第一章 函数的概念练习题 二
2018-2019学年高中数学 第一章 集合与函数概念训练卷(二)新人教A版必修1

集合与函数概念(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{|20}A x x =-<,{}1,2,3B =,则A B =( )A .{}1,2,3B .{}1C .{}3D .∅2.设集合{}=1,2M ,则满足条件{}=1,2,3,4M N 的集合N 的个数是( )A .1B .3C .2D .43.下列函数中,在()0,2上为增函数的是( ) A .32y x =-+B .3y x=C .245y x x -=+D .23810y x x +=-4.若奇函数()f x 在[]3,7上是增函数,且最小值是1,则它在[7,3]--上是( ) A .增函数且最小值是1- B .增函数且最大值是1- C .减函数且最大值是1-D .减函数且最小值是1-5.已知集合{|P x y ==,集合{|Q y y =,则P 与Q 的关系是( ) A .P Q = B .P Q ⊆ C .P Q ⊇D .P Q =∅6.设()()()F x f x f x =+-,x ∈R ,若,2π⎡⎤-π-⎢⎥⎣⎦是函数F (x )的单调递增区间,则一定是()F x 单调递减区间的是( ) A .,02π⎡⎤-⎢⎥⎣⎦B .,2π⎡⎤π⎢⎥⎣⎦C .23π⎡⎤π,⎢⎥⎣⎦D .,223π⎡⎤π⎢⎥⎣⎦7.已知函数()2f x x bx c =++的图象的对称轴为直线x =1,则( ) A .()()1(12)f f f <<- B .()()12()1f f f <<- C .()())211(f f f -<<D .()())112(f f f -<<8.图中的图象所表示的函数的解析式为( )A .()10322y x x =-≤≤ B .()1232032y x x --=≤≤ C .()10232y x x =-≤≤- D .()1012y x x =-≤≤-9.已知()()121,2111,2x x x f x f x +≥⎧-<⎪⎪⎨⎪-⎪⎩=,则1746f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭( ) A .16-B .16C .56 D .56-10.函数()y f x =是R 上的偶函数,且在(]0-∞,上是增函数,若()()2f a f ≤, 则实数a 的取值范围是( ) A .2a ≤ B .2a ≥- C .22a -≤≤D .22a a ≤-≥或11.已知函数()()f x x ∈R 满足()(2)f x f x =-,若函数223y x x =--与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1mi x =∑( )A .0B .mC .2mD .4m12.已知()32f x x =-,()22g x x x =-,()()()()()()(),,g x f x g x F x f x f x g x ⎧⎪≥<⎨⎪⎩=若若,则()F x 的2最值是 ( )A .最大值为3,最小值1- B.最大值为7- C .最大值为3,无最小值 D .既无最大值,又无最小值二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.函数2y x =+________.14.有15人进家电超市,其中有9人买了电视,有7人买了电脑,两种均买了的有3人,则这两种都没买的有________人.15.若函数()f x 的定义域为[12]-,则函数2(3)f x -的定义域为________. 16.规定记号“∆”表示一种运算,即a b a b ∆=+,a ,b ∈R ,若13k ∆=, 则函数()f x k x ∆=的值域是________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集U =R ,集合{}|4A x x =>,{|66}B x x =-<<. (1)求AB 和A B ;(2)求U B ð;(3)定义{|,}A B x x A x B -=∈∉且,求A B -,()A A B --.18.(12分)已知函数()211x f x x ++=. (1)判断函数()f x 在区间[1,)+∞上的单调性,并用定义证明你的结论; (2)求该函数在区间[1]4,上的最大值与最小值.319.(12分)已知全集U =R ,集合A ={x |x ≤-a -1},B ={x |x >a +2},C ={x |x <0或x ≥4}都是U 的子集. 若()U AB C ⊆ð,问这样的实数a 是否存在?若存在,求出a 的取值范围;若不存在,请说明理由.20.(12分)已知a ,b 为常数,且a ≠0,f (x )=ax 2+bx ,f (2)=0,方程f (x )=x 有两个相等实根.