.127D.2047【答案解析】选项:214n A -=,n 无整数解;选项:2115n B -=,n 为4,但n 不是质数,故舍去;选项:21127n C -=,n 为7,127不是合数,故舍去;选项:212047n D -=,n 为11,n 为质数,且20472389=⨯,是合数,满足条件. 故选:D .3.一些小球按下面的方式堆放,第7堆小球有( )个.A.19B.20C.21D.22【答案解析】5813+=第7堆小球有:13821+=;故选:C.4.如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是()A.猜想与尝试B.特例找规律C.画图D.列表【答案解析】如图由“”复制组合成的,探索复制组合100次后的阴影部分占整个组合图的几分之几问题,解决的最优策略是特例找规律;故选:B.5.如图,一张桌子可以坐4人,两张桌子拼起来可以坐6人,三张桌子拼起来可以坐8人.像这样()张桌子拼起来可以坐40人.A.17B.18C.19D.20【答案解析】第一张桌子可以坐4人;拼2张桌子可以坐4216+⨯=人;拼3张桌子可以坐4228+⨯=人;故n张桌子拼在一起可以坐42(1)22+-=+.n n当2240n=,n+=时,19答:像这样19张桌子拼起来可以坐40人.故选:C.6.先找出规律,然后在括号里填上适当的数:23,4,20,6,17,8,14,10,(),()()A.12,13B.13,12C.11,12D.12,14【答案解析】根据上面的分析,第9个数应该是14311+=,-=,第10个数应该是10212故选:C.7.如图,有一排间距相同但高度不等的小树,树根成一条直线,树顶也成一条直线,这两条直线成45度角,最高的小树高2.8米,最低的小树高峰1.4米,那么从左向右数第4棵树的高度是()米.A.2.6B.2.4C.2.2D.2.0【答案解析】因为:树根成一条直线,树顶也成一条直线,45∠=︒,最高的小树高 2.8米,最低的小树高峰A1.4米,所以 2.8BC AC AB=-=米,AC=米, 1.4AB=米, 1.4又因为:这排树的间距相同,所以:÷=(米)1.470.2⨯+0.24 1.4=+0.8 1.4=(米)2.2答:那么从左向右数第4棵树的高度是2.2米.故选:C.8.在下面的两个图形中发现其中四个数的关系,进而在第三个图形中的空白三角形中填入适当的数(),使该图中四个数也符合上述关系.A.9B.12C.10D.11【答案解析】54210⨯÷=所以,第三个图形中的空白三角形中填入的数是10.故选:C.9.如图,第(1)个多边形由正三角形“扩展”而来,边数记为a,第(2)个多边形由正方3形“扩展”而来,边数记为a,⋯,依此类推,由正n边形“扩展”而来的多边形的边4数记为(3na n…),则345111120146051na a a a+++⋯+=,那么(n=)A.2014B.2015C.2016D.2017【答案解析】33(22)34a=+=⨯,44(23)45a=+=⨯,55(24)56a=+=⨯,⋯(1)na n n=+,∴11112014344556(1)6051n n+++⋯+=⨯⨯⨯+,∴11111111201434455616051n n-+-+-+⋯+-=+,∴112014316051n-=+,12017n∴+=,2016n∴=.10.观察下列图形,“?”位置对应的图形是()A. B. C. D.【答案解析】再逆时针旋转90︒是.故选:C .11.把足够大的一张厚度为0.1mm 纸连续对折,要使对折后的整叠纸总厚度超过12mm ,至少要对折( ) A.6次B.7次C.8次D.9次【答案解析】设对折n 次,由此可得, 0.1212n ⨯> 2120n = 72128= 6264= 64120128<<所以,7n = 答:至少要对折7次. 故选:B .12.有一组式子:2a ,32a -,43a ,54a -⋯从左往右数的第10个式子是下面算式的第( )个.A.1110a B.1110a -C.1011a -D.1111a -【答案解析】由题意,奇数项为正,偶数项为负,分母是正整数,分子是1n a +,所以从左往右数的第10个式子是1110a -,故选:B .13.找出规律,将你认为合适的数填入( ),2、4、3、9、4、16、5、( )、( )、36、7、⋯那么正确的数是( ) A.18、6B.22、6C.25、6D.25【答案解析】注意到:4是2的平方,9是3的平方,16是4的平方,25是5的平方,36是6的平方,⋯根据这个规律,可知中间两个括号分别应填25和6.