数字图形找规律练习题
小学一年级数学找规律练习题 (2)

小学一年级数学找规律练习题 (2)一.找规律【图形】试一试:请你仔细观察这列图:△○□△○□△○□△○□这是用△○□这3个图形按一个△.一个○.一个□的规律排列的.你还能用这3种图形排出和上面不一样的规律吗?找图形排列规律的关键是要仔细观察图形呈现出的形状.颜色.数量的变化来发现规律。
例 1.根据规律接着画练1.2.◆□◆□◆□◆□◆□3.★☆☆★☆☆★☆☆★☆☆★☆☆例 2.画出盒子里串的珠子练 2.例 3.根据规律接着画:练 3:1.圈一圈。
○△○△○△○△○△【△○】↓↑↓↑↓↓↑【↑↓】2.摆一摆。
□□○○○□□○○○□□○○○○○○○○○○○○○3.涂一涂。
◇◇◆◇◇◆◇◇◆◇◇◇?★★☆★★☆★★☆☆☆☆??4.画一画。
【1】♀♂♀♂♀♂【2】○○◇○○◇○○◇【3】请你用任意3种颜色的彩笔.用今天学会的方法帮小兔在墙上的格子里涂上有规律的颜色。
5.按顺序仔细观察下图.第三幅图?处怎样填?6.○●○○●●○○○●●●○○○○7.请你来指挥8.按规律给小树添上叶子。
9.画一画10.仔细看观察下图.想一想.第四幅图应画怎样的图形?■○○☆☆▽△☆■△○■11.按规律.接着画12.按规律画图【1】【2】【3】【4】仔细观察下图.想一想第3幅图“?”处应填什么图形?【5】观察下图的变化.想一想第4幅图应画上怎样的图形?二.找规律【数】【1】出示:1471013□□后面的数比前面的数().相邻的两个数都相差().□里填().【】。
【2】出示:按规律在横线上填合适的数.01030________100后面的数比前面的数().每一对相邻两数的差总比前一对相邻两数的差多().□里填().找数字排列规律的关键是要通过计算相邻两个数的差来发现规律。
1.找规律填数:(1)3579□13(2)353025□15□(3)□171513□(4)22358□(5)161631□2.你能在每朵花中写上一个数.使这些花也按一定的规律排列吗?3.按规律填数.使每组数列不一样.4.找找下列各数列的规律.在括号内填上合适的数。
数字找规律或图形找规律问题

数字找规律或图形找规律问题【夯实基础】【例题】找规律,并按照规律写出第n 个数. ① 1,3,5,7,9…….21n -(n 为正整数). ② 2,4,6,8,10……….. (n 为正整数). ③ 2,4,8,16,32……… (n 为正整数). ④ 2,5,8,11,14…….. (n 为正整数). ⑤ 2,5,10,17,26…….. (n 为正整数). ⑥ x -,x +,x -,x +,x -,x +……(n 为正整数). ⑦x +,x -,x +,x -,x +,x -……..(n 为正整数).⑧ 观察下列单项式:x ,23x -,35x ,47x -,59x ,…按此规律,可以得到第2005个单项式是___ ___.第n 个单项式怎样表示 .【解析】 ②2n ; ③ 2n ; ④ 31n -; ⑤ 21n +;⑥(1)n x -;⑦ 1(1)n x +-;⑧ 20054009x ,1(1)(21)n n n x +--【点评】一定要熟记这些常考数字的规律.【牛刀小试】1. 一组按规律排列的式子:3579234,,,,x x x x y y y y--(0≠xy ), 其中第6个式子是 , 第n 个式子是 (n 为正整数).2.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数). 3.如图,每个多边形的边长都大于2,分别以多边形的各顶点为圆心,1为半径画弧(弧的端点分别在多边形的相邻两边上),则第6个图形中所有弧的弧长的和是 ,第n 个图形中所有弧的弧长的和是 (n 为正整数)....第3个第2个第1个4. 对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自然数72的分裂数中最大的数是 ,自然数n 2的分裂数中最大的数是.5. 一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(01),,然后接着按图中箭头所示方向运动,即(00)(01)(11)(10)→→→→,,,,…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是_______6.如图,45AOB∠=,过OA上到点O的距离分别为1357911,,,,,,的点作OA的垂线与OB相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S,,,,.则第一个黑色梯形的面积=1S;观察图中的规律,第n(n为正整数)个黑色梯形的面积=nS.7.一组按规律排列的式子:2581114916,,,, 0aa a a a--≠,其中第8个式子是,第n个式子是(n为正整数).8.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.9.在平面直角坐标系中,我们称边长为1、且顶点的横、纵坐标均为整数的正方形为单位格点正方形.如图,在菱形ABCD中,四个顶点坐标分别是(-8,0),(0,4),(8,0),(0,-4),则菱形ABCD能覆盖的单位格点正方形的个数是个;若菱形A n B n C n D n的四个顶点坐标分别为第1个图形第2个图形第3个图形第4个图形0 1 2 3 xy123…y8-84OABC(-2n ,0),(0, n ),(2n ,0),(0,-n )(n 为正整数),则菱形A n B n C n D n 能覆盖的单位格点正方形的个数为 (用含有n 的式子表示).10. 如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1,……,如此作下去,若OA =OB =1,则第n 个等腰直角三角形的面积S n =________(n 为正整数).[牛刀小试参考答案]:1.136x y -, 211(1)n n nx y ++- 2. ())1(2111+-++n n3. 10π.(+4)πn4. 13, 2n -15. (5,0)6.4 ,)12(4-n7. 2364a- ;2131(1)n n n a +-- 8. (2)n n +或22n n +或2(1)1n +- 9. 48 n n 442- 10. 2)(b a a -【能力提升】1. (2009-2010海淀区期末考试第16题3分) 若一组按规律排成的数的第n 项为()1n n + (n 为正整数),则这组数的第10项为 ;若一组按规律组成的数为:2,6,12-,20,30,42-,56,72,90-,…,则这组数的 第3n (n 为正整数)项是 .2. (理工附中期中练习)在数列1,12,22,13,23,33,…,中,第100个数是___ .3. (2009绵阳市)将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.4.(2009-2010西城外国语期中考试第33题4分)按下面的程序计算,若开始输入的值x 为正整数,最后输出的结果为853,试求出满足条件的x 的所有值.第1列 第2列 第3列 第4列 第1行 12 3 第2行 6 5 4第3行 7 8 9 第4行12 1110……B 1B 2A 1A OB>800输出结果是否将值赋给x ,再次运算计算4x +1的值输入x5. (2009-2010西城外国语期中考试第22题2分)有一列数,按一定规律排成1,2-,4,8-,16,32-,…,其中某三个相邻数的和是3072,则这三个数中最小的数是 .6(2009-2010北京四中初一期中考试第34题3分)定义:a 是不为1的有理数,我们把11a -称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知113a =-,① 2a 是1a 的差倒数,则2a = ; ② 3a 是2a 的差倒数,则3a = ; ③ 4a 是3a 的差倒数,则4a = ……,依此类推,则2009a = .7.(丰台区2009-2010学年度第一学期期末练习)下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形 组成,第3个图案由 个基础图形组成,……,第n (n 是正整数)个图案由 个基础图形组成.……(3)(2)(1)[能力提升参考答案]:1. 110,()331n n -+2.将上述各组数分成如下几组:{}1、12,22⎧⎫⎨⎬⎩⎭、123,,333⎧⎫⎨⎬⎩⎭、……,可发现每一组中数的个数依次为1,2,3,…,设第100个数位于第n 组,则12110012n n +++-+++≤≤,即(1)(1)10022n n n n -+<<,故14n =.又前13组数的个数为1413912⨯=,又第n 组的数分母均为n ,故第100个数为914.3.670,3.4. 由题意:()85314213>0-÷=,()2131453>0-÷=,()531413>0-÷=,()13143>0-÷=,()1314>02-÷=1114<028⎛⎫-÷=- ⎪⎝⎭,∴只有213,53,13,3符合题意. (也可方程思想理解:∵ x 为正整数, ∴ 415x +≥. 当 41853x +=时,213x =. 当 41213x +=时,53x =. 当 4153x +=时,13x =. 当 4113x +=时,3x =.综上所述,213x =或53x =或13x =或3x =).5. 2048-;(提示:(2)43072a a a +-+=)6. ① 34;② 4;③ 13-;34. 7. 10,3n +1.【中考在线】(2008北京中考)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数).【解析】207b a -,31(1)n n nb a --. (2010北京中考)美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开, 用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后 放在桌面上,下面四个示意图中,只有一个....符合上述要求,那么这个示意图是( )【解析】B11a , 12a , 13a , 14a , 15a ,(2011北京中考)在右表中,我们把第i 行第j 列的数记为i j a ,(其中i ,j 都是不大于5的正整数),对于表中的每个数i j a ,规定如下:当i j ≥时,1i j a =,;当i j <时,0i j a =,.例如:当2i =,1j =时,211i j a a ==,,.按此规定,13a =,_______;表中的25个数中,共有______个1;计算111122133144155i i i i i a a a a a a a a a a ⋅+⋅+⋅+⋅+⋅,,,,,,,,,,的值为 .【解析】0, 15, 121a , 22a , 23a , 24a , 25a , 31a , 32a ,33a ,34a , 35a ,41a , 42a , 43a , 44a , 45a , 51a , 52a , 53a , 54a , 55a ,。
