时间序列计量模型剖析
时间序列计量经济模型

时间序列计量经济模型时间序列计量经济模型是经济学中常用的一种统计方法,它通过对时间序列数据进行建模和分析,帮助经济学家研究经济现象并做出预测。
本文将对时间序列计量经济模型进行详细介绍,包括模型的基本概念、建模方法和应用领域等。
时间序列计量经济模型的基本概念是指对于一组按时间顺序排列的经济数据,通过建立数学模型来描述变量之间的关系和变化趋势。
时间序列数据是对同一经济变量在不同时间点上的观察结果,通常用于反映经济变量的长期走势和季节性变化等特征。
时间序列计量经济模型的建模方法主要有两种,即参数估计法和非参数估计法。
参数估计法通过估计模型中的参数,来确定变量之间的关系和影响程度。
常见的参数估计方法包括最小二乘法、极大似然法和广义矩估计法等。
非参数估计法则不对模型中的参数进行具体估计,而是通过对数据进行平滑处理和插值操作来求解模型。
常用的非参数估计方法有核密度估计法、局部加权回归法和样条插值法等。
时间序列计量经济模型的应用领域非常广泛,包括经济增长分析、商业周期研究、金融市场预测等。
在经济增长分析中,可以利用时间序列计量经济模型来研究经济发展的长期趋势和周期性波动。
在商业周期研究中,可以利用时间序列计量经济模型来识别和预测经济的周期性波动,以便制定相应的经济政策。
在金融市场预测中,可以利用时间序列计量经济模型来分析和预测金融市场的走势,以便投资者做出合理的投资决策。
总结起来,时间序列计量经济模型是经济学中重要的统计方法,它能够帮助经济学家研究经济现象并做出预测。
通过对时间序列数据进行建模和分析,时间序列计量经济模型可以揭示经济变量之间的关系和变化趋势,为经济政策制定和投资决策提供参考依据。
同时,时间序列计量经济模型也有一定的局限性,例如无法考虑实际经济环境中的各种不确定因素。
因此,在实际应用中需综合考虑不同的经济模型和方法,以获得更准确和可靠的分析结果。
继续写:时间序列计量经济模型是经济学中非常有用的工具,可以帮助我们理解和解释经济现象,并做出相应的预测。
计量经济学试题时间序列模型与ARIMA模型

计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。
在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。
本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。
一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。
它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。
时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。
二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。
ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。
ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。
2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。
3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。
ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。
通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。
三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。
它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。
ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。
2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。