故选:C.14.有一列数,开头四个是2,0,1,3;从第5个数开始,每个数是前面四个数的和除以4所得的余数,那么这列数中的第2013个数是()A.0B.1C.2D.3【答案解析】(2013)4+++÷64=÷=⋯12所以第5个数是2;(0132)4+++÷=÷64=⋯12第6个数是2;+++÷(1322)4=÷8420=⋯第7个数是0;+++÷(3220)4=÷74=⋯13(2203)4+++÷=÷74=⋯13第9个数是3;+++÷(2033)4 =÷8420=⋯第10个数是0;+++÷(0330)4 =÷64=⋯12第11个数是2;(3302)4+++÷=÷84=⋯20第12个数是0;+++÷(3020)4 =÷5411=⋯第13个数是1;+++÷(0201)4 =÷34=⋯03此时这些数是:2,1,0,3,2,2,0,3,3,0,2,0,1,3再向下计算又会是2,2,0,3,3,0,2,0,1,3⋯看以看出这些数是以“2,1,0,3,2,2,0,3,3,0”为一个循环不断循环出现这个循环节中有10个数字;2013102013÷=⋯余数是3,所以第2013个数第202个循环中的第3个数字,是0.故选:A.15.有一列数,第1个数是22,第2个数是12,从第3个数开始,每个数是它前面两个数的平均数,这列数的第10个数的整数部分是()A.17B.14C.15D.16【答案解析】第三个数:(2212)217+÷=第四个数:(1217)214.5+÷=第五个数:(1714.5)215.75+÷=第六个数:(14.515.75)215.125+÷=第七个数:(15.7515.125)215.4375+÷=⋯再向下计算由于两个数都不大于15.5,所以它们的平均数的整数部分只能是15.答:这列数的第10个数的整数部分是15.故选:C.16.杰克和吉莉每人各有一只水壶,其中都装有1升水.第一天,杰克把他壶中的1毫升水倒入吉莉的壶中,第二天吉莉把她的壶中的3毫升水倒入杰克的壶中,第三天杰克把他壶中的5毫升水倒入吉莉的壶中,这样继续做下去,其中每个人倒出的水比前一天从对方得到的水多2毫升.那么第101天结束后,杰克壶中有()毫升水?(1升1000=毫升)A.799B.899C.900D.1000【答案解析】-=(毫升)312752-=(毫升)⋯1012501÷=⋯(天)前100天杰克的壶中增加250100⨯=(毫升)第101天杰克倒出(1011)21201-⨯+=(毫升)201100101-=(毫升)1升1000=(毫升)1000101899-=(毫升)故选:B.17.下列图形,第10个图中△比〇多()个A.44B.60C.56D.45【答案解析】第10图中△的个数1010100⨯=(个)〇的个数4(102)444⨯+-=(个)1004456-=(个)故选:C.18.根据1()1A,1()8B,1()27C,1()64D,(E)⋯⋯中数的变化规律,E中的数是()A.165B.181C.1125D.1216【答案解析】35125=所以,这个分数是1 125.故选:C.19.一本童话书,每两页之间有3页插图,也就是说3页插图前后各有1页文字.那么第36页是()A.插图B.文字【答案解析】3649÷=(组),所以第36页和第四页相同,应该是插图;故选:A.20.下面空白的椭圆内应填入的数是()A.1730B.1750C.1780D.1790【答案解析】1700501750+=故选:B.21.观察下面图形我们发现:第一个图中有1个正方形,第2个图中共有5个正方形,第3个图中共有14个正方形,按照这种规律下去的第6个图形中正方形的个数是()A.80B.81C.90D.91【答案解析】第一个图形有1个正方形,第二个图形有22512=+个正方形,第三个图形有22214123=++个正方形,⋯第六个图形有14916253691+++++=个正方形.故选:D.22.下列一列数中:5、8、11、14⋯,第()个数为2009.A.667B.668C.669D.700【答案解析】这是一个首项是5,公差是3的等差数列由5(1)32009n+-⨯=,可得669n=.故选:C.23.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:输入⋯12345⋯输出⋯1225310417526⋯那么,当输入数据是8时,输出的数据是()A.861B.863C.865D.867【答案解析】28165+=,所以输出的数是8 65.