工程材料学课后习题答案

合集下载

工程材料学习题集答案整理最终版

工程材料学习题集答案整理最终版

工程材料习题集第一章钢的合金化基础1合金元素在钢中有哪四种存在形式?①溶入α(铁素体)、γ(奥氏体)、M(马氏体),以溶质形式存在形成固溶体;②形成强化相:碳化物、金属间化合物;③形成非金属夹杂物;④以游离状态存在:Cu、Ag。

2写出六个奥氏体形成元素,其中哪三个可无限溶解在奥氏体中?哪两个铁素体形成元素可无限溶解在铁素体中?①奥氏体形成元素:Mn、Co、Ni、Cu、C、N(锰、钴、镍、铜、碳、氮),其中Mn、Co、Ni(锰、钴、镍)可无限溶解在奥氏体中,Cu、C、N(铜、碳、氮)为有限溶解;②Cr、V(铬、钒)可无限溶解在铁素体中,其余为有限溶解。

3写出钢中常见的五种非碳化物形成元素。

①非碳化物形成元素:Ni、Si、Al、Cu、Co4按由强到弱的顺序写出钢中常见的八种碳化物形成元素。

按碳化物稳定性由弱到强的顺序写出钢中常见的四种碳化物的分子式。

①碳化物由强到弱排列:(强)Ti、Nb、V、(中强)W、Mo、Cr、(弱)Mn、Fe②碳化物稳定性由弱到强的顺序:Fe3C→M23C6→M6C→MC5为什么高镍奥氏体钢易于冷变形,而高锰奥氏体钢难于冷变形,容易加工硬化?奥氏体层错能高和低时各形成什么形态的马氏体?①镍是提高奥氏体层错能的元素,锰是降低奥氏体层错能的元素,层错能越低,越有利于位错扩展而形成层错,使交滑移困难,加工硬化趋势增大。

②奥氏体层错能越低,形成板条马氏体,位错亚结构。

如Cr18-Ni8钢;奥氏体层错能越高,形成片状马氏体,孪晶亚结构。

如Fe-Ni合金。

6钢的强化机制的出发点是什么?钢中常用的四种强化方式是什么?其中哪一种方式在提高强度的同时还能改善韧性?钢中的第二相粒子主要有哪两个方面的作用?①强化机制的出发点是造成障碍,阻碍位错运动。

②钢中常用的四种强化方式:固溶强化、晶界强化(细晶强化)、第二相强化、位错强化(加工硬化)。

③晶界强化(细晶强化)在提高强度的同时还能改善韧性。

④钢中的第二相粒子主要作用:细化晶粒、弥散/沉淀强化。

工程材料学课后习题答案

工程材料学课后习题答案

第一章钢的合金化基础1、合金钢是如何分类的?1) 按合金元素分类:低合金钢,含有合金元素总量低于5%;中合金钢,含有合金元素总量为5%-10%;中高合金钢,含有合金元素总量高于10%。

2) 按冶金质量S、P含量分:普通钢,P≤0.04%,S≤0.05%;优质钢,P、S均≤0.03%;高级优质钢,P、S均≤0.025%。

3) 按用途分类:结构钢、工具钢、特种钢2、奥氏体稳定化,铁素体稳定化的元素有哪些?奥氏体稳定化元素, 主要是Ni、Mn、Co、C、N、Cu等铁素体稳定化元素, 主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等3、钢中碳化物形成元素有哪些(强-弱),其形成碳化物的规律如何?1) 碳化物形成元素:Ti、Zr、Nb、V、Mo、W、Cr、Mn、Fe等(按形成的碳化物的稳定性程度由强到弱的次序排列) ,在钢中一部分固溶于基体相中,一部分形成合金渗碳体, 含量高时可形成新的合金碳化物。

