常见函数泰勒展开以及不常见的推导

合集下载

常见函数泰勒公式展开式大全

常见函数泰勒公式展开式大全

常见函数泰勒公式展开式大全泰勒公式是数学分析中的重要工具,用于将一个函数在某个点的局部行为用多项式来近似表示。

它的形式如下:设函数f(x)在点x=a处n阶可导,那么对于x在a附近的数值,f(x)可以展开为泰勒公式:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)²/2! + f'''(a)(x-a)³/3! + ... +fⁿ(a)(x-a)ⁿ/n!其中f(a)表示函数在点x=a处的函数值,f'(a)表示函数在点x=a处的一阶导数值,f''(a)表示函数在点x=a处的二阶导数值,以此类推。

n!表示n的阶乘。

泰勒公式的一个重要应用是计算函数的近似值,当x离a越近,展开式的高阶项对应的值就越小,因此可以用前面几项来近似表示函数的值。

泰勒公式也是微积分中很多重要定理的基础,如拉格朗日中值定理、柯西中值定理等。

下面是一些常见函数的泰勒展开式:1. 指数函数e^x的泰勒展开:e^x = 1 + x + x²/2! + x³/3! + x⁴/4! + ...2. 正弦函数sin(x)的泰勒展开:sin(x) = x - x³/3! + x⁵/5! - x⁷/7! + ...3. 余弦函数cos(x)的泰勒展开:cos(x) = 1 - x²/2! + x⁴/4! - x⁶/6! + ...4. 自然对数函数ln(1+x)的泰勒展开:ln(1+x) = x - x²/2 + x³/3 - x⁴/4 + ...5. 反正切函数arctan(x)的泰勒展开:arctan(x) = x - x³/3 + x⁵/5 - x⁷/7 + ...通过使用泰勒公式展开式,我们可以将复杂的函数转化为多项式进行分析,从而得到函数在某一点附近的近似值和行为趋势。

泰勒公式展开常用

泰勒公式展开常用

泰勒公式展开常用(原创版)目录1.泰勒公式的定义和基本概念2.泰勒公式的展开形式3.泰勒公式的实际应用4.泰勒公式的优点和局限性正文泰勒公式是微积分学中的一种重要公式,它用于描述一个可微函数在某一点附近的近似值。

泰勒公式可以将函数展开为一个无穷级数,这个级数的每一项都与该点的各阶导数有关。

一、泰勒公式的定义和基本概念泰勒公式的定义是:如果一个函数 f(x) 在 x=a 处可导,那么在 a 附近有如下展开:f(x)=f(a)+f"(a)(x-a)+f""(a)(x-a)^2/2!+f"""(a)(x-a)^3/3!+... +f^n(a)(x-a)^n/n!+Rn(x)其中,f"(a)、f""(a)、f"""(a) 等表示函数在 a 点的各阶导数,n! 表示 n 的阶乘,Rn(x) 是余项。

二、泰勒公式的展开形式从泰勒公式的定义中可以看出,它是一种将函数展开为级数的形式。

这个级数的每一项都与函数在 a 点的各阶导数有关,其中,x-a 的各次方表示函数在 a 点附近的变化情况。

三、泰勒公式的实际应用泰勒公式在实际应用中具有广泛的应用,例如在数值分析中,可以使用泰勒公式来近似计算复杂函数的值;在工程领域中,泰勒公式可以用于优化函数的性能,提高计算效率。