图形找规律专项练习60题有答案

图形找规律专项练习60题(有答案)ffl::• •• •• •■•■1234可坐56£10填表中缺少可坐人数___________2 •观察表中三角形个数的变化规律:条数三角6 ? ? …?形个数若三角形的横截线有 0条,则三角形的个数是 6;若三角形的横截线有 n 条,则三角形的个数是 _________ (用含n 的代数式表示)3•如图,在线段 AB 上,画1个点,可得3条线段;画2个不同点,可得 6条线段;画3个不同 点,可得10条线段;…照此规律,画 10个不同点,可得线段 ___________条CB ACD B方据它的规律,则最下排数字中 x 的值是 __________ ,y 的值是10 11 1 C 0 12 25 5 4 2 0 0 5 10 14 16 16 61 61 56 4S 32 16 0________ • 觀 x 富 审 畀* 审*5.下列图形都是由相同大小的单位正方形构成, 依照图中规律,第六个图形中有棒.7•图1是一个正方形,分别连接这个正方形的对边中点,得到图2;分别连接图2中右下角的小正方形对边中点,得到图 3;再分别连接图3中右下角的小正方形对边中点,得到图 4;按此方法继续下去,第 n 个图的所有正方形个数是 ______________ 个.4 •如图是由数字组成的三角形,除最顶端的 1以外,以下岀现的数字都按一定的规律排列•根 形.1---图形找规律 页20共页第6•如图,用相同的火柴棒拼三角形,依此拼图规律 ,第7个图形中共有 根火柴△第三个图案第二个图案8.观察下列图案:它们是按照一定规律排列的,依照此规律,第6个图案中共有___________ 个三角形.9 •如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是_________ ;第六个正方形的面积是1个图形有1个小正方形,第2个图形有3个小正方形,第3个图形有6个小正方形,第4个图形有10个小正方形…,按照这样的规律,则第10个图形有__________ 个小正方10.下列各图形中的小正方形是按照一定规律排列的, 根据图形所揭示的规律我们可以发现:第形.11.如图,用围棋子按下面的规律摆图形,则摆第2 --- 图形找规律n个图形需要围棋子的枚数为____________ 页20共页第第1个图案第2个图案第3个图案条“金鱼”需用火柴棒的根•为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n12 __________ •数为①②③•用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:14图形编号 1 () )(2(3) n火柴根数. _________________________________ 从左到右依次为_______________个图形(它的中间为一个白色)所示的第 2 •图(1)是一个黑色的正三角形,顺次连接三边中点,得到如图(215个图形•如此)所示的第3;在图(2)的每个黑色的正三角形中分别重复上述的作法,得到如图(3的正三角形)_____________ • 5个图形中,白色的正三角形的个数是继续作下去,则在得到的第图(1)图⑵圈⑶个交点,五条直线6个交点,三条直线相交最多有3个交点,四条直线相交最多有13 .如图, 两条直线相交只有1个交点•个交点,二十条直线相交最多有_________ 相交最多有10个交点,六条直线相交最多有____________,上下底个等腰梯形,其两腰之和为41)个图案只有117 •如图,是用相同的等腰梯形拼成的等腰梯形图案.第()个等腰梯形1)个图案由(2n -个等腰梯形拼成, 其周长为2)个图案由313 ;•••第(n 之和为3,周长为7;第(表示).(用正整数n 拼成,其周长为 _________________n (用含个图案中点的总数,贝U S= ________ 18 •下列各图均是用有一定规律的点组成的图案, 用S 表示第n •的式子表示)赴士1・ 10;S =帀=3・ S 口28;—)盆3n 》19•如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两 个顶点)都摆有 n ( • _____________________ n 》3)的关系是,按照图中的规律可以推断花,每个图案中根火柴棍••用火柴棍象如图这样搭图形,搭第 n 个图形需要20块…通过观察、74块,切三刀最多可以切成一块圆形烙饼切一刀可以切成 16•如图,2块,若 切两刀最多可以切成块 ___________ n 刀最多能切成计算填下表(其中 成的块数)后,可探究一圆形烙饼切• n 的代数式表示)(结果用S 表示切 n 刀最多可以切n (5)2 4 7 S 13图形找规律--- 页20共页第1 2 3 4 n 0⑴ ⑵ (3)山)△ ▲个,按照一定的规律排列如下:”共有•现有黑色三角形“2011 ”和白色三角形“ 21_________ 个•则黑色三角形有22 •假设有足够多的黑白围棋子, 按照一定的规律排成一行:•…•个棋子是黑的还是白的?答:形的个1 2 3数17 14 …图形的周 5 8 11长 当梯形个数为2007个时,这时图形的周长为个小正方形组成.•如图所示是由火柴棒按一定规律拼岀的一系列图形:n-1 n-2依照此规律,第 7个图形中火柴棒的根数是26.图中的每个图形都是由若干个棋子围成的正方形图案, 图案的每条边(包括两个顶点)上都有n (n 》2)个棋子,每个图案的棋子总数为s ,按图的排列规律推断,s 与n 之间的关系可用页20共页第 24.如图,下面是一些小正方形组成的图案,第个图案有个小正方形组成;第 n□m式子 ・ • • •• • ・• • • •• • • • •• ■・ • ■ •• ■• • •・•・•• • • • ■il=2 n=3n=4fl=s&=4 5=9&=16 s=25•••4 5 梯_____ 请问第2011图形找规律---4个图案有25 表示.27 •观察下列图形,它是按一定规律排列的,那么第个图形中,十字星与五角星的个数和为2728 • 2条直线最多只有1个交点;3条直线最多只有 3个交点;4条直线最多只有 6个交点;2000 条直线最多只有个交占____________________ I八 \、•圍1□周长730 •如图所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得, 那么设第n 个图案中有白色地面砖 m 块,则m 与n 的函数关系5 --- 图形找规律31 •用同样大小的黑色棋子按如图所示的规律摆放:(1) 分别写岀第6、7两个图形各有多少颗黑色棋子? (2) 写岀第n 个图形黑色棋子的颗数?(3) 是否存在某个图形有 2012颗黑色棋子?若存在,求岀是第几个图形;若不存在, 由.个.29 •以下各图分别由一些边长为1的小正方形组成,请填写图2、图3中的周长,并以此推断岀圉:! 圉号式是 __________图10的周长为 页20共页第请说明理A_ JIfl h周抚.周长.第2仆• • • • •*1 +32•如图,给岀四个点阵, s 表示每个点阵中点的个数,按照图形中的点的个数变化规律,(1) 猜想第n 个点阵中的点的个数 s= ____________ • (2)若已知点阵中点的个数为 37,问这个点阵是第几个?图形编号 37.下列表 格是一张对 同一线段上 的个数变化 及线段总条 数的探究统 计.12 3 4 5 6图中棋子数 58 1114 1720(2) 照这样的方式摆下去,写岀摆第 n 个图形所需棋子的枚数;(3)其中某一图形可能共有 2011枚棋子吗?若不可能,请说明理由;若可能,请你求岀是第几 个图形.34 •观察图中四个顶点的数字规律:(1) _______________________ 数字“ 30”在 ________ 个正方形的 ; (2) 请你用含有n (n > 1的整数)的式子表示正方形四个顶点的数字规律;11 10 15 1412 g 16 ] ?第三个 箫四个 正方形 正方形第3个処4个33 •用棋子摆岀下列一组图形:(3)数字“ 2011 ”应标在什么位置.第二个0形第一^正方形6 ---图形找规律 页20共页第)盆花,每个图案中 n > 135 •如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有 n (花盆的总数为 S .盆花时,花盆的总数 S 是多少?问:①当每条边有 2盆 花时,花盆的总数 S 是多少?②当每条边有 3 S 是多少?③当每条边有 4盆花时,花盆的总数 S 是多少?④当每条边有 10盆花时,花盆的总数 S 是多少?⑤按此规律推断,当每条边有 n 盆花OO ° o O° o o O时,花盆的总数o oo oooooo36 •如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去, 那么通过观察,可以发现: 枚棋子; _____________ 和 ___________ (1)第④、第⑤个“上”字分别需用枚棋子;)第n 个“上”字需用 ___________ (2 “上”枚能否让这50 “棋子”按照以上规律恰好站成一个)七( 3)班有50名同学,把每一位同学当做 一枚棋子,(3字?若能,请计算最下一“横”的学生数;若不能,请说明理由.线段上点的个数线段的总条数 11+2=3 » 1+2+3=6•(1) 请你完成探究,并把探究结果填在相应的表格里;(2) ____________________________________________________ 若在同一线段上有 10个点,则线段的总条数为 _________________________________________ ;若在同一线段上有 则有 __________条线段(用含n 的式子表示)(3) 若你所在的班级有 60名学生,20年后参加同学聚会,见面时每两个同学之间握一次手 共握手 ___________ 次.7 --- 图形找规律页20共页第38 •如图是用棋子摆成的“ H'字.(1) _______________________________ 摆成第一个“ H ”字需要 个棋子;摆第x 个“ H'字需要的棋子数可用含 数式表示为(2)问第几个“ H'字棋子数量正好是 2012个棋子?