2) 形成碳化物的规律a) 合金渗碳体—— Mn与碳的亲和力小,大部分溶入α-Fe或γ-Fe中,少部分溶入Fe3C中,置换Fe3C中的Fe而形成合金渗碳体(Mn,Fe)3C; Mo、W、Cr少量时,也形成合金渗碳体b) 合金碳化物——Mo、W 、Cr含量高时,形成M6C(Fe2Mo4C Fe4Mo2C),M23C6(Fe21W2C6 Fe2W21C6)合金碳化物c) 特殊碳化物——Ti 、V 等与碳亲和力较强时i. 当rc/rMe<0.59时,碳的直径小于间隙,不改变原金属点阵结构,形成简单点阵碳化物(间隙相)MC、M2C。

ii. 当rc/rMe>0.59时,碳的直径大于间隙,原金属点阵变形,形成复杂点阵碳化物。

★4、钢的四种强化机制如何?实际提高钢强度的最有效方法是什么?1) 固溶强化:溶质溶入基体中形成固溶体能够强化金属;2) 晶界强化:晶格畸变产生应力场对位错运动起到阻碍达到强化,晶格越细,晶界越细,阻碍位错运动作用越大,从而提高强度;3) 第二相强化:有沉淀强化和弥散强化,沉淀强化着眼于位错运动切过第二相粒子;弥散强化着眼于位错运动绕过第二相粒子;4) 位错强化:位错密度越高则位错运动越容易发生相互交割形成割阶,引起位错缠结,因此造成位错运动困难,从而提高了钢强度。

工程材料课后习题参考答案 华科大版

工程材料课后习题参考答案 华科大版

第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。

答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。

线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。

如位错。

面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。

如晶界和亚晶界。

亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。

亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。

滑移部分与未滑移部分的交界线即为位错线。

如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。

多晶体:由多种晶粒组成的晶体结构称为“多晶体”。

过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。

非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。

变质剂:在浇注前所加入的难熔杂质称为变质剂。

2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、 Pb 、 Cr 、 V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。

工程材料课后答案(最新整理)

工程材料课后答案(最新整理)
b1-2 下列现象与哪一个力学性能有关?
(1)铜比低碳钢容易被锯割。 硬度 (2)锯条易被折断,而铁丝不易折断。 塑性
P15 1-4 甲、乙、丙、丁四种材料的硬度分别为45HRC、90HRB、800HV、240HBS,
试比较这四种材料硬度的高低。
答: 45HRC HV
HV 2 106 (112 HRC)2
、 、 01 、 、 、 、
b1-1. 下列情况分别是因为哪一个力学性能指标达不到要求?
(1)紧固螺栓使用后发生塑性变形。 屈服强度 (2)齿轮正常负荷条件下工作中发生断裂。 疲劳强度 (3)汽车紧急刹车时,发动机曲轴发生断裂。 冲击韧度 (4)不锈钢圆板冲压加工成圆柱杯的过程中发生裂纹。 塑性 (5)齿轮工作在寿命期内发生严重磨损。 硬度
、、、
、 、 04a 、 - 、 、 、
F 1. 所有的合金元素都能提高钢的淬透性。
F 2. 合金元素对钢的强化效果主要是固溶强化。
、、、 1. 除Co、Al外,几乎所有的合金元素都使Ms点 下降 。
2. 20钢属于 优质碳素结构 或 渗碳 钢, 可制造 冲 压、焊接件 或 小型渗碳件 。
3. Q345 (16Mn) 是 低合金高强度结构 钢,可制造 桥梁 。
F 2. 室温下,金属晶粒越细,则强度越高、塑性越低。
、、、
b 1. 金属结晶时,冷却速度越快,其实际结晶温度将:
a. 越高 b. 越低 c. 越接近理论结晶温度
b 2. 为细化晶粒,可采用:
a. 快速浇注 b. 加变质剂
c. 以砂型代金属型
c 3. 晶体中的位错属于:
a. 体缺陷 b. 面缺陷
c. 线缺陷
4. 40Cr 是 合金调质 钢,可制造 车床齿轮 。