四、泰勒公式的优点和局限性泰勒公式的优点在于,它可以将复杂的函数展开为简单的级数,从而简化问题的处理。

同时,泰勒公式也可以用于近似计算函数的值,提高计算效率。

然而,泰勒公式也有其局限性,例如在函数的转折点、极值点等特殊位置,泰勒公式可能无法准确描述函数的性质。

常见函数的泰勒级数展开

常见函数的泰勒级数展开

常见函数的泰勒级数展开在数学的广袤天地中,泰勒级数展开是一个极其重要的概念和工具。

它就像是一把神奇的钥匙,能够帮助我们将复杂的函数拆解成一系列简单的多项式之和,从而更方便地研究函数的性质、进行近似计算以及解决各种实际问题。

首先,咱们来聊聊什么是泰勒级数展开。

简单来说,泰勒级数展开就是把一个函数在某个点附近用一个无穷级数来表示。

这个级数的每一项都是由函数在该点的各阶导数所决定的。

咱们以常见的函数 e^x 为例。

它的泰勒级数展开式为:e^x = 1 + x + x^2/2! + x^3/3! + x^4/4! +。

这里的“!”表示阶乘,比如 3! =3×2×1 = 6 。

这个展开式有一个非常有趣的特点,就是无论在 x 取何值时,这个级数都收敛到 e^x 。

再看看正弦函数 sin(x) ,它的泰勒级数展开式是:sin(x) = x x^3/3! + x^5/5! x^7/7! +。

可以发现,正弦函数的泰勒级数展开只有奇数项,而且正负号交替出现。

余弦函数 cos(x) 的泰勒级数展开式则是:cos(x) = 1 x^2/2! + x^4/4! x^6/6! +,与正弦函数类似,它也只有偶数项,并且正负号交替。

接下来,咱们谈谈泰勒级数展开的作用。

其一,它能够帮助我们进行近似计算。

在实际应用中,很多时候直接计算一个复杂函数的值可能很困难,但通过泰勒级数展开,只取前面几项就能得到一个相当精确的近似值。

比如,在计算 e 的值时,如果精度要求不是特别高,我们可以只取 e^x 泰勒级数展开式的前几项来计算。

其二,泰勒级数展开有助于研究函数的性质。

通过观察函数的泰勒级数展开式,我们可以了解函数的单调性、凹凸性、极值等重要性质。

其三,在解决物理、工程等领域的问题时,泰勒级数展开常常能发挥关键作用。

例如在电路分析、力学计算中,常常会用到函数的泰勒级数展开来简化问题。

那怎么求一个函数的泰勒级数展开呢?这就需要用到函数的求导法则。

泰勒展开常用公式

泰勒展开常用公式

泰勒展开常用公式泰勒展开常用公式1. 泰勒展开的概念泰勒展开是数学中一种重要的方法,用于将函数表示为无穷级数的形式。

它基于泰勒定理,是将函数在某一点的邻域内用无穷多个项的级数进行逼近的方法。

常用于近似计算和函数的求导等领域。

2. 一阶泰勒展开公式一阶泰勒展开公式是最简单的泰勒展开形式,它将函数在某一点附近展开为一阶级数。

一阶泰勒展开公式的表达式如下:f (x )=f (a )+f′(a )(x −a )其中,f (x )为待展开的函数,f (a )为函数在点a 处的取值,f′(a )为函数在点a 处的导数。

举例说明:对于函数f (x )=sin (x ),我们希望在点a =π4处展开。

首先求出函数在该点的取值和导数:f (π4)=sin (π4)=√22f′(π4)=cos (π4)=√22将这些值带入一阶泰勒展开公式:f(x)=√22+√22(x−π4)3. 多项式泰勒展开公式多项式泰勒展开公式是将函数在某一点附近展开为多项式级数的形式。

多项式泰勒展开公式的表达式如下:f(x)=f(a)+f′(a)(x−a)+f″(a)2!(x−a)2+f‴(a)3!(x−a)3+⋯+f(n)(a)n!(x−a)n其中,f(n)(a)表示函数f(x)在点a处的n阶导数。

举例说明:对于函数f(x)=e x,我们希望在点a=0处展开。

首先求出函数在该点的取值和导数:f(0)=e0=1f′(0)=ddxe x|x=0=1f″(0)=d2dx2e x|x=0=1f‴(0)=d3dx3e x|x=0=1依次类推,可以得到:f(n)(0)=1将这些值带入多项式泰勒展开公式:f(x)=1+(x−0)+12!(x−0)2+13!(x−0)3+⋯+1n!(x−0)n4. 麦克劳林展开公式麦克劳林展开公式是一种特殊形式的泰勒展开公式,它将函数在原点附近展开为多项式级数。

麦克劳林展开公式的表达式如下:f(x)=f(0)+f′(0)(x−0)+f″(0)2!(x−0)2+f‴(0)3!(x−0)3+⋯+f(n)(0)n!(x−0)n其中,f(n)(0)表示函数f(x)在原点处的n阶导数。