时间序列模型的分析

时间序列模型的分析时间序列模型是一种用于分析时间序列数据的统计模型,在许多领域都有广泛的应用,如经济学、金融学、自然科学等。
时间序列模型通过建立数学模型,来描述随时间变化而产生的观测数据的模式和规律,从而可以预测未来的变化趋势。
时间序列模型的分析过程一般包括数据收集、数据预处理、模型选择和评估以及预测。
首先,收集数据是分析时间序列的第一步,可以通过各种途径获得观测数据。
然后,对数据进行预处理,包括去除趋势、季节性和异常值等,以保证模型分析的准确性。
接下来,选择适当的时间序列模型是至关重要的,常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)、季节性自回归积分移动平均模型(SARIMA)等。
根据观测数据的特点和分析目的,选择合适的模型对数据进行拟合和预测。
最后,通过对模型进行评估,可以判断模型的拟合效果和预测准确性,如果模型不理想,需要对模型进行优化或者选择其他模型。
时间序列模型的选择和评估涉及到许多统计方法和技术。
首先,可以通过观察自相关图(ACF)和偏自相关图(PACF)来初步判断时间序列是否存在自相关性和季节性。
自相关图展示了观测值与某个滞后阶数的观测值之间的相关性,而偏自相关图则展示了在排除其他相关性的情况下,某个滞后阶数的观测值与当前观测值之间的相关性。
接着,可以使用信息准则(如赤池信息准则、贝叶斯信息准则)和残差分析等方法来选择合适的模型。
信息准则是一种模型选择标准,通过最小化信息准则的值来选择最优模型。
残差分析则用于检验模型的拟合效果,通常要求残差序列是白噪声序列,即残差之间不存在相关性。
在时间序列模型的预测过程中,常用的预测方法包括移动平均法、指数平滑法、ARMA模型预测法等。
其中,移动平均法用于捕捉序列的平稳性和周期性,指数平滑法适用于序列有趋势性和趋势变化的场景,而ARMA模型则可应对序列存在自相关性的情况。
根据实际情况,可以选择不同的方法进行预测。
经济学毕业论文中的时间序列模型分析方法

经济学毕业论文中的时间序列模型分析方法时间序列模型是经济学研究中一种常用的分析方法,用来研究变量在时间上的演化趋势和相关性。
在经济学毕业论文中应用时间序列模型进行数据分析和预测,能够提供有力的经验依据和理论支持。
本文将介绍一些常用的时间序列分析方法,包括平稳性检验、自相关函数与偏自相关函数分析、ARIMA模型等。
1. 平稳性检验平稳性是进行时间序列分析的前提条件之一。
平稳时间序列的统计特性不随时间的推移而发生显著变化,包括平均值和方差的稳定性。
常用的平稳性检验方法有ADF检验、单位根检验等。
通过检验时间序列数据的单位根存在与否,可以判断其是否为平稳时间序列。
2. 自相关函数与偏自相关函数分析自相关函数(ACF)和偏自相关函数(PACF)是时间序列分析中常用的工具。
ACF衡量序列中各个观测值与其滞后值之间的相关性,PACF则是在排除了前期滞后影响后,衡量序列中各个观测值与其滞后值之间的相关性。
通过ACF和PACF的分析,可以确定自回归(AR)和移动平均(MA)模型的阶数,为后续模型选择提供参考。
3. ARIMA模型ARIMA模型(差分自回归移动平均模型)是一种常用的时间序列预测模型。
ARIMA模型是AR、MA和I(差分)模型的组合,能够很好地描述时间序列数据的长、短期相关性和趋势。
ARIMA模型的建立包括模型阶数的选择、参数估计和模型诊断等步骤。
在实际建模过程中,通常需要通过ACF和PACF的分析来确定ARIMA模型的阶数。
4. 季节性调整方法季节性是许多经济时间序列数据中普遍存在的一种特征,常常会对数据的分析和预测造成影响。
为了消除季节性的干扰,需要采用季节性调整方法。
常用的季节性调整方法有季节性差分法、X-11法和模型拟合法等。
通过这些调整,可以使得季节性成分在分析中所占比重较小,提高模型的准确性。
5. 模型评估与预测在选择合适的时间序列模型后,需要对模型进行评估和验证,以保证模型具有良好的拟合效果和预测准确度。
时间序列分析简介与模型

时间序列分析简介与模型时间序列分析是一种统计分析方法,用于研究时间序列数据的发展趋势、周期性和随机性。
时间序列数据是按照时间顺序排列的一系列观测值,如股票市场的每日收盘价、气温的每月平均值等。
时间序列分析可以帮助我们理解数据的变化规律,预测未来的趋势,并支持决策和规划。