(完整版)工程材料课后答案

(完整版)工程材料课后答案

作业01力学性能b1-1. 下列情况分别是因为哪一个力学性能指标达不到要求?(1)紧固螺栓使用后发生塑性变形。

屈服强度(2)齿轮正常负荷条件下工作中发生断裂。

疲劳强度(3)汽车紧急刹车时,发动机曲轴发生断裂。

冲击韧度(4)不锈钢圆板冲压加工成圆柱杯的过程中发生裂纹。

塑性(5)齿轮工作在寿命期内发生严重磨损。

硬度b1-2 下列现象与哪一个力学性能有关?(1)铜比低碳钢容易被锯割。

硬度(2)锯条易被折断,而铁丝不易折断。

塑性作业02a金属结构与结晶判断题F1. 凡是由液体凝固成固体的过程都是结晶过程。

2. 室温下,金属晶粒越细,则强度越高、塑性越低。

F选择题1. 金属结晶时,冷却速度越快,其实际结晶温度将:ba. 越高b. 越低c. 越接近理论结晶温度2. 为细化晶粒,可采用:ba. 快速浇注b. 加变质剂c. 以砂型代金属型3. 晶体中的位错属于:ca. 体缺陷b. 面缺陷c. 线缺陷d. 点缺陷问答题将20kg纯铜和30kg纯镍熔化后慢冷至T1温度,求此时:(1) 液、固两相L和α的化学成分(2) 两相的相对重量(3) 两相的质量答:整个合金含Ni的质量分数为:X = 30/(20+30) = 60%(1)两相的化学成分:w L(Ni)= 50%wα(Ni)= 80%(2)两相的相对重量为:液相m L= (80-60)/(80-50)≈67%固相mα= 1-67% = 33%a b c(2)两相的质量为:液相M L= 50×67% ≈33(kg)固相mα= 50 -33 = 17(kg)作业02c Fe-C相图判断题1. 铁素体的本质是碳在α-Fe中的间隙相。

F2. 珠光体P实质上是由铁素体F和渗碳体Fe3C两个相组成。

T3. 在铁碳合金平衡结晶过程中,只有碳含量为4.3%的铁碳合金F才能发生共晶反应。

4. 退火状态(接近平衡组织)的亚共析钢中,碳含量为0.45%F比0.20%的塑性和强度都高。

工程材料学习题及答案

工程材料学习题及答案

3、是非题
1 ) × ; 2) × ; 3 ) × ; 4 ) × ; 5 ) √ ; 6 ) √ ;7 ) × ;
P33
2.综合分析题 2.综合分析题
1)正火目的:均匀组织,降低硬度,改善切 正火目的:均匀组织,降低硬度, 削性能 调质处理:获得索氏体组织, 调质处理:获得索氏体组织,使钢具有综合 力学性能 高频淬火及回火: 高频淬火及回火:使表面获得回火马氏体 组织,提高表面的硬度和耐磨性能, 组织,提高表面的硬度和耐磨性能,抗疲 劳性能
27)a27)a-单液淬火 M+A’ b-分级淬火 M+A’ c-油冷淬火 T+M+A’ d-等温淬火 下B e-正火 S f-完全退火 P g-等温退火 P
5-29) 1)再结晶退火 1)再结晶退火 2)扩散退火 2)扩散退火 3)完全退火 3)完全退火 4)球化退火 4)球化退火 5-30) 700℃ F+P 700℃ 760 ℃ F+M 840 ℃ M 粗大M+A’ 1100 ℃: 粗大M+A’
4. 选择题 1~5:bbbba 6~10: bbcbb 11~15: daccb 16~20: cbaba 21~26:accca;
p14
5综合分析题 4)题 (1)金属模浇注晶粒尺寸小于砂模浇注,原因是 金属模冷却速度大,过冷度大,形核率高。 (2)变质处理晶粒细小,原因是变质处理增加了 非自发形核率,促进形核; (3)铸成薄件晶粒细小,原因是薄件散热速度大, 增加形核率; (4)采用振动晶粒细小,振动打碎粗大枝晶,促 进非均匀形核。
5-32) 回火S 1)AC3+30~50 ℃ 高温回火 回火S 回火T 2) AC3+30~50 ℃ 中温回火 回火T 回火M 3) AC1+30~50 ℃ 低温回火 回火M 5-43):T10工艺路线:锻造----热处理-----机加工--------热处理 热处理名称: 1) 热处理名称:球化退火 最终热处理:淬火+ 2) 最终热处理:淬火+低温回火 使用状态组织:回火M+Fe3C+A’ 使用状态组织:回火M+Fe3C+A’