©②③■ •■ • •• •»• ■t ■ B • •■ •■ ■« 1 ■* * ■39 •我们知道,两条直线相交只有一个交点•请你探究:(1) __________________________________ 三条直线两两相交,最多有 个交点; (2) __________________________________ 四条直线两两相交,最多有 个交点; (3) n 条直线两两相交,最多有 _____________ 个交点(n 为正整数,且 n 》2).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有4张纸片,以n 个点, x 的代后每次都将其中一片撕成更小的四片•如此进行下去,当小王撕到第n次时,手张共有S张纸片.根据(1) 用含n 的代数式表示S ; (2)当小王撕到第几次时,他手中共有 70张小纸片?41 •如图①是一张长方形餐桌,四周可坐 6人,2张这样的桌子按图②方式拼接,四周可坐 10人•现将若干张这样的餐桌按图③方式拼接起来:图形编号123456图形中的棋子(2) 照这样的方式摆下去,写岀摆第 n 个图形棋子的枚数;(用含n 的代数式表示)(3) 如果某一图形共有 99枚棋子,你知道它是第几个图形吗?上述情况:(1) 三张餐桌按题中的拼接方式,四周可坐 _____________ (2) n 张餐桌按上面的方式拼接,四周可坐 _____________ 数为26人,则这样的餐桌需要 _____________ 张.人;人(用含n 的代数式表示)•若用餐人 8 --- 图形找规律42 •用棋子摆岀下列一组图形: (1)(2)<3)页20共页第43 •如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,(1 )第5个“广”字中的棋子个数是_____________ •(2 )第n个“广”字需要多少枚棋子?44 •如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:(1) ___________________________ 在第n个图中共有 ______ 块黑瓷砖,块白瓷砖;(2 )是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45•用火柴棒按如图的方式搭三角△ ZV AA AAA形.(1) ⑴(4)照这样搭下去:(1 )搭4个这样的三角形要用根火柴棒:13根火柴棒可以搭个这样的三角形;9 --- 图形找规律页20共页第(2 )搭n个这样的三角形要用根火柴棒(用含n的代数式表示)•①②③/ ®46.观察图中的棋子:(1 )按照这样的规律摆下去,第4个图形中的棋子个数是多少?(2) 用含n的代数式表示第n个图形的棋子个数;(3) 求第20个图形需棋子多少个?筆1个圍第】个圍第3个圉47•如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况•那么照这样垒下去,请你观察规律,并完成下列问阶梯级数一级二级三级四级石墩块数3 9(2) 当垒到第n级阶梯时,共用正方体石墩多少块 (用含n的代数式表示)?并求当n=100时, 共用正方体石墩多少块?48 •有一张厚度为0.05毫米的纸,将它对折1次后,厚度为2X 0.05毫米.(1) 对折3次后,厚度为多少毫米?(2) 对折n次后,厚度为多少毫米?(3) 对折n次后,可以得到多少条折痕?对折的II度(单位」至米)时折门欢后M的折痕条数对折1次后051对折2 ffcJS2X2X0. 053础斤3权后7■ ・■・・■・■・■・・49 •如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:(1) 在④、⑤和⑥后面的横线上分别写岀相应的等式:222③ 1+3+5=3 ① 1=1 ② 1+3=2 _______ :④_________ :⑤ _________ :⑥n 个星阵图相对应的等式.(2)通过猜想,写岀第•将一张正方形纸片剪成四个大小一样的小正方形, 然后将其中的一个正方形再剪成四个小正方□田 ffl -剪籌一次10--- 图形找规律按此规律,第n 个图形,每一横行有 n 的代数式表示)页20共页第块瓷砖,每一竖列有 __________ 块瓷砖(用含按此规律,铺设了一矩形地面,共用瓷砖 506块,请问这一矩形的每一横行有多少块瓷砖,每竖列有多少瓷砖?50 •找规律:观察下面的星阵图和相应的等式,探究其中的规 形,如此循环下 51去,如图所示: (1)完成下表:律.所剪次数n 1 2 3 4 5 4正方形个数Sn(2)剪n 次共有S 个正方形,请用含 n 的代数式表示 S= ____________ ; nn (3)若原正方形的边52.如图是用五角星摆成的三角形图案,每条边上有 总点数(即五角星总数)用 S 表示.(1 )观察图案,当 n=6时,S= _________ ; (2)分析上面的一些特例,你能得岀怎样的规律?(用 (3) 当 n=2008 时,求11 ---图形找规律53 .用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:(1) 由里向外第1个正方形(实线)四条边上的格点个数共有 _______________ 个;由里向外第 2 个正方形(实线)四条边上的格点个数共有 ______________ 个;由里向外第 3个正方形(实线)四 条边上的格点个数共有 ___________ 个;(2) 由里向外第10个正方形(实线)四条边上的格点个数共有 ______________ 个;(3) __________________________________________________________________ 由里向外第n 个正方形(实线)四条边上的格点个数共有 ______________________________________________☆☆☆ ☆ ☆ ☆ ☆A * A ,☆ ☆☆ ☆ ☆☆ ☆☆☆☆☆☆☆☆ 口 = 23n* 4产D = ?S. 长为1,则第n 次所剪得的正方形边长是 (用含n 的代数式表示)n (n > 1)个点(即五角星),每个图案的n 表示S )页20共页第个.n编形1215 18 21 数234阶梯级 5 一级…二级三级S号图6 94812数石墩块3…9 18(2) 写岀当n=10时,S= ___________ .(3) 写岀S与n的关系式:S= ___________(4) 用42个花盆能摆岀类似的图案吗?55. 如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,(1) _____________________________________ 在第1个图中,共有白色瓷砖______________________________________________ 块.(2) _____________________________________ 在第2个图中,共有白色瓷砖块.(3) _____________________________________ 在第3个图中,共有白色瓷砖块.(4)在第10个图中,共有白色瓷砖 ___________ 块.12 --- 图形找规律页20共页第(5) _____________________________________ 在第n个图中,共有白色瓷砖块.54. 下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有花盆,每个图案花盆总数是n ( n > 1)个探究并解答下列56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点) 上有n (n > 1)盆花,每个图案花盆的总数为 S ,当n=2时,S=3; n=3时,S=6; n=4时,(1) 当 n=6 时,S= _________ ; n=100 时,S= __________ (2)你能得出怎样的规律?用 n 表示S.57 •下面是按照一定规律画岀的一系列“树枝”经观察,图( 2)比图(1)多岀2个“树枝”,图(3)比图(2)多岀4个“树枝”,图(4)比图(3)多岀8个“树枝”,按此规律: 图(5)比图(4)多岀 ____________ 个树枝; 图(6)比图(5)多岀 ____________ 个树枝; 图(8)比图(7)多岀 ____________ 个树枝;图(n+1)比图(n )多岀 ___________ 个树58 •如图是用棋子成的“ T ”字图案•从图案中可以岀,第一个“ T ”字图案需要5枚棋子,第二个“T ”字图案需要8枚棋子,第三个“ T ”图案需要11枚棋QOO0 0oooooooooooo鼻*・■ ■子. ①(1 )照此规律,摆成第八个图案需要几枚棋子?S=10.o ccco000o oc枝. (1)(2) 摆成第n 个图案需要几枚棋子? (3) 摆成第2010个图案需要几枚棋子?13---图形找规律 页20共页第59 •用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:探索并回答下列问题:(1 )第6个图案中所贴剪纸“ 0”的个数是 _____________ ; (2 )第n 个图案中所贴剪纸“ o ”的个数是 _____________ ; (3)是否存在一个图案,其上所贴剪纸“ 0”的个数为2012个?若存在,指岀是第几个;若不存在,请说明理由.(1) 当黑砖n=1时,白砖有 ____________ 块,当黑砖n=2时,白砖有 时,白砖有 _________ 块.(2) __________________________________ 第n 个图案中,白色地砖块,当黑砖n=360 •下列图案是晋商大院窗格的一部分•其中,“ 0”代表窗纸上所贴的剪14 ---图形找规律 页20共页第纸.故答案为26题参考答案:图形找规律 60 1 , 9.V 正方形的边长是.■:是:,张桌子10+2=12 •即n 张桌子多2人.4张桌子可以座=2n+41所以第二个正方形的面积是:,=x 即个6,2 .当横截线有n 条时,在6个的基础上多了 n ::-)三角形的个数共有 6+6n=6 (n+1)个.故应填6 (n +「)第三个正方形的面积为 =,(6n+6 或2 33 .•••画1个点,可得条线段,2+仁3; m-,个正方形的面积为(以此类推,第n );条1丄线段,3+2+1=6画2个点,可得6^ 32 10个点,可得条线段,4+3+2+1=10 ;画3伍-=);所以(n+1) Ctvl-2) 1 1第六个正方形的面积是(…;'-.故答案为:,=1+2+3+…+n+n+1)n 画个点,则可得(个,第三1+2. v 第一个有1个小正方形,第二个有条线段.10 :,,第五个有1+2+3+4+5个有1+2+3个,第四个有1+2+3+4 =66个点,可得所以画10条线段; 个.10 个图形有1+2+3+4+5+6+7+8+9+10=55二则第.根据图形可以发现, 55故答案为:4个点;第摆第 个点;2个“小屋子”需要 11而第八排的第二个数就是 x ,所以x=61 .