在时间序列分析中,一般将数据分为三个主要成分:趋势、季节性和随机扰动。
趋势是序列长期的增长或下降趋势,季节性是周期性的波动,随机扰动是非系统性的噪声。
为了进行时间序列分析,我们需要选择适当的模型。
常见的时间序列模型包括平滑模型、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARMA)、季节性自回归整合移动平均模型(SARIMA)和指数平滑模型等。
平滑模型适用于没有趋势和季节性的数据。
其中,移动平均法是一种常用的平滑方法,它通过计算观测值的移动平均值来估计趋势。
指数平滑法是一种适应性的平滑方法,根据最新的观测值赋予较大的权重,较旧的观测值则被较小的权重所影响。
自回归移动平均模型(ARMA)是一种常用的线性模型,它将序列的当前值与它的滞后值和滞后误差联系起来,以预测序列的未来值。
ARMA模型的参数包括自回归阶数(p)和移动平均阶数(q),通过拟合模型可以估计这些参数。
季节性自回归移动平均模型(SARMA)是一种在季节性数据上拓展了ARMA模型的模型。
它引入了季节性序列和季节性滞后误差,以更准确地预测季节性数据的未来值。
季节性自回归整合移动平均模型(SARIMA)是ARIMA模型在季节性数据上的扩展。
ARIMA模型是一种广义的线性模型,包括自回归、差分和移动平均三个部分。
ARIMA模型的参数包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q)。
SARIMA模型加入了季节性差分和季节性滞后误差,以更好地拟合季节性数据。
时间序列分析的核心目标是对未来趋势进行预测。
通过拟合适当的时间序列模型,我们可以估计模型的参数,并使用已知的数据来预测未来时间点的值。
计量经济学--时间序列计量模型

(1)均值 E(Yt ) ,μ为与时间t 无关的常数 。
(2)方差 Var(Yt ) 2 , 2 为与时间t无关的常数。
(3)协方差 Cov(Yt ,Yth ) h ,只与时间间隔h有 关,与时间t无关。
则称{Yt}为弱平稳过程。在时间序列计量 分析中,平稳过程通常指的是弱平稳。
如果一个时间序列是不平稳的,就称它
Yt Yt1 vt
(8.1)
其中,vt为经典误差项,也称之为白噪声。
如果式(8.1)中ρ=1,则
Yt Yt1 vt (8.2) 式(8.2)中Yt称为随机游走序列。随机 游走序列的特征为: Yt以前一期的Yt-1为 基础,加上一个均值为零且独立于Yt-1的 随机变量。随机游走的名字正是来源于它 的这个特征。
令γ=ρ-1,则
Yt Yt1 vt
(8.16) (8.17)
同理,可得另外两种模型为
Yt Yt1 vt
(8.18)
Yt t Yt1 vt (8.19)
对于式(8.17)、(8.18)、(8.19)而言 ,对应的原假设和备择假设为
H0 : 0 (非平稳)
H0 : 0 (平稳)
二、平稳性的单位根检验
时间序列的平稳性可通过图形和自相关函数 进行检验。在现代,单位根检验方法为时间 序列平稳性检验的最常用方法。
1.单位根检验(unit root test)
时间序列中往往存在滞后效应,即前后 变量彼此相关。对于时间序列Yt而言,最 典型的状况就是一阶自回归形式AR(1) ,即Yt与Yt-1 相关,而与Yt-2 , Yt-3 ,…无 关。其表达式为
DF检验的判别规则是:DF≥临界值,则Yt 非平稳,D<临界值,Yt则是平稳的。
3.ADF检验
时间序列计量经济学模型概述

时间序列计量经济学模型概述时间序列计量经济学模型是在经济学研究中广泛使用的一种方法,用于分析经济变量随时间的变化。
该模型基于时间序列数据,即经济变量在一段时间内的观测值。
时间序列计量经济学模型的核心是建立经济变量之间的关系,以解释和预测经济现象的变化。
其中最常用的模型是自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)和季节性时间序列模型。
自回归移动平均模型(ARMA)是一个包含自回归项和移动平均项的线性模型。
该模型以过去的观测值和随机项为输入,预测当前观测值。
ARMA模型基于假设,即经济变量的行为受到历史观测值的影响。
自回归条件异方差模型(ARCH)是一种考虑了随时间变化方差的模型。