故选:C.24.动物园里猩猩比狒狒多,猴子比猩猩多.一天,饲养员拿了十箱香蕉分给它们.每只猩猩比每只狒狒多分一根,每只猴子比每只猩猩多分一根.分完后,只剩下2根香蕉.如果每箱香蕉数量相同,都是40多个,而且猴子比狒狒多6只,猩猩有16只.那么,动物.园里有( )只猴子.A.18B.19C.20D.17【答案解析】动物园里有x只猴子,则狒狒6x-只,猩猩有16只,狒狒分y根香蕉,猩猩1y+根,猴子2y+根,(2)(6)16(1)400x y y x y++-++>,261616xy x xy y y++-++,2(1)1016x y y=+++,假设19x=,383810164854400y y y+++=+>,48346y>,7.2y>,设:8y=,4854438y+=. 符合题意.故选:B.25.数列1,2,4,5,10,11,22,23,46,47⋯,它形成的规律:第2项等于第1项加1的和,第3项等于第2项的2倍,第4项等于第3项加1的和,第5项等于第4项的2倍,⋯,如此继续下去,得到上面的数列.那么,这个数列的第100项的个位数字是( )A.2B.5C.7D.8【答案解析】(991)248-÷=,48412÷=,没有余数,个位数就是4,它的下一项(第100项)的个位数就是:故选:B.26.盒中原有7个小球,魔术师从中取出若干个球,把每个球都变成7个小球,将其放回盒中;他又由其中取出若干个球,把每个球都变成7个小球,再将其放回盒中;⋯,如此进行到某一时刻,当魔术师停止变魔术时,盒中球的总数可能是()A.2003个B.2004个C.2005个D.2006个【答案解析】根据以上分析知:-÷=⋯,2003减7的差不是6的倍数,(20037)63324-÷=⋯,2004减7的差不是6的倍数,(20047)63325-÷=,2005减7的差是6的倍数,(20057)6333-÷=⋯,2006减7的差不是6的倍数,(20067)63331所以盒中球的总数可能是2005个.故选:C.27.在一个没有余数的除法算式里,如果被除数扩大6倍,除数缩小2倍,那么商的变化是()A.扩大12倍B.缩小2l倍C.扩大3倍D.缩小3倍【答案解析】例如80108÷=,被除数扩大6倍,由80变成480,除数缩小2倍,由10变成5,则商变为:480596÷=,商由8变成96,是商扩大了12倍;据此可知:被除数扩大6倍,除数缩小2倍,那么商扩大6212⨯=倍.故选:A.28.按照如图所示的规律,图6中小三角形共有()个.A.53B.51C.49D.47【答案解析】根据分析可得,2++(16)453=(个)答:图6中小三角形共有53个.故选:A.29.给出一列11,21,12,31,22,13,L,1k,12k-,L,1k.在这列数中,第40个值等于1的项是这列数中第()项.A.3120B.3121C.3200D.3201【答案解析】分子分母和为2的有1个,分子分母和为3的有2个,分子分母和为4的有3个,⋯,分子分母和为79的数有78个,123783081+++⋯+=(项),第40个值等于1的项分子分母和为80且为4040是这一数列中的第40项,3081403121+=(项).故选:B.30.观察图1至图5中小黑点的摆放规律,并按照这样的规律继续摆放,那么第10个图形中的小黑点个数是()个.A.100B.90C.91D.101【答案解析】根据图形分析可知:(用s表示图中小黑点的个数)1n=时,1s=;2n=时,3211s==⨯+;3n=时,7321s==⨯+;4n=时,13431s==⨯+;5n=时,21541s==⨯+;⋯;第n个图中小黑点的个数为(1)1n n-+.第10个图形中的小黑点个数是10(101)191⨯-+=.故选:C .二、解答题(共20小题)31.以下一串密码代表一句话,数字代表拼音字母顺序,其中(28,20)代表“我”,那么这串密码代表的这句话是什么?(28,20)(6,14)(19,14)(31,13,20,19,12)(12,26,20)【答案解析】28代表w ,20代表o ,根据这个规律可以确定:(6,14)代表ai(19,14)代表ni(31,13,20,19,12)代表zhong(12,26,20)guo这些拼音对应的中文是“我爱你中国”.答:这串密码代表的这句话是“我爱你中国”.32.