摆第 个点.3个 “小屋子”需要左边的 2 X 61=122,y17摆第另外,由图形可知, x 右边的数是)个.6n - 1数是2X 61+56=178,当n=n 时,需要的点数为(1 y=178+46=224所以 故答案为6n -.由图形 可知:1215 .根据题意分析可得:第个图案中正方形的个数2 ;个图案中正方形第一个金鱼需用火柴棒的根数为:2+6=82个,第个图案中正方形的个数比第 1 ; X 个图6=14第二个金鱼需用 火柴棒的根数为:2+2个图案中正方形的个数比第的个数多4个,第32案中正方形的个数多;X 6=20第三个金鱼需用火柴棒的根数为:2+36个…,依照图中规律,第六个图…;个单位正方 形形中有 2+4+6+8+10+12=42.X 6=2+6n 第n 个金鱼需用火柴棒的根数为:2+n 斜放图形从上到下可以分成几行,1闿第n 行中,2+6n 故答案为.6根,因而图形n 的火柴有2n 根,下面横放的有互2 5=15n - 1 ),= X 6. 136条直线两两相交,X 最多有 n (排三角形时,火柴的根数是:斜放1 1I I的是 n 中有 1+2+3+- +n ,横放的是:2+4+…+2n=2( 1+2+…+n ) - - 19=19020 条 直线两两相交,.最多有n (n -1)20= XX (1+2+…+n ) 3n 根时总计有火柴数是:则每 排放.2 14 .如表格所示:(图形个图形中共有 =84根火柴棒 故第7编号7.图1中,是17火柴7 12…5n+2 1个正方 形; 图2中,是根数1+4=5个正方形;61 •结合图形和表格,不难发现:1 =所以它的斜边长七排的第一个数和第二数与第八排的第二个数相等,1个“小屋子”需要 511 .依题意得:(1)(1) (2) 3人,多一张桌子座图3中,是1+4 X 2=9个正方形;依此类推,第n个图的所有正方形个数是1+4( n-个,设白三角形15x个,黑三角形y 1)=4n ;y=1 - 3. 时,贝n=1x=0, 8 n=2 时,.丁第1 个图案中有2X 2+2 X 1=6 个三角形;x=0+1=1 ,y=3 ;第2个图案中有2X 3+2 X 2=10个三角形;;,时,n=3x=3+仁4y=9第3个图案中有2 X 4+2 y=27x=4+9=13n=4 时,,X 3=14个三角形;…,x=13+27=40 时,n=5当.••第所以白的正三角形个数为:6个图案中有2 X 7+2 X 6=26个三角形.40,15 --- 图形找规律页20共页第240故答案为:个小正方形;第一个图形有1=12时,S=1+1=2,16. n=1个小正方形;第二个图形有1+3=4=22 S=1 + 1+2=4, n=2 时,个小正方形;第三个图形有1+3+5=9=3 ,…n=3 时,S=1 + 1+2+3=72 n=4时,S=1+1+2+3+4=11,=n个小正方形,(2n - 1)第n个图形共有1+2+3+…+22…=16个小正方形.当n=4时,有n=42# ,n故答案为:16)…+n=1+ n(n+1所以当切n刀时,S=1+1+2+3+4+25 •根据已知图形可以发现:工工7 ;第2个图形中,火柴棒的根数是 2 n+1 . n=+ 10 ;第3Hl个图形中,火柴棒的根数是--13 ;第4个图形中,火柴棒的根数是 2 +故答案为nn+1 3,•••每增加一个正方形火柴棒数增加 .-1)=3n+1二第n个图形中应有的火柴棒数为:4+317 •根据题意得:(n,=4+3 X 6=22当n=7时,4+3 (n- 1)个图案只有第(11个等腰梯形,周长为3X 1+4=7 ;;22故答案为:3个图案由第(2)3个等腰梯形拼成,其周长为X 3+4=13 •观察图形发现:26;3 X 5+4=19其周长为)第(3个图案由5个等腰梯形拼成,,n=2时,…s=4当,n=3时,s=9-第(n)个图案由(2n1)个等腰梯形拼成,其周长为当,n=4时,s=16)(32n - 1+4=6n+1 ;当,n=5时,s=25故答案为:6n+1当…18 •观察发现:2个点,S=9第1个图形有X 1+1=10时,s=n,当n=n2第2个图形有个点,X 2+1=19S=9 s=n 故答案为:X S=93第个图形有X 3+1=28个点,个图形中,十字星与五角星的个数和为 3 27.V第1…2=6,3=9,n第个图形有S=9n+1个点.第2个图形中,十字星与五角星的个数和为3X 9n+1故答案为:4=12,第3个图形中,十字星与五角星的个数和为 3 X 193=3…,-X. n=3时,S=6=33,而27=3 X 44S=12=4 n=4时,X-, 9 . 8,个图形中,十字星与五角星的个数和=3X 9=27 A第-X时,n=5S=20=5558…,故答案为:,.2条直线最多的交点个数为-(-?数,依此类推,边数为nS=nnn=nn1 ).128 ,3条直线最多的交点个数为1+2=3. 1nn故答案为:(-)201+2+3=64条直线最多的交点个数为(个三角形,需要•结合图形,发现:搭第n3+2n, (根))-仁2n+1 . 5条直线最多的交点个数为1+2+3+4=10, 2n+1故答案为……6=335-因为21 . 2011所以2000条直线最多的交点个1999X (1+19的)数为1 •…1余下的个根据顺序应是黑1+2+3+4+ 匚X 1+335色三角形,所以共有3=1006. +1999==1999000 . 故答案为:1006故答案为1999000 •从所给的图中可以看岀,每六个棋子为一个循环,2229 , 1…6=335 . v小正方形的边长是1 , +••• 2011 A图.•.第20111的周长是:1 X个棋子是白的. 4=4 ,图故答案为:白2的周长是:2X 4=8,图33n+2=23 •依题意可求岀梯形个数与图形周长的关系为的周长是3X 4=12,…周长,第当梯形个数为n个图的周长是3个时,这时图形的周长为2007 X 4n ,•••图2007+2=602310 的周长是10 .X 4=40;故答案为:6023故答案为:8, . 12, 4024 •观察图形知:16--- 图形找规律页20共页第30•首先发现:第一个图案中,有白色的是6个,后边34 . (1)由图可知,每个正方形标4个数字,•/ 30 +是依次多4个.4=7…2,•数字30在第8个正方形的第个图案中,是所以第n6+4 (n - 1)=4n+2 . 2个位置,即右上角;故答案为:8m=4n+2.,右上角;• m与n的函数关系式是(2)左下角是故答案为:4n+2. 4的倍数,按照逆时针顺序依次减1,即正方形左下角顶点数字:4n,31 .第一个图需棋子6,正方形左上角顶点数字:第二个图需棋子9,4n - 1,正方形右上角顶点数字:4n - 212第三个图需棋子,,正方形右下角顶点数字:4n-,3 ;第四个图需棋子15( 18第五个图需棋子,3 )2011 + 4=502… 3,所以,数字“…2011 ”应标第503个正方形的左上角顶点处n+1 )枚.3第n个图需棋子(35n=6 (1)当时,3X(6+1)=21;.依题意得:① n=2,S=3=3X 2- 3 .②n=3,S=6=3X 3- =243 当n=7 时,X(7+1); 3 .③n=4,S=9=3X 3)第n个图需棋子(n+1)枚.4 - 3(2④n=10,S=27=3X n (3)设第个图形有2012颗黑色棋子,10 - 3.…=2012 3 根据(1)得(n+1) 3 ⑤按此规律推断,当每条边有n盆花时,S=3n- 3 n=解得,36. (1)第①个图形中有6个棋子;第②个图形中有6+4=10颗黑色棋子所以不存在某个图形有2012 个棋子;第③个图形中有6+2 X 4=14,由点阵图形可得它们的点的个数分别为:.32 (1)1,5个棋子;•••第⑤个图形中有6+3 X 4=18个棋子;,…,并得岀以下规律:9,13第⑥个图形中有6+4 X 4=22个棋子.)-X(第一个点数:1=1+411故答案为18、22;) X(5=1+42 - 1 (3分)第二个点数:(2)-X(第三个点数:9=1+431 )第n个图形中有6+ (n - 1 )X 4=4n+2.故答案为4n+2)X(第四个点数:13=1+44 - 1 . (3分)(3)••• 4n+2=50,解得n=12.因此可得:最下一横人数为2n+1=25 . . (4分) -)-X (个点数:第n1+4n1=4n337故答案为:4n . (1)5个点时,线段的条数:;-3 1+2+3+4=10,6)得:个,根据()设这个点阵是(2x1个点时,线段的条数:1+2+3+4+5=15 ;n tn - 1)(2) 10 个点时,线段的条数:1+2+3+4+5+6+7+8+9=45 , =37 1x1+4 X(-)2x=1060 X C60--n解得: .=;)+ •••(n- 1n个点时,线段的条数:1+2+3+答:这个点阵是个102, ,85)观察图形,得岀枚数分别是,,,111. 33 (=1770 )60人握手次数.=(3的棋字子每个比前n (门-1)一个多36,个,所以图形编号为5 「20,17数分别为.1770 .(故答案为:2)45 ;,(3)故答案为:.2017和38. (1)摆成第一个“ H3,公差为512 ()由()得,图中棋子数是首项为的”字需要7个棋子,第二个“等差数列,H ”字需要棋子12个;第三个“.=3n+2H”字需要棋子17个;)-(5+3个图形所需棋子的枚数为:所以摆第nn1…)不可能(31第x 个图中,有7+5 (x,由3n+2=2010- 1) =5x+2 (个).:;(2)当5x+2=2012时,解得:x=402,,解得:n=669故第402个“ H”字棋子数量正好是2012 个棋子丄39. (1)如图(1)为整数,n T,可得三条直线两两相交,最多有3 •:个交点;不合题意n=669 •••( 2)如图(2 ),可得三条直线两两相交,最多有6个交点;故其中某一图形不可能共有枚棋子20113 (一1)17 --- 图形找规律页20共页第4 (4-1) 故答案为:15 1 ,)得,=3( 3)由(44.( 1)在第n个图形中,需用黑瓷砖4n+6块,白瓷 2 砖n (n+1)块; )得,=6;由(2 (2)根据题意得n (n+1) =4n+6,|fL CfL- 1)2 :6=0,n - 3n-条直线两两相交,最多有n个交点•可得,此时没有整数解,n (n-1)(n为正整数,且n > 2).所以不存在. 2);n ( n+1故答案为:4n+6;.故答案为3;645 . ( 1 )结合图形,发现:后边每多一个三角\厶、/形,则需3要多2根火柴.则搭4个这样的三角形要用3+2 X 3=9根火柴棒;13根火柴棒可以搭(13 - 3) - 2+1=6个这样的三角形;(2)根据(1)中的规律,得40. ( 1)由题目中的“每次都将其中-片撕成更小的四搭n个这样的三角形要用3+2( n -1)=2 n+1根火柴棒.