该模型通过引入一个条件异方差项,模拟经济变量中的波动性。
ARCH模型的应用范围广泛,特别是在金融市场波动性分析中。
季节性时间序列模型用于分析具有明显季节性特征的经济变量,如销售额、就业人数等。
这些模型通常基于季节、趋势和随机成分的组合,以预测未来观测值。
在建立时间序列计量经济学模型时,常常需要进行模型识别、参数估计和模型诊断等步骤。
识别模型的目标是确定适当的模型结构,参数估计则是利用历史数据估计模型的参数值。
模型诊断用于检验模型的拟合程度和误差分布是否符合模型假设。
时间序列计量经济学模型在经济研究中有广泛的应用,例如预测未来经济指标、分析经济周期和波动性、评估政策效果等。
它提供了一种量化的方法,使经济学家可以更好地理解和解释经济变量的演变。
时间序列计量经济学模型是经济学研究中一种重要的统计工具,广泛应用于宏观经济、金融市场和企业经营等领域。
它可以帮助我们理解和解释经济变量随时间的变化规律,进行预测和政策分析。
本文将进一步探讨时间序列计量经济学模型的相关概念和应用。
在构建时间序列计量经济学模型之前,首先需要了解时间序列数据的特点。
时间序列数据是按照时间顺序排列的一系列观测值,通常具有趋势性、季节性、周期性和随机性等特征。
时间序列模型及其应用分析

时间序列模型及其应用分析时间序列是一系列时间上连续的数据点所组成的序列,其中每个数据点都表示了某一特定时刻的某个特征。
这些数据点可以是均匀间隔的,也可以是不均匀间隔的。
时间序列模型是对时间序列数据进行分析和预测的一种方法,它可以用来预测未来的趋势、季节性以及周期性变化等。
时间序列模型应用广泛,包括经济学、金融学、气象学、生态学、医学等领域。
时间序列分析的三个方面时间序列模型的分析过程可以分为三个方面:描述性分析、模型建立和模型预测。
描述性分析是对时间序列数据进行探索性的分析,以了解数据的整体特征。
常用的描述性统计学方法有均值、方差、标准差、自相关和偏自相关函数等。
作为对比,我们还可以对比不同时间序列数据之间的相关性、差异性等指标。
模型建立则是对时间序列进行拟合,以找出可以描述时间序列数据模式的数学模型。
时间序列数据的核心特征是时间的序列性质,因此模型的选择需要充分考虑到时间因素。
常用的时间序列模型包括AR、MA、ARMA、ARIMA和季节性模型等。
这些模型可以用自回归、移动平均、季节性变量等手段描述时间序列中可能出现的趋势和周期性变化。
预测也是时间序列模型分析的重要一环,它可以帮助我们预测未来的趋势和变化。
预测分析通常需要对历史数据进行处理、建立模型、进行模型检验和预测。
预测结果应当与实际值进行比较,以评估预测模型的准确性和可靠性。
常规时间序列分析方法:ARMA模型ARMA模型是一个经典时间序列预测模型。
ARMA模型的基本思想是把时间序列变成可以预测的序列,根据历史数据样本建立恰当的模型,预测未来数据的值。
ARMA模型由自回归过程(AR)和移动平均过程(MA)组成,AR过程考虑的是某一时刻的过去的信息对当前时刻的影响,MA过程关注的是随机变量的移动平均值对当前随机变量的影响。
ARMA模型的具体表现形式是:$$ Y_t = \alpha_1 Y_{t-1} + \alpha_2 Y_{t-2} + ... +\alpha_p Y_{t-p} + \epsilon_t + \beta_1 \epsilon_{t-1} + \beta_2 \epsilon_{t-2}+ ... +\beta_q \epsilon_{t-q} $$其中,Yt表示时间序列的实际值,α1到αp表示历史数据对当前时刻的影响,εt到εt-q表示误差项,β1到βq表示误差项对当前时刻的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中参数γ是否小于0。 式(1.9)中的参数ρ =1时,时间序列Yt是 非平稳的。式(1.10)中,γ =0时,时间 序列Yt是非平稳的。
2.DF检验 要检验时间序列的平稳性,可通过t检验 完成假设检验。即对于下式 Yt Yt 1 vt (1.11) 要检验该序列是否含有单位根。设定原假 设为:ρ=1,则 t 统计量为 ˆ 1 (1.12) t ˆ) Se(