工程材料课后题答案

工程材料课后题答案

第一章6、实际金属晶体中存在哪些缺陷?它们对性能有什么影响?答:点缺陷:空位、间隙原子、异类原子。

点缺陷造成局部晶格畸变,使金属的电阻率、屈服强度增加,密度发生变化。

线缺陷:位错。

位错的存在极大地影响金属的机械性能。

当金属为理想晶体或仅含极少量位错时,金属的屈服强度σs很高,当含有一定量的位错时,强度降低。

当进行形变加工时,为错密度增加,σs将会增高。

面缺陷:晶界、亚晶界。

亚晶界由位错垂直排列成位错墙而构成。

亚晶界是晶粒内的一种面缺陷。

在晶界、亚晶界或金属内部的其他界面上,原子的排列偏离平衡位置,晶格畸变较大,位错密度较大(可达1016m-2以上)。

原子处于较高的能量状态,原子的活性较大,所以对金属中的许多过程的进行,具有极为重要的作用。

晶界和亚晶界均可提高金属的强度。

晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。

8、什么是固溶强化?造成固溶强化的原因是什么?答:形成固溶体使金属强度和硬度提高的现象称为固溶强化。

固溶体随着溶质原子的溶入晶格发生畸变。

晶格畸变随溶质原子浓度的提高而增大。

晶格畸变增大位错运动的阻力,使金属的滑移变形变得更加困难,从而提高合金的强度和硬度。

9、间隙固溶体和间隙相有什么不同?答:合金组元通过溶解形成一种成分和性能均匀的,且结构与组元之一相同的固相称为间隙固溶体。

间隙固溶体中溶质原子进入溶剂晶格的间隙之中。

间隙固溶体的晶体结构与溶剂相同。

间隙相是间隙化合物中的一种,其晶体结构不同于组成它的任意元素的晶体结构,一般是较大金属元素的原子占据晶格的结点位置,半径较小的非金属元素的原子占据晶格的间隙位置,晶体结构简单,间隙相一般具有高熔点、高硬度,非常稳定,是合金的重要组成相。

第二章1、金属结晶的条件和动力是什么?答:液态金属结晶的条件是金属必须过冷,要有一定的过冷度。

液体金属结晶的动力是金属在液态和固态之间存在的自由能差(ΔF)。

2、金属结晶的基本规律是什么?答:液态金属结晶是由生核和长大两个密切联系的基本过程来实现的。

工程材料基础知识课后习题答案

工程材料基础知识课后习题答案

⼯程材料基础知识课后习题答案第⼀章⼯程材料基础知识参考答案1.⾦属材料的⼒学性能指标有哪些?各⽤什么符号表⽰?它们的物理意义是什么?答:常⽤的⼒学性能包括:强度、塑性、硬度、冲击韧性、疲劳强度等。

强度是指⾦属材料在静荷作⽤下抵抗破坏(过量塑性变形或断裂)的性能。

强度常⽤材料单位⾯积所能承受载荷的最⼤能⼒(即应⼒σ,单位为Mpa)表⽰。

塑性是指⾦属材料在载荷作⽤下,产⽣塑性变形(永久变形)⽽不被破坏的能⼒。

⾦属塑性常⽤伸长率δ和断⾯收缩率ψ来表⽰:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或划痕的能⼒,是衡量材料软硬程度的指标,是⼀个综合的物理量。

常⽤的硬度指标有布⽒硬度(HBS、HBW)、洛⽒硬度(HRA、HRB、HRC等)和维⽒硬度(HV)。

以很⼤速度作⽤于机件上的载荷称为冲击载荷,⾦属在冲击载荷作⽤下抵抗破坏的能⼒叫做冲击韧性。

冲击韧性的常⽤指标为冲击韧度,⽤符号αk表⽰。

疲劳强度是指⾦属材料在⽆限多次交变载荷作⽤下⽽不破坏的最⼤应⼒称为疲劳强度或疲劳极限。

疲劳强度⽤σ–1表⽰,单位为MPa。

2.对某零件有⼒学性能要求时,⼀般可在其设计图上提出硬度技术要求⽽不是强度或塑性要求,这是为什么?答:这是由它们的定义、性质和测量⽅法决定的。

硬度是⼀个表征材料性能的综合性指标,表⽰材料表⾯局部区域内抵抗变形和破坏的能⼒,同时硬度的测量操作简单,不破坏零件,⽽强度和塑性的测量操作复杂且破坏零件,所以实际⽣产中,在零件设计图或⼯艺卡上⼀般提出硬度技术要求⽽不提强度或塑性值。