百度文库-常用十个泰勒展开公式

百度文库-常用十个泰勒展开公式

常用十个泰勒展开公式比较通俗地讲解一下泰勒公式是什么。

泰勒公式,也称泰勒展开式。

是用一个函数在某点的信息,描述其附近取值的公式。

如果函数足够平滑,在已知函数在某一点的各阶导数值的情况下,泰勒公式可以利用这些导数值来做系数,构建一个多项式近似函数,求得在这一点的邻域中的值所以泰勒公式是做什么用的?简单来讲就是用一个多项式函数去逼近一个给定的函数(即尽量使多项式函数图像拟合给定的函数图像),注意,逼近的时候一定是从函数图像上的某个点展开。

如果一个非常复杂函数,想求其某点的值,直接求无法实现,这时候可以使用泰勒公式去近似的求该值,这是泰勒公式的应用之一。

泰勒公式在机器学习中主要应用于梯度迭代。

******************************************************************* ******************************************************************************************************************************** ************************************************************* 1. 问题的提出多项式是最简单的一类初等函数。

关于多项式,由于它本身的运算仅是有限项加减法和乘法,所以在数值计算方面,多项式是人们乐于使用的工具。

因此我们经常用多项式来近似表达函数。

这也是为什么泰勒公式选择多项式函数去近似表达给定的函数。

******************************************************************* ******************************************************************************************************************************* ************************************************************2. 近似计算举例初等数学已经了解到一些函数如:的一些重要性质,但是初等数学不曾回答怎样来计算它们,以f(x) = 的近似计算为例:①. 一次(线性)逼近利用微分近似计算公式f(x) f() + ()(x - ) (该式由导数/微分的极限表达公式转换得到),对 = 0 附近的 f(x) 的线性逼近为:f(x) f(0) + (0) x , 所以 f(x) = 1,所以f(x) 在 = 0 附近的线性逼近函数(x) = 1,如下图:线性逼近优点:形式简单,计算方便;缺点:离原点O越远,近似度越差。