(1)均值 E(Yt ) ,μ 为与时间t 无关的常数。 (2)方差 Var(Y ) , 为与时间t无关的常数。 (3)协方差 Cov(Yt , Yt h ) h ,只与时间间隔h有 关,与时间t无关。 则称{Yt}为弱平稳过程。在时间序列计量分 析中,平稳过程通常指的是弱平稳。
• 但是,在原假设下(序列非平稳),t 不服从传统的 t 分布,因此 t 检验方法 就不再适用。Dickey和Fuller于1976年 提出了这一情况下 t 统计量服从的分布 (此时表示为ז统计量),即DF分布, 因此该检验方法称为DF检验。
• 该方法采用OLS法估计式(1.11),计 算 t 统计量的值,与DF分布表中给定显 著性水平下的临界值比较。如果 t 统计量 的值小于临界值(左尾单侧检验),就 意味着ρ足够小,拒绝原假设:ρ=1,判别 时间序列Yt不存在单位根,是平稳的。
• 如果式(1.1)中ρ=1,则 • (1.2) Yt Yt 1 vt • 式(1.2)中Yt称为随机游走序列。随机 游走序列的特征为: Yt以前一期的Yt-1为基 础,加上一个均值为零且独立于Yt-1的随 机变量。随机游走的名字正是来源于它的 这个特征。
• 对式(1.2)进行反复迭代,可得 • Yt vt vt 1 v1 Y0 (1.3) • 对式(1.3)取期望可得 • E(Yt ) E(vt ) E(vt 1 ) E(v1 ) E(Y0 ) (1.4)
i 1
m
• 模型(3)中t是时间变量。原假设都是 H0 : 0 ,即存在单位根。ADF检验的 原理与DF检验相同,模型不同时,检验 临界值亦不同。实际检验时,首先对模型 (3)进行单位根检验,然后模型(2)、 模型(1)。在此过程中,只要“不存在 单位根”的结论出现,检验就结束。否则 就一直检验到模型(1)。
则式(1.6) 变换为
(1.8) (1 1L 2 L2 m Lm )Yt vt 记为 (L) (1 1 L 2 L2 m Lm ) 则称多项式方程
(Z ) (1 1Z 2 Z 2 m Z m ) 0
为AR(m)的特征方程。可以证明,如果 该特征方程的所有根在单位圆外(根的模 大于1),则AR(m)模型是平稳的。
可支配收入X均为不平稳时间序列。
• 1.2 单整、趋势平稳与差分平稳随机过程
• 1.2.1单整
• 对于随机游走序列,其一阶差分为 •
Yt Yt Yt 1 vt
(1.23)
• 由于是一个白噪声序列,因此差分后时间 序列{ Yt }是平稳的。
• 如果一个时间序列经过一次差分后变为 平稳的序列,则称该时间序列是一阶单 整序列,记为{Yt}~I(1)。一般地,如果 序列{Yt}经过d次差分后平稳,则称该序 列是d阶单整,记为{Yt}~I(d),如果时序 列本身是平稳的,称为0阶单整序列,记
• Dickey和Fuller研究认为DF检验的临 界值与数据序列的生成过程以及回归 模型的类型有关。因此,他们针对以 下三种模型编制了DF分布表。
• (1)一阶自回归模型 •
Yt Yt 1 vt
Yt Yt 1 vt
Yt t Yt 1 vt
第1章
时间序列模型
1.1 时间序列的基本概念
1.1.1.时间序列数据的平稳性 随机变量是刻画随机现象的有力工具。 随机变量的动态变化过程称为随机过程。 一般地,对于每一特定的t(t∈T),Yt为 一随机变量,称这一族随机变量{Yt}为一个 随机过程。若T为一连续区间,则{Yt}为连 续型随机过程。
若T为离散集合,则{Yt}为离散型随 机过程。 离散型时间指标集的随机过程通常 称为随机型时间序列,简称为时间序 列。 经济分析中常用的时间序列数据都 是经济变量随机序列的一个实现。
• 对于AR(1)过程。 Yt Yt 1 vt • (1.9) • vt为经典误差项,如果ρ=1,则Yt有一个 单位根,称Yt为单位根过程,序列Yt是非 平稳的。因此,要判断某时间序列是否平 稳可通过判断它是否存在单位根,这就是 时间序列平稳性的单位根检验。
• 检验一个时间序列Yt的平稳性,可通过检 验一阶自回归模型中的参数ρ是否小于1。 或者检验另一种表达形式 Yt ( 1)Yt 1 vt (1.10)
变量 ADF检 验值 显著性 水平 临界值 检验结 果
X二次差分 -4.2 -3.712
平稳 平稳
• 由表8.3的检验结果可以看出ADF检验
的τ统计量均小于临界值,因此拒绝原
• 表达时间序列前后期关系的最一般模型为m 阶自回归模型AR(m)。 • • 引入滞后算子L,
•