3.⽐较布⽒、洛⽒、维⽒硬度的测量原理及应⽤范围。

答:(1)布⽒硬度测量原理:采⽤直径为D的球形压头,以相应的试验⼒F压⼊材料的表⾯,经规定保持时间后卸除试验⼒,⽤读数显微镜测量残余压痕平均直径d,⽤球冠形压痕单位表⾯积上所受的压⼒表⽰硬度值。

实际测量可通过测出d值后查表获得硬度值。

布⽒硬度测量范围:⽤于原材料与半成品硬度测量,可⽤于测量铸铁;⾮铁⾦属(有⾊⾦属)、硬度较低的钢(如退⽕、正⽕、调质处理的钢)(2)洛⽒硬度测量原理:⽤⾦刚⽯圆锥或淬⽕钢球压头,在试验压⼒F 的作⽤下,将压头压⼊材料表⾯,保持规定时间后,去除主试验⼒,保持初始试验⼒,⽤残余压痕深度增量计算硬度值,实际测量时,可通过试验机的表盘直接读出洛⽒硬度的数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)形成碳化物的规律
a)合金渗碳体——Mn与碳的亲和力小,大部分溶入α-Fe或γ-Fe中,少部分溶入Fe3C中,置换Fe3C中的Fe而形成合金渗碳体(Mn,Fe)3C; Mo、W、Cr少量时,也形成合金渗碳体
b)合金碳化物——Mo、W、Cr含量高时,形成M6C(Fe2Mo4CFe4Mo2C),M23C6(Fe21W2C6 Fe2W21C6)合金碳化物
第一章钢的合金化基础
1、合金钢是如何分类的?
1)按合金元素分类:低合金钢,含有合金元素总量低于5%;中合金钢,含有合金元素总量为5%-10%;中高合金钢,含有合金元素总量高于10%。
2)按冶金质量S、P含量分:普通钢,P≤0.04%,S≤0.05%;优质钢,P、S均≤0.03%;高级优质钢,P、S均≤0.025%。
1)第一类回火脆:250-300℃片状碳化物在马氏体边界上析出,破坏了马氏体间的连接,使脆性增大,是由相变机制本身决定的,不能消除,只能避免,不可逆。
2)第二类回火脆:450-600℃杂质及本身在原晶界偏聚,(Mn、Cr、Ni钢)降低晶界结合力,使脆性增加。
消除方法:
1)Mo或W能阻止,推迟杂质往晶界偏移,可消除第二类回火脆。
提高回火稳定性较强的元素:V,Si,Mo,W,Ni,Mn,Co
第二章工程构件用钢
1、低碳钢板采用冷轧工艺时,为何出现表面褶皱?
由于屈服变形集中在局部地区少数滑移带上,所以必然引起滑移台阶高度增大、使试样表面有明显滑移线,表面出现褶皱。
1)固溶强化:溶质溶入基体中形成固溶体能够强化金属;
2)晶界强化:晶格畸变产生应力场对位错运动起到阻碍达到强化,晶格越细,晶界越细,阻碍位错运动作用越大,从而提高强度;
3)第二相强化:有沉淀强化和弥散强化,沉淀强化着眼于位错运动切过第二相粒子;弥散强化着眼于位错运动绕过第二相粒子;
4)位错强化:位错密度越高则位错运动越容易发生相互交割形成割阶,引起位错缠结,因此造成位错运动困难,从而提高了钢强度。
★5、固溶强化、二次硬化、二次淬火、回火稳定性的含义。
1)固溶强化:当溶质原子溶入基体金属形成固溶体能强化金属。
2)二次硬化:在含Mo、W、V较多的钢中,回火后的硬度随回火温度的升高不是单调降低,而是在某一温度后硬度反而增加,并在某一温度(一般为550℃左右)达到峰值。这种在一定回火温度下硬度出现峰值的现象称为二次硬化
3)按用途分类:结构钢、工具钢、特种钢
2、奥氏体稳定化,铁素体稳定化的元素有哪些?
奥氏体稳定化元素,主要是Ni、Mn、Co、C、N、Cu等
铁素体稳定化元素,主要有Cr、Mo、W、V、Ti、Al、Si、B、Nb、Zr等