片",故答案为9 ;6;2n+1可知:小王每撕一次,比上一次多增加3张小纸片.46 . (1)第4个图形中的棋子个数是13;• s=4+3 (n - 1) =3n+1 ;(2 )第n个图形的棋子个数是3n+1 ;(2)当s=70 时,有3n+仁70,n=23 .即小王撕纸23 次 (3)当n=20 时,3n+1=3X 20+1=6141. (1 )结合图形,发现:每个图中,两端都是坐2人,•第20个图形需棋子61个3X1 (1+门剩下的两边则是每一张桌子是4人.47 .(1)第一级台阶中正方体石墩的块数为:2(2+L〕则三张餐桌按题中的拼接方式,四周可坐 3 X 4+2=14=3;(人);'(2) n张餐桌按上面的方式拼接,四周可坐( 4n+2)人;第一级台阶中正方体石墩的块数为:3艾3 (3+1〕=9;若用餐人数为 26人,则4n+2=26 , 二解得n=6.第一级台阶中正方体石墩的块数为:;故答案为:14; (4n+2), 6图1 2 34 5 6 依此类推,可以发现:第几级台阶中正方体石墩的块数形为:3n (n+1)中(2)按照(1)中总结的规律可得:当垒到第n 级阶梯 「的时,共用正方体石墩(n+1)3X100X---------------- 二 -------------------------------- --1 ri 50块;棋子 当n=100时,■ (2)依题意可得当摆到第n 个图形时棋子的枚数应为: 6+3 ( n - 1) =6+3n - 3=3n+3;3n (n+13(3 )由上题可知此时 3n+3=99, •••当n=100时,共用正方体石墩 15150块. '••• n=32 .答:当垒到第n 级阶梯时,共用正方体石墩答:第 13 •由题目得:第1个“广”字中的棋子个数是 7 ;块;当n=100时,共用正方体石墩15150 块第2个“广”字中的棋子个数是 7+ ( 2 - 1)X 2=9 ; 48 •由题意可知: 第3个“广”字中的棋子个数是7+ ( 3 - 1)X 2=11 ;第一次对折后,纸的厚度为2X 0.05 ;可以得到折痕为第 4个“广”字中的棋子个数是7+ ( 4 - 1)X 2=13 ; 1条;2发现第5个“广”字中的棋子个数是7+ ( 5- 1 )X 2=15… 第二次对折后,纸的厚度为 2 X 2X 0.05=2 X 0.05 ;可2进一步发现规律:第 n 个“广”字中的棋子个数是7+以得到折痕为3=2 - 1条;(n - 1) X 2=2n+5.18 ---图形找规律 页20共页第354•由图可知,每个图形为边长是n 的正方形,因此四;X 2X 0.05=2 X 0.05第三次对折后,纸的厚度为2X 23条边的花盆数为 4n ,再减去重复的四个角的花盆数, 即条;可以得到折痕为 7=2-1S=4 n - 4; (1) 将 n=5 代入 S=4 n - 4,得…; S=16 ;(2 )将n=10入S=4 n -4 X 2X 2X-X 2X,得S=36; 第n 次对折后,纸的厚度为2X 加(3)几加1,然后除以2 . 四303与几的乘积乘以32个图形共有99枚棋子。
图形找规律专项练习60题(有标准答案解析)

图形找规律专项练习60 题(有答案)1.按如下方式摆放餐桌和椅子:填表中缺少可坐人数;.2.观察表中三角形个数的变化规律:图形横截线012⋯n条数三角形6??⋯?个数若三角形的横截线有0 条,则三角形的个数是6;若三角形的横截线有n 条,则三角形的个数是(用含n 的代数式表示).3.如图,在线段AB 上,画 1 个点,可得 3 条线段;画 2 个不同点,可得 6 条线段;画 3 个不同点,可得10条线段;⋯照此规律,画10个不同点,可得线段条.4.如图是由数字组成的三角形,除最顶端的 1 以外,以下出现的数字都按一定的规律排列.根据它的规律,则最下排数字中x 的值是,y的值是.5.下列图形都是由相同大小的单位正方形构成,依照图中规律,第六个图形中有个单位正方形.6.如图,用相同的火柴棒拼三角形,依此拼图规律,第7 个图形中共有根火柴棒.7.图 1是一个正方形,分别连接这个正方形的对边中点,得到图 2 ;分别连接图 2 中右下角的小正方形对边中点,得到图 3;再分别连接图 3 中右下角的小正方形对边中点,得到图4;按此方法继续下去,第n 个图的所有正方形个数是个.8.观察下列图案:它们是按照一定规律排列的,依照此规律,第 6 个图案中共有个三角形.9.如图,依次连接一个边长为 1 的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第二个正方形的面积是;第六个正方形的面积是.10.下列各图形中的小正方形是按照一定规律排列的,根据图形所揭示的规律我们可以发现:第1个图形有 1 个小正方形,第 2 个图形有 3 个小正方形,第 3 个图形有 6 个小正方形,第 4 个图形有10个小正方形⋯,按照这样的规律,则第10 个图形有个小正方形.11.如图,用围棋子按下面的规律摆图形,则摆第n 个图形需要围棋子的枚数为.12.为庆祝“六一”儿童节,幼儿园举行用火柴棒摆“金鱼”比赛,如图所示,则摆n 条“金鱼”需用火柴棒的根数为.13.如图,两条直线相交只有 1 个交点,三条直线相交最多有 3 个交点,四条直线相交最多有相交最多有 10 个交点,六条直线相交最多有个交点,二十条直线相交最多有6 个交点,五条直线个交点.14.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号( 1)(2)(3)火柴根数从左到右依次为___________________________⋯.n15.图( 1)是一个黑色的正三角形,顺次连接三边中点,得到如图( 2)所示的第的正三角形);在图( 2 )的每个黑色的正三角形中分别重复上述的作法,得到如图(2 个图形(它的中间为一个白色3 )所示的第 3 个图形.如此继续作下去,则在得到的第 5 个图形中,白色的正三角形的个数是.16.如图,一块圆形烙饼切一刀可以切成 2 块,若切两刀最多可以切成 4 块,切三刀最多可以切成7 块⋯通过观察、计算填下表(其中S 表示切 n 刀最多可以切成的块数)后,可探究一圆形烙饼切n 刀最多能切成块(结果用 n 的代数式表示).n012345⋯nS124717.如图,是用相同的等腰梯形拼成的等腰梯形图案.第(1)个图案只有1个等腰梯形,其两腰之和为4,上下底之和为 3,周长为 7;第( 2 )个图案由 3 个等腰梯形拼成,其周长为13;⋯第( n )个图案由( 2n﹣ 1)个等腰梯形拼成,其周长为.(用正整数n 表示)18.下列各图均是用有一定规律的点组成的图案,用S 表示第 n 个图案中点的总数,则S=(用含n的式子表示).19.如图,由若干盆花摆成图案,每个点表示一盆花,几何图形的每条边上(包括两个顶点)都摆有n (n≥ 3)盆花,每个图案中花盆总数为S,按照图中的规律可以推断S 与 n( n ≥3 )的关系是.20.用火柴棍象如图这样搭图形,搭第n 个图形需要根火柴棍.21.现有黑色三角形“”和白色三角形“”共有2011个,按照一定的规律排列如下:则黑色三角形有个.22.假设有足够多的黑白围棋子,按照一定的规律排成一行:○●●○○●○●●○○●○●●○○●○●●○○●⋯ 请问第 2011个棋子是黑的还是白的?答:.23.观察下列由等腰梯形组成的图形和所给表中数据的规律后填空:梯形的个数12345⋯图形的周长58111417⋯当梯形个数为2007 个时,这时图形的周长为_________24.如图,下面是一些小正方形组成的图案,第 4 个图案有个小正方形组成;第n 个图案有个小正方形组成.25.如图所示是由火柴棒按一定规律拼出的一系列图形:依照此规律,第7 个图形中火柴棒的根数是.26.图中的每个图形都是由若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有n ( n≥ 2)个棋子,每个图案的棋子总数为s,按图的排列规律推断,s 与 n 之间的关系可用式子表示.27.观察下列图形,它是按一定规律排列的,那么第个图形中,十字星与五角星的个数和为27个.28. 2 条直线最多只有 1 个交点; 3 条直线最多只有 3 个交点; 4 条直线最多只有 6 个交点; 2000 条直线最多只有个交点.29.以下各图分别由一些边长为1 的小正方形组成,请填写图2、图 3 中的周长,并以此推断出图10的周长为.30.如图所示,第 1 个图案是由黑白两种颜色的正六边形地面砖组成,第 2 个,第 3 个图案可以看作是第 1 个图案经过平移而得,那么设第n 个图案中有白色地面砖m 块,则 m 与 n 的函数关系式是.31.用同样大小的黑色棋子按如图所示的规律摆放:(1)分别写出第 6 、7 两个图形各有多少颗黑色棋子?(2)写出第 n 个图形黑色棋子的颗数?(3)是否存在某个图形有 2012 颗黑色棋子?若存在,求出是第几个图形;若不存在,请说明理由.32.如图,给出四个点阵,s 表示每个点阵中点的个数,按照图形中的点的个数变化规律,( 1)猜想第n 个点阵中的点的个数s=.( 2)若已知点阵中点的个数为37,问这个点阵是第几个?33.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图中棋子数5811141720( 2)照这样的方式摆下去,写出摆第n 个图形所需棋子的枚数;( 3)其中某一图形可能共有2011枚棋子吗?若不可能,请说明理由;若可能,请你求出是第几个图形.34.观察图中四个顶点的数字规律:( 1)数字“ 30”在个正方形的;(2)请你用含有 n ( n ≥ 1 的整数)的式子表示正方形四个顶点的数字规律;(3)数字“ 2011”应标在什么位置.35.如图,各图表示若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n (n > 1)盆花,每个图案中花盆的总数为S.问:①当每条边有 2 盆花时,花盆的总数S 是多少?②当每条边有 3 盆花时,花盆的总数S 是多少?③当每条边有 4 盆花时,花盆的总数S 是多少?④当每条边有10盆花时,花盆的总数S 是多少?⑤按此规律推断,当每条边有n 盆花时,花盆的总数S 是多少?36.如下图是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:( 1)第④、第⑤个“上”字分别需用和枚棋子;( 2)第 n 个“上”字需用枚棋子;( 3)七( 3)班有 50 名同学,把每一位同学当做一枚棋子,能否让这字?若能,请计算最下一“横”的学生数;若不能,请说明理由.50 枚“棋子” 按照以上规律恰好站成一个“上”37.下列表格是一张对同一线段上的个数变化及线段总条数的探究统计.线段上点的个数线段的总条数11+2=31+2+3=6⋯⋯( 1)请你完成探究,并把探究结果填在相应的表格里;( 2)若在同一线段上有10个点,则线段的总条数为;若在同一线段上有n 个点,则有(用含 n 的式子表示)( 3)若你所在的班级有60 名学生, 20 年后参加同学聚会,见面时每两个同学之间握一次手,共握手38.