Yt 1Yt 1 2Yt 2 mYt m vt
(1.6)
LYt Yt 1 , L2Yt Yt 2 ,, LmYt Yt m
(1.7)
• • • •
• 1.1.2平稳性的单位根检验 • 时间序列的平稳性可通过图形和自相关函 数进行检验。在现代,单位根检验方法为 时间序列平稳性检验的最常用方法。 • 1.单位根检验(unit root test)
• 时间序列中往往存在滞后效应,即前后变 量彼此相关。对于时间序列Yt而言,最典型 的状况就是一阶自回归形式AR(1),即Yt 与Yt-1 相关,而与Yt-2 , Yt-3 ,…无关。其表 达式为 Yt Yt 1 vt • (1.1) • 其中,vt为经典误差项,也称之为白噪声。
• 【例8.1】检验中国1985-2005年城镇居民 家庭人均实际消费支出与实际可支配收入 的平稳性。 • 表8.1 中国1985-2005年城镇居民家庭人均 实际消费支出与实际可支配收入 单位:元
• 由于城镇居民家庭人均实际消费支出与实 际可支配收入均为有长期趋势的时间序列, 因此应选用模型(3)进行ADF检验。检验 结果如表8.2所示。设X为居民家庭人均实 际可支配收入,Y为居民家庭人均实际消费 支出。
• ADF检验是通过如下三个模型完成的
• (1)
Yt Yt 1 i Yt i vt
i 1 m
(1.20)
• (2)
• (3)
Yt Yt 1 i Yt i vt
i 1
m
(1.21)
(1.22)
Yt t Yt 1 i Yt i vt
时间序列的平稳性(stationary process)是时间序列经济计量分析中 的非常重要问题。时间序列的平稳性是 指时间序列的统计规律不会随着时间的 推移而发生变化。就是说产生变量时间 序列数据的随机过程的特征不随时间变 化而变化。 用平稳时间序列进行计量分析,估 计方法和假设检验才有效。
GDP的时间序列
E (Y0 ), t1
• 随机游走时间序列的期望值与t无关。
• 假定Y0非随机,则 Var(Y0 ) 0,因此 • Var(Yt ) Var(vt ) Var(vt 1 ) Var(v1 ) • (1.5) 2
vt
• 式(1.5)表明随机游走序列的方差是时 间 t 的线性函数,说明随机游走过程是非 平稳的。
2 2 t
• 如果一个时间序列是不平稳的,就称它为 非平稳时间序列。也就是说,时间序列的 统计规律随时间的推动而发生变化。此时, 要通过回归分析研究某个变量在跨时间区 域的对一个或多变量的依赖关系就是困难 的,也就是说当时间序列为非平稳时,就 无法知道一个变量的变化如何影响另一个 变量。
• 在时间序列计量分析实践中,时间序列的 平稳性是根本性前提,因此,在进经济计 量分析前,必须对时间序列数据进行平稳 性检验。
• 令γ=ρ-1,则
Yt Yt 1 vt
• 同理,可得另外两种模型为
Yt Yt 1 vt
•
Yt t Yt 1 vt
• 对于式(1.17)、(1.18)、(1.19)而 言,对应的原假设和备择假设为 H0 : 0 (非平稳) H0 : 0 (平稳) • DF检验的判别规则是:DF≥临界值,则Yt 非平稳,D<临界值,Yt则是平稳的。
表8.2
变量 X Y
时间序列平稳性检验表
ADF检 显著性 临界值 检验结 验值 水平 果 0.079 0.251 5% 5% -3.675 不平稳 -3.675 不平稳
• 由检验结果可以看出,ADF检验的τ统 计量均为正值,大于临界值,因此不
能拒绝原假设,序列X,Y均存在单位根,
居民家庭人均实际消费支出Y与实际
为{Yt}~I(0)。
• 在现实经济系统中,多数经济变量的时间 序列是非平稳的,如GDP、财政收入、居 民收入等。只有少数时间序列是平稳的, 如利率、通货膨胀率等。多数非平稳的时 间序列经过一次或多次差分可变为平稳的。 也有少数时间序列不能通过差分变为平稳 的,称这类序列为非单整时间序列。
【例8.2】检验例8.1中居民家庭人均实际消费 支出Y与实际可支配收入X的单整性。使用ADF 检验,结果如表8.3所示。 表8.3 时间序列单整性检验表
(1.13)
• (2)包含常数项的模型
• (1.14)
• (3)包含常数项和时间趋势项的模型
• (1.15)
• DF检验常用的表达式为如下的差分表达式,即
• DF检验常用的表达式为如下的差分表达式,
即
Yt ( 1)Yt 1 vt