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方

泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。

在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。

本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。

1. 利用 $(1+x)^n$ 的二项式展开式证明。

2. 利用 $e^x$ 的泰勒展开式证明。

3. 利用 $\ln (1+x)$ 的泰勒展开式证明。

4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。

5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。

6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。

7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。

8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。

这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。

但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。

总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。

泰勒公式展开推导【以sinx泰勒公式展开为例】

泰勒公式展开推导【以sinx泰勒公式展开为例】

泰勒公式展开推导【以sinx泰勒公式展开为例】泰勒公式在数学中,泰勒公式是⼀个⽤函数在某点的信息描述其附近取值的公式。

如果函数⾜够光滑的话,在已知函数在某⼀点的各阶导数值的情况之下,泰勒公式可以⽤这些导数值做系数构建⼀个多项式来近似函数在这⼀点的邻域中的值。

泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

整体思想:⽤多项式函数逼近⽬标函数近似替代以下推导为⽪亚诺型余项的泰勒公式1.泰勒公式的推导(1)Sinx⾸先对f(x)=Sinx进⾏n阶求导可以发先规律Sinx→Cosx→−Sinx→−Cosx⽤多项式函数近似代替g(x)=n∑i=0a0x i得到如下推导g(0)(x)=Sinx=a0x0+a1x1+a2x2+a3x3+a4x4+a5x5+...+a n x ng(1)(x)=Cosx=a1x0+2a2x1+3a3x2+4a4x3+5a5x4+...+a n x ng(2)(x)=−Sinx=2∗1a2x0+3∗2a3x1+4∗3a4x2+5∗4a5x3+...+a n x ng(3)(x)=−Cosx=3∗2∗1a3x0+4∗3∗2a4x1+5∗4∗3a5x2+...+a n x ng(4)(x)=Sinx=4∗3∗2∗1a4x0+5∗4∗3∗2a5x1+...+a n x ng(5)(x)=Cosx=5∗4∗3∗2∗1a5x0+...+a n x n当x=0时:0=a0+1=1∗a10=2∗1∗a2−1=3∗2∗1∗a30=4∗3∗2∗1a4+1=5∗4∗3∗2∗1∗a5归纳得:a k=0除以四余数为0 1k!除以四余数为1 0除以四余数为2−1k!除以四余数为3可以得出Sinx=x−x33!+x55!−x77!+...+(−1)n−1x2n−12n−1!+o(x2x−1)根据上述思想和推到⽅法可以对其他基本初等函数进⾏泰勒展开(2)e x发现求导规律:e x→e x→e x→e xg(0)(x)=e x=a0x0+a1x1+a2x2+a3x3+a4x4+a5x5+...+a n x ng(1)(x)=e x=a1x0+2a2x1+3a3x2+4a4x3+5a5x4+...+a n x ng(2)(x)=e x=2∗1a2x0+3∗2a3x1+4∗3a4x2+5∗4a5x3+...+a n x n 当x=0时:1=a01=1∗a11=2∗1∗a2归纳得{Processing math: 80%a k=1 k!可以得出e x=x+x22!+x33!+...+x nn!+o(x n)(3)ln(1+x)发现求导规律:ln(1+x)→(1+x)−1→(−1)(1+x)−2→(−2)(1+x)−3g(0)(x)=ln(1+x)=a0x0+a1x1+a2x2+a3x3+a4x4+a5x5+...+a n x ng(1)(x)=(1+x)−1=a1x0+2a2x1+3a3x2+4a4x3+5a5x4+...+a n x ng(2)(x)=(−1)(1+x)−2=2∗1a2x0+3∗2a3x1+4∗3a4x2+5∗4a5x3+...+a n x ng(3)(x)=(−1)2(1+x)−3=3∗2∗1a3x0+4∗3∗2a4x1+5∗4∗3a5x2+...+a n x ng(4)(x)=(−1)3(1+x)−4=4∗3∗2∗1a4x0+5∗4∗3∗2a5x1+...+a n x ng(5)(x)=(−1)4(1+x)−5=5∗4∗3∗2∗1a5x0+...+a n x n当x=0时:0=a01=1∗a1−1=2∗1∗a21=3∗2∗1∗a3−1=4∗3∗2∗1∗a41=5∗4∗3∗2∗1∗a5归纳得a k=(−1)k−1k!可以得出ln(1+x)=x−x22!+x33!+...+(−1)n−1x nn!+o(x n)(4)Cosx发现求导规律:Cosx→−Sinx→−Cosx→Sinx→Cosxg(0)(x)=Cosx=a0x0+a1x1+a2x2+a3x3+a4x4+a5x5+...+a n x ng(1)(x)=−Sinx=a1x0+2a2x1+3a3x2+4a4x3+5a5x4+...+a n x ng(2)(x)=−Cosx=2∗1a2x0+3∗2a3x1+4∗3a4x2+5∗4a5x3+...+a n x ng(3)(x)=Sinx=3∗2∗1a3x0+4∗3∗2a4x1+5∗4∗3a5x2+...+a n x ng(4)(x)=Cosx=4∗3∗2∗1a4x0+5∗4∗3∗2a5x1+...+a n x ng(5)(x)=Sinx=5∗4∗3∗2∗1a5x0+...+a n x n当x=0时:1=a00=1∗a1−1=2∗1∗a20=3∗2∗1∗a31=4∗3∗2∗1∗a40=5∗4∗3∗2∗1∗a5归纳得a k=1k!除以四余数为0 0除以四余数为1−1k!除以四余数为2 0除以四余数为3可以得出Cosx=1−x22!+x44!−x66!+...+(−1)nx2n2n!+o(x2n) {(5)(1+x)a发现求导规律:(1+x)a→a(1+x)a−1→a(a−1)(1+x)a−2→a(a−1)(a−2)(1+x)a−3g(0)(x)=(1+x)a=a0x0+a1x1+a2x2+a3x3+a4x4+a5x5+...+a n x ng(1)(x)=a(1+x)a−1=a1x0+2a2x1+3a3x2+4a4x3+5a5x4+...+a n x ng(2)(x)=a(a−1)(1+x)a−2=2∗1a2x0+3∗2a3x1+4∗3a4x2+5∗4a5x3+...+a n x ng(3)(x)=a(a−1)(a−2)(1+x)a−3=3∗2∗1a3x0+4∗3∗2a4x1+5∗4∗3a5x2+...+a n x n当x=0时:\begin{align} &1=a_0\\ &a=1*a_1\\ &a(a-1)=2*1*a_2\\ &a(a-1)(a-2)=3*2*1*a_3\\ \end{align}归纳得a_k=\frac{a(a-1)(a-2)...(a-k+1)}{k!}可以得出(1+x)^a=1+ax+\frac{a(a-1)x^2}{2!}+\frac{a(a-1)(a-2)x^3}{3!}+...+\frac{a(a-1)(a-2)...(a-n+1)x^n}{n!}+o(x^n)2.⽪亚诺与拉格朗⽇型余项(1)⽪亚诺型余项泰勒公式\begin{align} &如果f(x)在点x_0有直⾄n阶的导数,则有\\ &f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+...+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+o[(x-x_0)^{n}]\\ &x_0=0时,得到麦克劳林公式\\ &f(x)=f(0)+f'(0)x+\frac{1}{2!}f''(0)x^2+...+\frac{1}{n!}f^{(n)}(0)x^n+o(x^n) \end{align}(2)拉格朗⽇余项泰勒公式\begin{align} &设函数f(x)在含有x_0的开区间(a,b)内有n+1阶的导数,则当x\in(a,b)时有\\ &f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+...+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+R_n(x)\\ &其中R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{(n+1)},这⾥\xi介于x_0与x之间,称为拉格朗⽇余项 \end{align}(3)区别1、描述对象区别:拉格朗⽇余项的泰勒公式是描述整体拉格朗⽇余项(整体)\rightarrow \begin{cases} 最值\\ 不等式 \end{cases}⽪亚诺余项的泰勒公式描述局部⽪亚诺余项(整体)\rightarrow \begin{cases} 极限\\ 极值 \end{cases}2、表达式区别:其中拉格朗⽇余项使⽤的是具体表达式,为某个n+1阶导数乘以(x-x0)的(n+1)次⽅⽪亚诺型余项没有具体表达式只是⼀个⾼阶⽆穷⼩ Rn(x)=0((x-x0)的n次⽅)3、公式计算⽅式的区别麦克劳林公式是泰勒公式中(在a=0 ,记ξ=θX)的⼀种特殊形式;⽪亚诺型余项为Rn(x) = o(x^n);因此再展开时候只需根据要求。