如图是用棋子摆成的“H ”字.( 1)摆成第一个“ H”字需要个棋子;摆第x个“H”字需要的棋子数可用含x 的代数式表示为( 2)问第几个“H”字棋子数量正好是2012 个棋子?条线段次.;39.我们知道,两条直线相交只有一个交点.请你探究:( 1)三条直线两两相交,最多有个交点;( 2)四条直线两两相交,最多有个交点;( 3) n 条直线两两相交,最多有个交点(n 为正整数,且n≥ 2 ).40.如图所示,小王玩游戏:一张纸片,第一次将其撕成四小片,手中共有 4 张纸片,以后每次都将其中一片撕成更小的四片.如此进行下去,当小王撕到第n 次时,手张共有S 张纸片.根据上述情况:(1)用含 n 的代数式表示 S;(2)当小王撕到第几次时,他手中共有70 张小纸片?41.如图①是一张长方形餐桌,四周可坐 6 人, 2 张这样的桌子按图②方式拼接,四周可坐10 人.现将若干张这样的餐桌按图③方式拼接起来:( 1)三张餐桌按题中的拼接方式,四周可坐人;( 2) n 张餐桌按上面的方式拼接,四周可坐人(用含n 的代数式表示).若用餐人数为26 人,则这样的餐桌需要张.42.用棋子摆出下列一组图形:( 1)填写下表:图形编号123456图形中的棋子(2)照这样的方式摆下去,写出摆第n 个图形棋子的枚数;(用含 n 的代数式表示)(3)如果某一图形共有 99 枚棋子,你知道它是第几个图形吗?43.如图①,图②,图③,图④,⋯,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,( 1)第 5 个“广”字中的棋子个数是.( 2)第 n 个“广”字需要多少枚棋子?44.如图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察图形并解答有关问题:( 1)在第 n 个图中共有块黑瓷砖,块白瓷砖;( 2)是否存在黑瓷砖与白瓷砖块数相等的情形?你能通过计算说明吗?45.用火柴棒按如图的方式搭三角形.照这样搭下去:( 1)搭 4 个这样的三角形要用( 2)搭 n 个这样的三角形要用根火柴棒; 13 根火柴棒可以搭根火柴棒(用含n 的代数式表示).个这样的三角形;46.观察图中的棋子:( 1)按照这样的规律摆下去,第 4 个图形中的棋子个数是多少?(2)用含 n 的代数式表示第 n 个图形的棋子个数;(3)求第 20 个图形需棋子多少个?47.如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况.那么照这样垒下去,请你观察规律,并完成下列问题.( 1)填出下表中未填的两个空格:阶梯级数一级二级三级石墩块数39( 2)当垒到第n 级阶梯时,共用正方体石墩多少块(用含多少块?四级n 的代数式表示)?并求当n=100 时,共用正方体石墩48.有一张厚度为0.05 毫米的纸,将它对折1次后,厚度为2×0.05 毫米.(1)对折 3 次后,厚度为多少毫米?(2)对折 n 次后,厚度为多少毫米?(3)对折 n 次后,可以得到多少条折痕?49.如图所示,用同样规格正方形瓷砖铺设矩形地面,请观察下图:按此规律,第 n 个图形,每一横行有按此规律,铺设了一矩形地面,共用瓷砖块瓷砖,每一竖列有块瓷砖(用含 n 的代数式表示) 506 块,请问这一矩形的每一横行有多少块瓷砖,每一竖列有多少瓷砖?50.找规律:观察下面的星阵图和相应的等式,探究其中的规律.( 1)在④、⑤和⑥后面的横线上分别写出相应的等式:①222 1=1② 1+3=2③ 1+3+5=3④;⑤;⑥;( 2)通过猜想,写出第n 个星阵图相对应的等式.51.将一张正方形纸片剪成四个大小一样的小正方形,然后将其中的一个正方形再剪成四个小正方形,如此循环下去,如图所示:( 1)完成下表:所剪次数 n12345正方形个数Sn4( 2)剪 n 次共有 S n个正方形,请用含n 的代数式表示S n=;( 3)若原正方形的边长为1,则第 n 次所剪得的正方形边长是(用含n的代数式表示).52.如图是用五角星摆成的三角形图案,每条边上有n(n> 1)个点(即五角星),每个图案的总点数(即五角星总数)用 S 表示.( 1)观察图案,当n=6 时, S=;( 2)分析上面的一些特例,你能得出怎样的规律?(用n 表示 S)(3)当 n=2008 时,求 S.53.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点.观察图中每一个正方形(实线)四条边上的格点的个数,请回答下列问题:( 1)由里向外第 1 个正方形(实线)四条边上的格点个数共有个;由里向外第 2 个正方形(实线)四条边上的格点个数共有个;由里向外第 3 个正方形(实线)四条边上的格点个数共有个;( 2)由里向外第10 个正方形(实线)四条边上的格点个数共有个;( 3)由里向外第n 个正方形(实线)四条边上的格点个数共有个.54.下列各图是由若干花盆组成的形如正方形的图案,每条边(包括两个顶点)有n (n> 1)个花盆,每个图案花盆总数是S.( 1)按要求填表:n2345⋯S4812⋯( 2)写出当 n=10 时, S=.( 3)写出 S 与 n 的关系式: S=.( 4)用 42 个花盆能摆出类似的图案吗?55.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.( 1)在第 1 个图中,共有白色瓷砖块.( 2)在第 2 个图中,共有白色瓷砖块.( 3)在第 3 个图中,共有白色瓷砖块.( 4)在第 10 个图中,共有白色瓷砖块.( 5)在第 n 个图中,共有白色瓷砖块.56.淮北市为创建文明城市,各种颜色的菊花摆成如下三角形的图案,每条边(包括两个顶点)上有n ( n> 1)盆花,每个图案花盆的总数为S,当 n=2 时, S=3 ;n=3 时, S=6 ; n=4 时, S=10.( 1)当 n=6 时, S=( 2)你能得出怎样的规律?用;n=100 时, S=n 表示 S..57.下面是按照一定规律画出的一系列“树枝”经观察,图(图( 3)比图( 2 )多出 4 个“树枝”,图( 4)比图( 3)多出图( 5)比图( 4)多出个树枝;图( 6)比图( 5)多出个树枝;图( 8)比图( 7)多出个树枝;⋯图( n+1 )比图( n )多出个树枝.2 )比图( 1)多出 2 个“树枝”,8 个“树枝”,按此规律:58.如图是用棋子成的“要8 枚棋子,第三个“T ”字图案.从图案中可以出,第一个“T ”图案需要11枚棋子.T ”字图案需要 5 枚棋子,第二个“T ”字图案需(1)照此规律,摆成第八个图案需要几枚棋子?(2)摆成第 n 个图案需要几枚棋子?(3)摆成第 2010 个图案需要几枚棋子?59.用黑白两种颜色的正六边形地砖按如下所示的规律拼成若干图案:( 1)当黑砖 n=1 时,白砖有( 2)第 n 个图案中,白色地砖共块,当黑砖块.n=2时,白砖有块,当黑砖n=3时,白砖有块.60.下列图案是晋商大院窗格的一部分.其中,“ o”代表窗纸上所贴的剪纸.探索并回答下列问题:( 1)第 6 个图案中所贴剪纸“o”的个数是;( 2)第 n 个图案中所贴剪纸“o”的个数是;( 3)是否存在一个图案,其上所贴剪纸“o”的个数为2012 个?若存在,指出是第几个;若不存在,请说明理由.图形找规律 60 题参考答案:1.结合图形和表格,不难发现:1张桌子座 6 人,多一张桌子多 2 人. 4 张桌子可以座10+2=12.即 n 张桌子时,共座6+2 ( n﹣ 1)=2n+4 .2.当横截线有 n 条时,在 6 个的基础上多了 n 个 6,即三角形的个数共有 6+6n=6 ( n+1 )个.故应填 6(n+1)或 6n+63.∵画 1个点,可得 3 条线段, 2+1=3 ;画2 个点,可得 6 条线段, 3+2+1=6 ;画3 个点,可得 10条线段, 4+3+2+1=10 ;⋯;画n 个点,则可得( 1+2+3+ ⋯ +n+n+1 )=条线段.所以画 10个点,可得=66 条线段;4.根据图形可以发现,第七排的第一个数和第二数与第八排的第二个数相等,而第八排的第二个数就是 x,所以 x=61.另外,由图形可知, x 右边的数是 2×61=122, y 左边的数是 2 ×61+56=178 ,所以 y=178+46=2245.根据题意分析可得:第 1 个图案中正方形的个数2个,第 2 个图案中正方形的个数比第 1 个图案中正方形的个数多 4 个,第 3 个图案中正方形的个数比第 2 个图案中正方形的个数多 6 个⋯,依照图中规律,第六个图形中有 2+4+6+8+10+12=42 个单位正方形6.图形从上到下可以分成几行,第n行中,斜放的火柴有 2n 根,下面横放的有n 根,因而图形中有 n 排三角形时,火柴的根数是:斜放的是2+4+ ⋯ +2n=2 ( 1+2+ ⋯+n )横放的是:1+2+3+ ⋯+n ,则每排放 n 根时总计有火柴数是:3(1+2+ ⋯ +n ) = 3n(n1)把n=7代入就可以求2出.故第 7 个图形中共有=84 根火柴棒7.图 1中,是 1 个正方形;图2 中,是 1+4=5 个正方形;图3 中,是 1+4×2=9 个正方形;依此类推,第n 个图的所有正方形个数是1+4( n ﹣ 1)=4n ﹣ 3.8.∵第 1 个图案中有2×2+2 ×1=6 个三角形;第2 个图案中有 2×3+2 ×2=10 个三角形;第3 个图案中有 2×4+2 ×3=14 个三角形;⋯∴第 6 个图案中有2×7+2 ×6=26 个三角形.故答案为269.∵正方形的边长是1,所以它的斜边长是:= ,所以第二个正方形的面积是:×=,第三个正方形的面积为=()2,以此类推,第 n 个正方形的面积为()n﹣ 1,6﹣ 1所以第六个正方形的面积是()=;故答案为:,.10.∵第一个有 1 个小正方形,第二个有 1+2 个,第三个有1+2+3 个,第四个有 1+2+3+4 ,第五个有 1+2+3+4+5 ,∴则第 10个图形有 1+2+3+4+5+6+7+8+9+10=55 个.故答案为: 5511.依题意得:( 1)摆第 1 个“小屋子”需要 5 个点;摆第 2 个“小屋子”需要 11个点;摆第 3 个“小屋子”需要17个点.当n=n 时,需要的点数为( 6n﹣ 1)个.故答案为 6n﹣ 112.由图形可知:第一个金鱼需用火柴棒的根数为:2+6=8 ;第二个金鱼需用火柴棒的根数为:2+2×6=14;第三个金鱼需用火柴棒的根数为:2+3×6=20 ;⋯;第 n 个金鱼需用火柴棒的根数为:2+n ×6=2+6n .故答案为 2+6n13.6 条直线两两相交,最多有n( n ﹣ 1)= ×6×5=15,20 条直线两两相交,最多有n( n ﹣ 1)=×20×19=190.故答案为: 15, 190.14.如表格所示:图形编( 1)(2)(3)⋯n号火柴根 71217⋯5n+2数15.设白三角形 x 个,黑三角形 y 个,故答案为:白则: n=1 时, x=0 , y=1;23.