(1)求函数f (x )的解析式; (2)当]2[1x ∈,时,求f (x )的值域;(3)若F (x )=f (x )-f (-x ),试判断F (x )的奇偶性,并证明你的结论.421.(12分)设f (x )为定义在R 上的偶函数,当0≤x ≤2时,y =x ;当x >2时,y =f (x )的图象是顶点为4(3)P ,且过点2(2)A ,的抛物线的一部分.(1)求函数f (x )在(),2-∞-上的解析式;(2)在图中的直角坐标系中画出函数f (x )的图象; (3)写出函数f (x )的值域和单调区间.22.(12分)定义在R 上的函数f (x ),满足当x >0时,f (x )>1,且对任意的x ,y ∈R ,有()()()·f x y f x f y +=,f (1)=2. (1)求f (0)的值;(2)求证:对任意x ∈R ,都有f (x )>0; (3)解不等式f (3-2x )>4.2018-2019学年必修一第一章训练卷集合与函数概念(二)答 案一、选择题 1.【答案】B【解析】∵集合20{|}{|}2A x x x x =-=<<,3{}12B =,,∴{}1A B =,故选B .2.【答案】D【解析】∵{}=1,2M ,{}=1,2,3,4MN .∴{}{}{}{}=3,41,3,42,3,41,2,3,4N 或或或, 即集合N 有4个.故选D . 3.【答案】D【解析】显然A 、B 两项在()0,2上为减函数,排除; 对C 项,函数在()2-∞,上为减函数,也不符合题意;对D 项,函数在4,3⎛+∞⎫- ⎪⎝⎭上为增函数,所以在()0,2上也为增函数,故选D .4.【答案】B【解析】∵奇函数在对称区间上的单调性相同,最值相反. ∴()y f x =在[7,3]--上有最大值1-且为增函数.故选B . 5.【答案】C【解析】{[)1,|P x y ===-+∞,{[)0,|Q y y ==+∞, 所以P Q ⊇.故选C . 6.【答案】B【解析】∵()()F x F x -=,∴()F x 是偶函数, 因而在,2π⎡⎤π⎢⎥⎣⎦上()F x 一定单调递减.故选B .7.【答案】B【解析】因为二次函数()f x f (x )的图象的对称轴为直线1x =,所以()()13f f -=. 又函数()f x f (x )的图象为开口向上的抛物线, 则()f x 在区间[1,)+∞上为增函数,故()()()123f f f <<,即()()12()1f f f <<-.故选B . 8.【答案】B【解析】01x ≤≤,32y x =,12x ≤≤,332y x =-.故选B . 9.【答案】A【解析】11121442f ⎛⎫=⨯-=- ⎪⎝⎭,7711111121166663f f f ⎛⎫⎛⎫⎛⎫=-+=+=⨯-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴171466f f ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,故选A .10.【答案】D【解析】∵()y f x =是偶函数,且在(]0-∞,上是增函数,∴()y f x =在[0,)+∞上是减函数,由()()2f a f ≤,得()()2f a f ≤, ∴2a ≥,得22a a ≤-≥或,故选D . 11.【答案】B【解析】因为()y f x =,223y x x =--都关于1x =对称, 所以它们交点也关于1x =对称, 当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=, 因此选B .12.【答案】B【解析】作出F (x )的图象,如图实线部分, 知有最大值而无最小值,且最大值不是3,故选B .二、填空题 13.【答案】(]4-∞,【解析】令t =()210x t t =-≥,22222421()4y x t t t +=+=---+=.又∵0t ≥,∴当1t =时,4max y =.故原函数的值域是(]4-∞,. 14.【答案】2【解析】结合Venn 图可知,两种都没买的有2人.15.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】由1322x -≤-≤解得122x ≤≤,故定义域为1,22⎡⎤⎢⎥⎣⎦. 16.【答案】(1,)+∞【解析】由题意,113k k ∆=+=,得1k =.()11f x x x ∆=+=, 即()213124f x x ⎫+=+⎪⎭=,由于0x >,∴213124⎫+>⎪⎭,因此函数()f x 的值域为(1,)+∞. 三、解答题17.【答案】(1){|46}A B x x =<<,{}|6A B x x =>-;(2){|66}U B x x x =≥≤-或ð; (3)(){|6}U A B AB x x -==≥ð,(){|46}A A B x x --=<<.【解析】(1)∵{}|4A x x =>,{|66}B x x =-<< ∴{|46}A B x x =<<,{}|6AB x x =>-.