小强编了一个程序:从a 开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法).每次做加法时,将上次运算的结果加2或加(3)-;每次做乘法时,将上次运算的结果乘以2或乘以3.例如:24a 可以这样得到3a ⨯−−→2232322332646112212124224a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→请你用此程序得到8a ,写出过程.【答案解析】利用其程序运算如下:2232322224214241828a a a a a a a a +⨯-⨯-⨯+−−→+−−→+−−→+−−→+−−→-−−→-−−→.33.有12个位置,每个位置放一个自然数.若第二个数与第一个数相等,从第三个数开始,每个数恰好是它前边所有数的总和,则我们称这样的12个数为“好串数”.请问含1992这个数的好串数共 4 个.【答案解析】通过以上分析得出含1992这个数的好串数共.4个:249 249 498 996 1992 3984498⋯ 498 996 1992 3984 7968996⋯ 996 1992 3984 7968159361992⋯ 1992 3984 7968 15936 31872⋯34.称分母是分子的3倍少1的分数为“可儿”,例如25就是“可儿”,将分数320写成两个“可儿”之积,这两个“可儿”是25、38.【答案解析】362323 20405858⨯===⨯⨯即,这两个“可儿”是25、38.故答案为:25、38.35.2017位同学排成一列依次报数.若某位同学报的是一位数,后面的同学就报这个数的2倍;若某位同学报的是两位数,后面的同学就报其个位数字与5的和.已知一位同学报1,到了第100位同学,他却把前面那位同学报的数加上了另一个一位自然数,其他人都没有注意到,仍然按以前的规则继续报数,直到最后一位同学报的数是5.那么第100位同学所报的数是把前一位同学报的数加上了多少?【答案解析】按照规则将前面几位同学所报数写出:1,2,4,8,16,11,6,12,7,14,9,18,13,8,16⋯可以发现从第3位同学开始,每10位同学为一个周期,所以第99位同学报的数为7;由于最后一位同学报的数是5,往前倒推,应该是5、10、5、10⋯可知,第100位同学报的数只能为倒数第偶数个,应该是10,所以第100位同学报的数是把前一位同学报的数加上了3.36.有一列数2,9,8,2,6,⋯从第3个数起,每个数都是前面两个数乘积的个位数字.例如第四个数就是第二、第三两数乘积9872⨯=的个位数字是2.问这一列数第2003个数是几?【答案解析】(20032)63333-÷=⋯,可以知道这一列数第2003个数为第333组后面的第3个数是“6”.答:这一列数第2003个数是6.故答案为:637.2017位同学从左到右排成一行,然后按如下规律从左向右报数:先让第一位同学报4,第二位同学报9,然后从第三位同学开始,每位同学都把自己前面两位同学所报的数相乘,再报出乘积的个位来.试问,最后一位同学报的是几?【答案解析】从第三个同学开始,他们依次报出的数为6、4、4、6、4、4、6⋯(20172)36712-÷=⋯即循环周中的第2个数是4.答:最后一位同学报的是4.38.(1)今天是3月1日,小明买了一些橙子,他如果每天吃3个,十多天能吃完,最后一天只吃2个;如果小明每天吃4个,不到十天就吃完了,最后一天吃了3个,那么,这些橙子原来有多少个?(2)小明好奇地看了看这一年3月份的日历,发现3月份有四个星期日,却有五个星期六,那么今天(3月1日)是星期几?【答案解析】(1)【3,4】12=,12336-=(个)⨯=,36135答:这些橙子原来有35个.(2)31473-⨯=3月3日是星期六,那么3月2日是星期五,3月1日是星期四答:今天(3月1日)是星期四.39.黑板上先写下一串数:1,2,3,⋯,100,如果每次都擦去最前面的6个,并在这串数的最后再写上擦去的6个数的和,得到新的一串数,再做同样的操作,直到黑板上剩下的数不足6个.问:(1)最后黑板上剩下的这些数的和是多少?(2)最后所写的那个数是多少?【答案解析】依题意可知:(1)擦去1,2,3,4,5,6但是写上了21数字和没有变化.最后的数字和是123100+++⋯+的数字和为5050.(2)第一次擦下去的数字是1,2,3,4,5,6写上去的是21,第二次擦去的是7,8,9,10,11,12写上的数字是57.那么21与57的数字差为36.