函数泰勒展开

函数泰勒展开

函数泰勒展开函数泰勒展开是微积分中一个重要的概念,其应用广泛于数学、物理、工程等领域。

本文将从以下几个方面介绍函数泰勒展开的相关知识。

一、基本概念函数泰勒展开,简称泰勒展开,是指将一个函数在某一点附近展开成一列无限的多项式,这些多项式的系数与函数在该点的所有导数有关。

泰勒展开的公式如下:$f(x) = \sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n$其中,$f(x)$是函数,$a$是展开点,$f^{(n)}(a)$表示函数在点$a$处的$n$阶导数。

二、泰勒级数的性质1.泰勒级数具有唯一性。

即对于一个函数$f(x)$,在同一个展开点$a$处只能有一个泰勒级数。

2.泰勒级数的收敛区间可能是一个区间,也可能是一个点。

当$f(x)$在$a$的某个邻域内有$n+1$阶导数存在且连续时,泰勒级数在该邻域内收敛并且恰好展开为$f(x)$。

3.泰勒级数可以用于计算函数的近似值。

当$x$与$a$足够接近时,泰勒级数的前几项可以用来近似计算$f(x)$的值。

三、常见的泰勒展开公式1.常数函数泰勒展开公式:$f(x) = f(a)$2.一阶导数不为零的函数泰勒展开公式:$f(x) = f(a)+f'(a)(x-a)$3.二阶导数不为零的函数泰勒展开公式:$f(x) = f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2$4.三阶导数不为零的函数泰勒展开公式:$f(x) = f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3$以上是常见的四个泰勒展开公式,可以根据函数在展开点的导数情况选择适当的公式进行展开。

四、应用领域泰勒展开的应用广泛,以下列举一些常见的应用领域:1.近似计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文首先列出了常见函数如sinx、cosx、ex、1/x以及ln(1+x)的泰勒展开式。随后,利用sinx和cosx的展开式对1/(1+x^2)进行积分,得到了arctanx的泰勒展开式。类似地,对1/√(1-x^2)进行积分,推导出了arcsinx的泰勒展开。需要注意的是,虽然ln(1+x)的泰勒展开被用作推导arctanx和arcsinx的基础,但本文并未直接给出ln(x)在x=1处的泰勒展开,这可以通过对ln(1+x)的展开式进行变量替换得到。总的来说,本文通过一系列推导,展示了如何利用基本函数的泰勒展开式来推导更复杂函数的展开式,体现了泰勒展开在函数近似与计算中的重要作用。
相关文档
最新文档