3、钢中碳化物形成元素有哪些(强-弱),其形成碳化物的规律如何?
1)碳化物形成元素:Ti、Zr、Nb、V、Mo、 W、Cr、Mn、Fe等(按形成的碳化物的稳定性程度由强到弱的次序排列),在钢中一部分固溶于基体相中,一部分形成合金渗碳体,含量高时可形成新的合金碳化物。
3)提高回火稳定性:间隙固溶,位↑ →应力,脆性↑,提高回火稳定性,(可提高T回),可以在获相同的强度条件下提T回,充分地降低固溶度,位错,应力;
4)细化碳化物:碳化物自身断裂;成为核心;粗大的碳化物使裂纹易扩展。细化碳化物、均匀、弥散分布对强度韧性有利。
5)控制非金属夹杂和杂质元素:Mo,W能抑制杂质元素在晶界偏聚 。
2)高温回火、快冷
3)尽量减少杂质元素含量(S、P)
7、如何提高钢的韧性?
1)细化晶粒:Ti,V,Nb,Al阻碍晶粒长大,使晶面积↑,裂纹阻力大;
2)改善基本的韧性:置换使强↑,韧↓,但Ni元素却相反,Niห้องสมุดไป่ตู้换改变位错运动的特点,使其容易绕过某些障碍,避免产生应力集中,使基体韧性↑,Ni>13%,消除Tk,低温用钢—高Ni钢(Mn);
9、合金元素对过冷奥氏体转变的影响。
除Co外,均使C曲线右移,增大稳定性,使孕育期增大,淬透性增加。常用提高淬透性元素有:Cr,Mn,Mo,Si,Ni等五种。
10、合金元素是如何提高钢的回火稳定性的,哪些较强?
由于Me与C的作用,大多数C扩散↓,而相的回火转变又与C的扩散有关。因此,M在回火过程中:推M分解,A’转变温度T,提高α的再结晶温度;使碳化物难以聚集长大,而保持较大的弥散程度。因此提高了钢的回火软化的抗力,即提高了钢的回火稳定性。使得钢在相同回火T下,具有高硬度和强度;也可使回火T升高,保证强度的同时使韧性提高(结构钢)。
有效方法:淬火+回火,钢淬火形成马氏体,马氏体中溶有过饱和C和Fe元素,产生很强的固溶强化效应,马氏体形成时还产生高密度位错,位错强化效应很大;R-M是形成许多极细小的取向不同的马氏体,产生细晶强化效应。因此淬火马氏体具有很高强度,但脆性很大,淬火后回火,马氏体中析出碳化物粒子,间隙固溶强化效应虽然大大减小,但产生很强的析出强化效应,由于基体上保持了淬火时细小晶粒,较高密度的位错及一定的固溶强化作用,所以回火马氏体仍具有很高强度,并且因间隙固溶引起的脆性减轻,韧性得到改善。
c)特殊碳化物——Ti、V等与碳亲和力较强时
i.当rc/rMe<0.59时,碳的直径小于间隙,不改变原金属点阵结构,形成简单点阵碳化物(间隙相)MC、M2C。
ii.当rc/rMe>0.59时,碳的直径大于间隙,原金属点阵变形,形成复杂点阵碳化物。
★4、钢的四种强化机制如何?实际提高钢强度的最有效方法是什么?
3)二次淬火:通过某种回火之后,淬火钢的硬度不但没有降低,反而有所升高,这种现象称为二次淬火。
4)回火稳定性:合金元素在回火过程中推迟马氏体分解和残余奥氏体转变,提高Fe的再结晶温度,使碳化物难以聚集长大的弥散度提高了钢对回火软化的抗力即提高了回火稳定性。
★6、何谓第一类、第二类回火脆,如何消除及预防?
8、材料变形的一般规律。
韧性是指材料对断裂的抗力→形成,扩大→延性断裂,解理断裂,沿晶断裂。
1)韧性断裂:弹性变形、屈服、塑性变形、颈缩、断裂
i.延性断裂:核心→孔洞→长大,汇合→导致断裂;
ii.解理断裂:低温,高加载速度,金属塑性差;
iii.沿晶断裂:晶界上元素,第二相(脆性相)
2)脆性断裂:少量弹性变形,瞬间断裂
相关文档
最新文档