÷=⋯.说明擦去96个数字填上了16 个数字,这16个数字是以21位首项公差为100616436的等差数列.后来共20个数字.这20个数字为:97,98,99,100,21,57,93,129,165,201,237,273,309,345,381,417,453,489,525,561.然后20632÷=⋯.说明最后两个数字剩下了,新添加了3个数字,那么最后写的数字就是309,345,381,417,453,489的数字和为2394.答:(1)最后黑板上剩下的这些数的和是5050.(2)最后所写的那个数是2394.40.例2.根据下表中数的排列规律,在空格里填上适当的数.(1)13207917859(2)2475361261416【答案解析】(1)5914+=(2)(1416)260+⨯=故填14和60.41.按照下面的规律在黑板上写整数,:一开始写1,然后每一次操作在它后面写上比它大1的数.例如,一开始的时候,黑板上的数是1.第一次操作:比1大1的数是2,就在它后面写上2,现在黑板上的数是12;第二次操作:比黑板上的12大1的数是13,就在它后面连写上13,现在黑板上的数就是1213;以此类推⋯(1)请求出第三次操作后黑板上的数是多少?(2)当黑板上第一次出现“321”时,是在第几次操作之后?(3)请求出从左数第2016位数字是多少?【答案解析】(1)第二次操作:比黑板上的1213大1的数是1214,就是在它的后面写上1214,则需在黑板的数就是12131214答:第三次操作后黑板上的数是12131214.(2)黑板上的数是12,末位是12;第二次操作后,黑板上的数是1213,末两位是13;第三次操作后,黑板上的数是12131214,末两位14;⋯第n次操作后,黑板上的数的末两位是11n+,要想黑板出现“321”,须在末两位是32,与开头的1连起来才可以,第21。
找规律填数的各种题型

找规律填数的各种题型
稿子一:
嘿,亲爱的小伙伴们!今天咱们来聊聊找规律填数的那些有趣题型。
你看哈,有一种是递增型的。
比如说 1、3、5、7、(),这多简单呀,每次都多 2 嘛,所以括号里当然是 9 啦。
还有递减型的呢!像 10、8、6、4、(),每次都少 2 ,那括号里就得是 2 咯。
再说说这种间隔型的。
比如 2、5、2、8、2、11 ,你发现没,奇数位都是 2 ,偶数位依次加 3 ,那后面括号里该是 2 啦。
还有累加型的哟!像 1、2、4、7、11 、(),从第二个数开始,每次增加的数都比前一次多 1 ,所以括号里应该是 16 。
倍数型的也很常见呢!比如说 2、4、8、16 、(),每次都乘以 2 ,那就是 32 啦。
哎呀,找规律填数是不是还挺好玩的?多练练,咱们的小脑瓜会越来越聪明哟!
稿子二:
宝子们,咱们来唠唠找规律填数的各种题型哈。
先说说那种相邻两个数差值固定的,像 3、6、9、12 、(),每两个数之间都差 3 ,那括号里肯定是 15 呀。
有的是相邻两个数的比值固定。
比如说 2、4、8、16 、(),后面的数都是前面的 2 倍,那这里就得填 32 。
再有像这样的: 1、4、9、16 、(),这是平方数的规律,依次是 1 的平方,2 的平方,3 的平方,4 的平方,那括号里就是 25 啦。
怎么样,这些题型有没有让你觉得很有趣?多琢磨琢磨,咱们找规律填数的本领就会越来越强哒!。
大班数学找规律练习题

大班数学找规律练习题一、数字规律1. 请找出规律,并写出下一个数字:2, 4, 6, 8, ____2. 观察下列数字,找出规律,并写出下一个数字: 5, 10, 15, 20, ____3. 找出规律,补全数字:7, 14, 21, 28, ____4. 请根据规律,填写缺失的数字:9, 18, 27, ____, 453, 6, 9, 12, ____二、图形规律1. 找出规律,选择正确的图形:A. ○B. △C. □○ △ ○ △ ____2. 观察下列图形,找出规律,选择正确的图形:A. ○B. △C. □○ ○ △ △ ____3. 找出规律,补全图形:○ ○ □ □ ____4. 请根据规律,填写缺失的图形:△ △ ○ ○ ____○ ○ □ □ ○ ____三、颜色规律1. 找出规律,选择正确的颜色:A. 红色B. 蓝色C. 绿色红色蓝色红色蓝色 ____2. 观察下列颜色,找出规律,选择正确的颜色:A. 黄色B. 紫色C. 橙色黄色黄色紫色紫色 ____3. 找出规律,补全颜色:红色红色蓝色蓝色 ____4. 