依题意可求出梯形个数与图形周长的关系为3n+2= n=2 时, x=0+1=1 , y=3 ;周长,n=3 时, x=3+1=4 ,y=9 ;当梯形个数为2007 个时,这时图形的周长为3×n=4 时, x=4+9=13 , y=27 ;2007+2=6023 .当 n=5 时, x=13+27=40 ,故答案为: 6023 .所以白的正三角形个数为:40,24.观察图形知:故答案为: 40第一个图形有2个小正方形;16. n=1 时, S=1+1=2 ,1=1n=2 时, S=1+1+2=4 ,第二个图形有1+3=4=22 个小正方形;n=3 时, S=1+1+2+3=7 ,n=4 时, S=1+1+2+3+4=11 ,第三个图形有1+3+5=9=3 2 个小正方形;⋯所以当切 n 刀时, S=1+1+2+3+4+ ⋯ +n=1+n(n+1 )⋯2第 n 个图形共有 1+2+3+ ⋯ +( 2n ﹣ 1)=n 2 个小正方形,n+1.= n +22n2 +n+1当 n=4 时,有 n =4 =16 个小正方形.故答案为17.根据题意得:故答案为: 16,n2第( 1)个图案只有 1 个等腰梯形,周长为3×1+4=7;25.根据已知图形可以发现:第( 2 )个图案由 3 个等腰梯形拼成,其周长为 3×3+4=13 ;第 2 个图形中,火柴棒的根数是7;第( 3)个图案由 5 个等腰梯形拼成,其周长为 3×5+4=19;第 3 个图形中,火柴棒的根数是10;⋯第 4 个图形中,火柴棒的根数是13;第( n)个图案由( 2n ﹣ 1)个等腰梯形拼成,其周长为∵每增加一个正方形火柴棒数增加3,3( 2n﹣ 1) +4=6n+1 ;∴第 n 个图形中应有的火柴棒数为: 4+3( n ﹣1)=3n+1 .故答案为: 6n+1当 n=7 时, 4+3 ( n ﹣ 1) =4+3 ×6=22 ,18.观察发现:故答案为: 22第 1 个图形有 S=9 ×1+1=10个点,26.观察图形发现:第 2 个图形有 S=9 ×2+1=19 个点,当 n=2 时, s=4 ,第 3 个图形有 S=9 ×3+1=28 个点,当 n=3 时, s=9 ,⋯当 n=4 时, s=16,第 n 个图形有 S=9n+1 个点.当 n=5 时, s=25 ,故答案为: 9n+1⋯19. n=3 时, S=6=3 ×3﹣ 3=3 ,当 n=n 时, s=n 2 ,n=4 时, S=12=4 ×4﹣ 4,n=5 时, S=20=5 ×5﹣ 5,故答案为: s=n2⋯,依此类推,边数为 n 数, S=n ?n﹣n=n ( n ﹣ 1).27.∵第 1 个图形中,十字星与五角星的个数和为3×故答案为: n ( n ﹣ 1).2=6 ,20.结合图形,发现:搭第n 个三角形,需要 3+2 ( n第 2 个图形中,十字星与五角星的个数和为3×3=9 ,﹣ 1) =2n+1 (根).第 3 个图形中,十字星与五角星的个数和为3×4=12,故答案为 2n+1⋯21.因为 2011÷6=335 ⋯ 1.余下的 1 个根据顺序应是黑而 27=3 ×9,色三角形,所以共有 1+335×3=1006.∴第 8 个图形中,十字星与五角星的个数和=3 ×9=27 .故答案为: 1006故答案为: 822 .从所给的图中可以看出,每六个棋子为一个循环,28. 2 条直线最多的交点个数为1,∵ 2011÷6=335 ⋯ 1, 3 条直线最多的交点个数为1+2=3 ,∴第 2011个棋子是白的. 4 条直线最多的交点个数为1+2+3=6 ,5 条直线最多的交点个数为1+2+3+4=10 ,33.( 1)观察图形,得出枚数分别是,5, 8, 11,⋯,⋯每个比前一个多 3 个,所以图形编号为5,6 的棋字子所以 2000条直线最多的交点个数为1+2+3+4+ ⋯数分别为 17, 20.+1999==1999000.故答案为: 17和 20.( 2 )由( 1)得,图中棋子数是首项为5,公差为 3 的故答案为 1999000等差数列,29.∵小正方形的边长是1,所以摆第 n 个图形所需棋子的枚数为:5+3 ( n﹣ 1)∴图 1 的周长是: 1×4=4 ,=3n+2 .图 2 的周长是:2×4=8 ,( 3)不可能图 3 的周长是 3×4=12,由 3n+2=2010 ,⋯解得: n=669,第 n 个图的周长是 4n,∴图 10的周长是10×4=40;∵ n 为整数,故答案为:8, 12, 40∴ n=669 不合题意30.首先发现:第一个图案中,有白色的是6 个,后边是依次多 4 个.故其中某一图形不可能共有2011 枚棋子所以第 n 个图案中,是6+4 ( n ﹣ 1) =4n+2 .34.( 1)由图可知,每个正方形标 4 个数字,∴ m 与 n 的函数关系式是m=4n+2 .∵ 30÷4=7 ⋯ 2,故答案为: 4n+2 .∴数字 30 在第 8 个正方形的第 2个位置,即右上角;31.第一个图需棋子 6,故答案为: 8,右上角;第二个图需棋子9,( 2 )左下角是 4 的倍数,按照逆时针顺序依次减1,第三个图需棋子12,即正方形左下角顶点数字:4n,第四个图需棋子15,正方形左上角顶点数字:4n﹣ 1,第五个图需棋子18,正方形右上角顶点数字:4n﹣ 2,⋯正方形右下角顶点数字:4n﹣ 3;第 n 个图需棋子3( n+1)枚.( 3) 2011÷4=502 ⋯3 ,( 1)当 n=6 时, 3×(6+1) =21 ;所以,数字“ 2011”应标第503 个正方形的左上角顶点当 n=7 时, 3 ×(7+1) =24 ;处( 2)第 n 个图需棋子3( n+1 )枚.35.依题意得:① n=2 , S=3=3 ×2﹣ 3.( 3)设第 n 个图形有2012 颗黑色棋子,② n=3 , S=6=3 ×3﹣ 3.根据( 1)得 3( n+1)=2012③ n=4 ,S=9=3 ×4﹣ 3解得 n=,④ n=10, S=27=3 ×10﹣3 .⋯所以不存在某个图形有2012 颗黑色棋子⑤按此规律推断,当每条边有n 盆花时, S=3n ﹣ 3 32.( 1)由点阵图形可得它们的点的个数分别为:1,5,36.( 1)第①个图形中有 6 个棋子;9,13,⋯,并得出以下规律:第②个图形中有6+4=10 个棋子;第一个点数: 1=1+4×(1﹣ 1)第③个图形中有6+2 ×4=14 个棋子;第二个点数: 5=1+4 ×(2 ﹣1)∴第⑤个图形中有 6+3 ×4=18 个棋子;第三个点数: 9=1+4 ×(3﹣ 1)第⑥个图形中有6+4 ×4=22 个棋子.第四个点数: 13=1+4×(4﹣ 1)故答案为 18、 22;(3 分)⋯( 2 )第 n 个图形中有 6+ ( n ﹣1)×4=4n+2 .因此可得:故答案为 4n+2 .(3 分)第 n 个点数: 1+4×(n ﹣ 1) =4n ﹣3 .( 3) 4n+2=50 ,故答案为: 4n﹣ 3;解得 n=12 .( 2)设这个点阵是 x 个,根据(1)得:最下一横人数为2n+1=25 .( 4 分)1+4×(x﹣ 1) =3737.( 1) 5 个点时,线段的条数:1+2+3+4=10 ,解得: x=10. 6 个点时,线段的条数:1+2+3+4+5=15 ;答:这个点阵是10个( 2 )10个点时,线段的条数: 1+2+3+4+5+6+7+8+9=45,n 个点时,线段的条数:1+2+3+ ⋯ + (n﹣ 1)图形 6912151821=;中的棋子(3)60人握手次数 ==1770.( 2 )依题意可得当摆到第n 个图形时棋子的枚数应为:6+3 ( n ﹣1) =6+3n ﹣ 3=3n+3 ;故答案为:( 2) 45,;( 3) 1770.( 3)由上题可知此时3n+3=99 ,∴ n=32 .38.( 1)摆成第一个“ H ”字需要7 个棋子,答:第 32 个图形共有99 枚棋子第二个“ H”字需要棋子12 个;13.由题目得:第 1 个“广”字中的棋子个数是7;第三个“ H”字需要棋子17个;第 2 个“广”字中的棋子个数是7+ (2 ﹣ 1)×2=9 ;⋯第 3 个“广”字中的棋子个数是7+ ( 3﹣ 1)×2=11;第 x 个图中,有7+5 ( x﹣ 1) =5x+2 (个).第 4 个“广”字中的棋子个数是7+ (4﹣ 1)×2=13;( 2)当 5x+2=2012时,解得: x=402 ,发现第 5 个“广”字中的棋子个数是 7+( 5﹣ 1)×2=15⋯故第 402 个“ H”字棋子数量正好是2012 个棋子进一步发现规律:第n 个“广”字中的棋子个数是7+ 39.(1)如图( 1),可得三条直线两两相交,最多有3( n ﹣ 1)×2=2n+5 .个交点;故答案为: 15( 2)如图( 2),可得三条直线两两相交,最多有 6 个44.( 1)在第 n 个图形中,需用黑瓷砖4n+6块,白瓷交点;砖 n(n+1 )块;( 3)由( 1)得,=3 ,( 2 )根据题意得n (n+1 ) =4n+6 ,n2﹣ 3n ﹣6=0 ,由( 2)得,=6 ;此时没有整数解,∴可得, n 条直线两两相交,最多有个交点所以不存在.故答案为: 4n+6 ; n(n+1 )( n 为正整数,且n≥ 2 ).45.(1)结合图形,发现:后边每多一个三角形,则需故答案为3;6;.要多 2 根火柴.则搭 4 个这样的三角形要用3+2 ×3=9 根火柴棒;13根火柴棒可以搭( 13﹣ 3)÷2+1=6 个这样的三角形;( 2 )根据( 1)中的规律,得搭 n 个这样的三角形要用3+2( n ﹣1)=2n+1根火柴棒.故答案为9; 6; 2n+140.( 1)由题目中的“每次都将其中﹣片撕成更小的四46.( 1)第 4 个图形中的棋子个数是13;片”,( 2 )第 n 个图形的棋子个数是3n+1 ;可知:小王每撕一次,比上一次多增加 3 张小纸片.( 3)当 n=20 时, 3n+1=3 ×20+1=61∴ s=4+3 (n ﹣ 1)=3n+1 ;∴第 20 个图形需棋子61 个( 2)当 s=70 时,有 3n+1=70 ,n=23 .即小王撕纸 2347.( 1)第一级台阶中正方体石墩的块数为:次=3 ;41.( 1)结合图形,发现:每个图中,两端都是坐 2 人,剩下的两边则是每一张桌子是 4 人.第一级台阶中正方体石墩的块数为:=9 ;则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);第一级台阶中正方体石墩的块数为:;( 2) n 张餐桌按上面的方式拼接,四周可坐(4n+2 )人;⋯若用餐人数为 26人,则 4n+2=26 ,依此类推,可以发现:第几级台阶中正方体石墩的块数解得 n=6 .为: 3 与几的乘积乘以几加1,然后除以 2.故答案为: 14;( 4n+2 ),6阶梯级数一级二级三级四级42.( 1)如图所示:石墩块数391830图形 123456编号( 2)按照( 1)中总结的规律可得:当垒到第n 级阶梯时,共用正方体石墩块;当n=100 时,∴当 n=100 时,共用正方体石墩15150块.