请根据规律,填写缺失的颜色:绿色绿色黄色黄色 ____橙色橙色紫色紫色 ____四、时间规律1. 找出规律,写出下一个时间:8:00, 9:00, 10:00, ____2. 观察下列时间,找出规律,并写出下一个时间: 12:00, 1:00, 2:00, ____3. 找出规律,补全时间:3:00, 4:00, 5:00, ____4. 请根据规律,填写缺失的时间:6:00, 7:00, ____, 9:0010:00, 11:00, 12:00, ____五、字母规律1. 找出规律,写出下一个字母:A, C, E, G, ____2. 观察下列字母,找出规律,并写出下一个字母: B, D, F, H, ____3. 找出规律,补全字母:I, L, O, ____, S4. 请根据规律,填写缺失的字母:P, R, T, ____, VU, T, S, R, ____六、动物规律1. 找出规律,选择正确的动物:A. 猫B. 狗C. 兔猫狗猫狗 ____2. 观察下列动物,找出规律,选择正确的动物:A. 鸟B. 鱼C. 蛇鸟鸟鱼鱼 ____3. 找出规律,补全动物:兔兔狗狗 ____4. 请根据规律,填写缺失的动物:猫猫兔兔 ____鱼鱼蛇蛇 ____七、植物规律1. 找出规律,选择正确的植物:A. 草B. 树C. 花草树草树 ____2. 观察下列植物,找出规律,选择正确的植物:A. 苹果B. 橙子C. 桃苹果苹果橙子橙子 ____3. 找出规律,补全植物:花花草草 ____4. 请根据规律,填写缺失的植物:树树花花 ____桃桃苹果苹果 ____八、生活用品规律1. 找出规律,选择正确的生活用品:A. 椅子B. 桌子C. 床椅子桌子椅子桌子 ____2. 观察下列生活用品,找出规律,选择正确的生活用品:A. 钟表B. 电视C. 电话钟表钟表电视电视 ____3. 找出规律,补全生活用品:床床椅子椅子 ____4. 请根据规律,填写缺失的生活用品:桌子桌子床床 ____电话电话钟表钟表 ____答案一、数字规律1. 102. 254. 365. 15二、图形规律1. A2. B3. ○4. ○5. □三、颜色规律1. A2. B3. 红色4. 绿色5. 橙色四、时间规律1. 11:002. 3:003. 6:004. 8:005. 1:00五、字母规律1. I2. J4. S5. Q六、动物规律1. B2. C3. 狗4. 猫5. 鱼七、植物规律1. B2. C3. 草4. 树5. 苹果八、生活用品规律1. A2. B3. 椅子4. 桌子5. 钟表。
小学数学找规律练习题

小学数学找规律练习题1. 观察下列数列,找出规律并填入缺失的数字:2, 4, 8, 16, __, 1282. 完成以下数列的填空:3, 6, 12, 24, __, 120, __3. 根据规律,计算下一个数字:1, 3, 6, 10, __4. 找出下列数列的规律,并填写下一个数:2, 5, 10, 17, __5. 观察下列数列,找出规律并填入缺失的数字:1, 4, 9, 16, __, 36, __6. 完成以下数列的填空:1, 2, 4, 8, __, 32, __7. 根据规律,计算下一个数字:2, 5, 10, 17, __8. 找出下列数列的规律,并填写下一个数:3, 7, 13, 21, __9. 观察下列数列,找出规律并填入缺失的数字:5, 10, 20, 40, __, 160, __10. 完成以下数列的填空:1, 3, 6, 10, __, 30, __11. 根据规律,计算下一个数字:1, 2, 4, 8, __12. 找出下列数列的规律,并填写下一个数:2, 4, 8, 16, __13. 观察下列数列,找出规律并填入缺失的数字: 1, 3, 6, 10, __, 21, __14. 完成以下数列的填空:2, 6, 18, 54, __, 486, __15. 根据规律,计算下一个数字:1, 4, 9, 16, __16. 找出下列数列的规律,并填写下一个数:3, 9, 27, 81, __17. 观察下列数列,找出规律并填入缺失的数字: 2, 8, 32, 128, __, 1024, __18. 完成以下数列的填空:1, 5, 14, 30, __, 70, __19. 根据规律,计算下一个数字:1, 3, 7, 15, __20. 找出下列数列的规律,并填写下一个数: 4, 16, 64, 256, __。