答:当垒到第n 级阶梯时,共用正方体石墩块;当 n=100 时,共用正方体石墩15150块48.由题意可知:第一次对折后,纸的厚度为 2×0.05;可以得到折痕为 1 条;第二次对折后,纸的厚度为2×2×0.05=2 2×0.05;可以得到折痕为 3=2 2﹣ 1 条;第三次对折后,纸的厚度为 2 ×2×2×0.05=2 3×0.05;可以3得到折痕为7=2 ﹣ 1 条;第 n 次对折后,纸的厚度为2×2×2 ×2 ×⋯×2×0.05=2 n×0.05.可以得到折痕为 2 n﹣ 1 条.故:(1)对折 3 次后,厚度为 0.4 毫米;(2)对折 n 次后,厚度为 2 n×0.05 毫米;(3)对折 n 次后,可以得到 2n﹣1 条折痕49.由图形我们不难看出横行砖数量为n+3 ,竖行砖数2量为 n+2 ,总数量为n +5n+6 ;若用瓷砖506 块,可以求n2 +5n+6=506 ;所以答案为:( 1)n+3 , n+2 ;( 2)每一行有23 块,每一列有22 块50.等号左边是从 1 开始,连续奇数相加,等号右边是奇数个数也就是 n 的平方.(1)① 1+3+5+7=4 2;2②1+3+5+7+9=5 ;③ 1+3+5+7+9+11=6 2.251.( 1)依题意得:所剪次数 n12345正方形个数 Sn 47101316(2 )可知剪 n 次时, S n=3n+1 .(3) n=1 时,边长 = ;n=2 时,边长 =;n=3 时,边长 =;⋯;剪 n 次时,边长 =.52.(1) S=15(2 )∵ n=2 时, S=3 ×(2﹣ 1)=3 ;n=3 时, S=3 ×(3﹣1) =6 ;n=4 时, S=3 ×(4﹣1) =9 ;⋯∴S=3 ×(n ﹣ 1) =3n ﹣ 3.(3)当 n=2008 时, S=3 ×2008 ﹣ 3=6021.53.第 1 个正方形四条边上的格点共有 4 个第 2 个正方形四条边上的格点个数共有(4+4×1)个第 3 个正方形四条边上的格点个数共有(4+4×2 )个⋯第 10个正方形四条边上的格点个数共有(4+4 ×9) =40个第 n 个正方形四条边上的格点个数共有[4+4 ×(n﹣1)]=4n 个54.由图可知,每个图形为边长是n 的正方形,因此四条边的花盆数为 4n ,再减去重复的四个角的花盆数,即S=4n ﹣ 4;( 1)将 n=5 代入 S=4n ﹣ 4,得 S=16;(2 )将 n=10 入 S=4n ﹣ 4,得 S=36 ;(3) S=4n ﹣ 4;(4)将 S=42 代入 S=4n ﹣ 4 得,4n﹣4=42解得 n=11.5所以用 42 个花盆不能摆出类似的图案55.( 1)在第 1 个图中,共有白色瓷砖1×(1+1)=2 块,( 2 )在第 2 个图中,共有白色瓷砖2×(2+1) =6 块,( 3)在第 3 个图中,共有白色瓷砖3×(3+1) =12 块,( 4)在第10个图中,共有白色瓷砖10×(10+1) =110块,( 5)在第 n 个图中,共有白色瓷砖n ( n+1 )块56.( 1)由分析得:当n=6 时, s=1+2+3+4+5+6=21;当n=100 时, s=1+2+3+ ⋯ +99+100=5050 ;( 2 )用 n 表示 S 得: S=。
幼小衔接大班数学练习找规律练习题

找规律练习一一、找规律填空。
1.10、13、、、22、252.5,7,9,,,,17,19 3.二.找规律涂一涂,画一画。
三、按图形的排列规律接着画。
四、找规律填数。
四、按规律填上正确的数。
五、涂一涂自己涂出有规律的颜色1、★★☆★★☆☆☆☆☆☆☆2、◇◇◆◇◇◆◇◇◆◇◇◇3、○○●○○●○○○○○○六、画一画。
1、2、□△□△□△34、♀♂♀♂♀♂5、○○□○○□○○□6、7、1.(探究题)哪一行的规律与其他三得不一样,画“X”。
(1) 3,4,5, 6 ( ) (2) 2,5,7,9 ( )7,8,9,10 ( ) 1,3,5,7 ( )1,3,2, 3 ( ) 2,4,6,8 ( )1,2,3, 4 ( ) 5,7,9,1l ( ) 2.(挑战题)按规律接着画。
3.(拓展题)在六组横格中涂画出不同规律的图案。
3. 找出数字排列的规律,填空。
13、15、17、19、( )、( ) 、( )、( )22、24、26、28、( )、( ) 、( )、( )35、38、41、44、( )、( ) 、( )、( )55、50、45、40、( )、( ) 、( )、( )66、60、54、48、( )、( ) 、( )、( )21、18、15、12、( )、( ) 、( )、( )1、2、1、2、1、2、1、2、( )、( ) 、( )、( )1、2、4、7、( )、( ) 、( )、( )2 、4 、7、11 、( )、( ) 、( )、( )3、 4、 7 、11 、( )、 ( ) 、( )、 ( )一、找规律画图(1——————(2——————(3——————(4)————(5)——————二、涂色(1)(2)(3)三、请你涂出有规律的颜色。
(1)(2)(3)四、找规律,填一填。
(1)5 10 15_____ _____ _____(2)11 21 31_____ _____ ______ _____(3)3 5 7 9 ____ 13(4)8 11 14____ _____(5)35 302515_____ _____(6)171513 ______五、动脑筋,填一填。
专题二:找规律(规律题)

题型一:关于数字规律问题
• 按照某种规律,写出下一个数 (1)2、4、6、8、
你能分别写出第n个数是多少吗?
2、 4、 6、 8、 10……
第一步:给各数编上序号; 第二步:观察并分析各数与序号的关系; 第三步:归纳出用n表示各数的方法 第四步:验证你的归纳是否正确。
请你按照如下的数字规律,分别
有规律排列的一列数:1,2,3,4,5,6,7,8 • (1)它的第100个数是多少? • (2)它的每一项你认为可用怎样的式子来
表示? (1)n n
• (3)2006是不是这列数中的数?如果是, 是第几个数?
若把以上的数列改为:-1,2,-3,4,-5,6, -7,8……呢?
请先观察下列算式,再填空:
找规律,两条路; 一从数,二从形; 形中找数数有律; 数形结合更容易。
餐桌按下面的摆法可坐多少人?
(1) 1张餐桌可坐6人,2张餐桌可坐_1_0_人.
(2) 若按照上图ຫໍສະໝຸດ 摆法摆放餐桌和椅子,完 成下表:桌子张 数
1
若按照上图的摆法摆放餐桌和椅子,完成下表:
2
3
4
5
6…
n
可坐人 数
6
10 14 18 22 26 … 4n+2
2、下面的图形是由边长为1的正方形按照 某种规律排列而组成的.
(1)观察图形,填写下表:
图形
①
②
正方形的个数
8 13
③
18
(2)推测第n个图形中,正方形的个数为________ (用含n的代数式表示).
3.(湖南湘潭)为庆祝“六一”儿童节, 某幼儿园举行用火柴棒摆“金鱼”比 赛.如图所示:
按照上面的规律,第n个“金鱼”需用火
四年级数学规律练习题

四年级数学规律练习题一、数字规律在数学中,数字规律是一种重要的数学概念。
它可以帮助我们观察和理解数字之间的关系,从而更好地解决数学问题。
下面是一些四年级数学规律练习题,帮助学生们巩固数字规律的理解和应用。
1. 找规律填数:(1)2,4,6,8,10,12,__,__,__,__。
(2)5,10,15,20,25,__,__,__,__,__。
(3)1,4,9,16,25,__,__,__,__,__。
(4)3,6,9,12,__,__,__,__,__,__。
2. 画图找规律:根据下面的图形,找出其中的规律,并补充完整。
(1)□ □ □□ □□(2)□□ □ □□ □ □ □3. 排序规律:将下面的数字按照从小到大的顺序排列。
10,4,8,2,5,7__,__,__,__,__,__。
二、图形规律除了数字规律,图形规律也是数学中常见的一种规律形式。
通过观察图形之间的特征和变化,我们可以揭示出隐藏在其中的规律。
接下来是一些四年级图形规律练习题,让学生们运用图形规律解决问题。
1. 找规律填图:分别填写下面两个图形的下一步。
(1)□ □ □□ □□下一步:□ □ □ □ □□□ □□ □ □下一步:□ □ □ □2. 图形排序:将下面的图形按照大小进行排序,从最小到最大。
●● ●● ● ●● ● ● ●____□□ □□ □ □______△△△△△△3. 图形连线:请你根据规律,连线画出下一个图形。
□ △□ □ △△□ □ △下一个图形:□ □ □ △三、计算规律除了数字和图形,计算规律也是四年级数学中的一种重要内容。
通过观察数字之间的运算关系,学生们可以发现计算规律,并运用它们解决问题。
下面是一些四年级计算规律练习题,帮助学生们提高计算技巧和逻辑推理能力。
1. 填数字得正确答案:(1)8 + 4 = __ 5 + 3 = __(2)15 - 7 = __ 12 - 6 = __(3)6 × 3 = __ 4 × 4 = __(4)20 ÷ 4 = __ 16 ÷ 2 = __2. 运算输入规律:(1)8, 16, 24, 32, __, __(2)2, 4, 8, 16, __, __(3)3, 6, 9, 12, __, __(4)10, 5, 2.5, __, __3. 数字运算:填写下面数学题中的运算符号(+,-,×,÷),使得等式成立。
找规律练习题

找规律练习题问题描述在数学中,找规律是一种重要的思维能力。
这种能力可以用来解决各种数列、图形和函数等问题。
本文将提供几个数列找规律的练习题,帮助读者提高这一能力。
练习题1. 数字三角形在这个练习题中,我们需要找出以下数字三角形中的规律,并继续填写后续的数字。
12 34 5 67 8 9 10问题:请写出下一个数字,以及填写完整的数字三角形。
答案:下一个数字是11。
完整的数字三角形如下:12 34 5 67 8 9 1011 12 13 14 152. 奇数正方形在这个练习题中,我们需要找出以下奇数正方形中的规律,并继续填写后续的数字。
13 57 9 1113 15 17 19问题:请写出下一个数字,以及填写完整的奇数正方形。
答案:下一个数字是21。
完整的奇数正方形如下:13 57 9 1113 15 17 1921 23 25 27 293. 反向数字在这个练习题中,我们需要找出以下数字序列中的规律。
10 98 7 65 4 3 21问题:请写出下一个数字。
答案:下一个数字是0。
总结通过以上的练习题,我们可以看到,在找规律的过程中,我们需要观察数字之间的关系,寻找有规律的模式。
这可以通过逐行、逐列等方式来进行推断。
在解决这些练习题的过程中,我们可以提高我们的观察力和数学思维能力。
希望通过这些练习题,读者能够锻炼自己的脑力,并在日常生活中应用这种找规律的能力,解决各种数学问题。
找规律是一种非常有用的技能,通过不断练习和训练,我们可以不断提高自己在这方面的能力。