(2){|66}U B x x x =≥≤-或ð. (3)∵定义{|,}A B x x A x B -=∈∉且, ∴(){|6}U A B AB x x -==≥ð,(){|46}A A B x x --=<<.18.【答案】(1)增函数,见解析;(2)95,32.【解析】(1)函数()f x 在[1,)+∞上是增函数. 证明:任取12,[,)1x x ∈+∞,且12x x <,则()()()()121212121221211111x x x x f x f x x x x x ++--=+++=+-. 易知120x x -<,12()11(0)x x ++>,所以()()120f x f x -<,即()()12f x f x <, 所以函数()f x 在[1,)+∞上是增函数.(2)由(1)知函数()f x 在[1]4,上是增函数,则函数()f x 的最大值为()945f =,最小值为()312f =.19.【答案】存在,3|2a a ⎧⎫-⎨⎩≤⎬⎭.【解析】因为()U A B C ⊆ð,所以应分两种情况.(1)若() U A B =∅ð,则A ∪B =R ,因此a +2≤-a -1,即a ≤32-.(2)若() U AB ≠∅ð,则a +2>-a -1,即a >32-.又A ∪B ={x |x ≤-a -1或x >a +2}, 所以()|2{}1U A B x a x a -<≤=-+ð,又()U AB C ⊆ð,所以a +2<0或-a -1≥4,即2a <-或a ≤-5,即2a <-. 又a >32-,故此时a 不存在.综上,存在这样的实数a ,且a 的取值范围是3|2a a ⎧⎫-⎨⎩≤⎬⎭.20.【答案】(1)f (x )=12-x 2+x ;(2)201⎡⎤⎢⎥⎣⎦,;(3)F (x )是奇函数,见解析.【解析】(1)由f (2)=0,得4a +2b =0,即2a +b =0.①方程f (x )=x ,即ax 2+bx =x ,即ax 2+(b -1)x =0有两个相等实根,且a ≠0,∴b -1=0,∴b =1,代入①得a =12-.∴f (x )=12-x 2+x .(2)由(1)知f (x )=12-(x -1)2+12.显然函数f (x )在[1]2,上是减函数,∴x =1时,f (x )max =12,x =2时,f (x )min =0. ∴]2[1x ∈,时,函数f (x )的值域是201⎡⎤⎢⎥⎣⎦,.(3)F (x )是奇函数.证明:()()2211()()(222)F x f x f x x x x x x ⎛⎫⎡⎤=--=-+----= ⎪⎢⎥⎝⎭⎣⎦+,∵F (-x )=2(-x )=-2x =-F (x ),∴F (x )是奇函数.21.【答案】(1)()23)24(f x x ++=-,,2()x ∈∞--;(2)见解析;(3){y |y ≤4},单调增区间为(],3-∞-和[0]3,.单调减区间为[30]-,和[3,)+∞. 【解析】(1)当x >2时,设f (x )=a (x -3)2+4.∵f (x )的图象过点A (2,2),∴f (2)=a (2-3)2+4=2,∴a =-2, ∴()23)24(f x x --+=-.设,2()x ∈∞--,则-x >2,∴()2()234f x x ---+=-. 又因为f (x )在R 上为偶函数,∴f (-x )=f (x ), ∴()23)24(f x x --+=-,即()23)24(f x x ++=-,,2()x ∈∞--. (2)图象如图所示.(3)由图象观察知f (x )的值域为{y |y ≤4}.单调增区间为(],3-∞-和[0]3,.单调减区间为[30]-,和[3,)+∞. 22.【答案】(1)1;(2)见解析;(3)1,2⎛∞-⎫ ⎪⎝⎭.【解析】(1)对任意x ,y ∈R ,()()()·f x y f x f y +=. 令x =y =0,得f (0)=f (0)·f (0),即f (0)·[f (0)-1]=0. 令y =0,得f (x )=f (x )·f (0),对任意x ∈R 成立,所以f (0)≠0,因此f (0)=1.(2)证明:对任意x ∈R ,有2·2222()()02x xx x x f x f f f f ⎡⎤⎛⎫⎛⎫⎛⎫===≥ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦+. 假设存在x 0∈R ,使f (x 0)=0,则对任意x >0,有f (x )=f [(x -x 0)+x 0]=f (x -x 0)·f (x 0)=0.这与已知x >0时,f (x )>1矛盾.所以,对任意x ∈R ,均有f (x )>0成立. (3)令x =y =1有f (1+1)=f (1)·f (1), 所以f (2)=2×2=4.任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)·f (x 1) -f (x 1)=f (x 1)·[f (x 2-x 1)-1].∵x 1<x 2,∴x 2-x 1>0,由已知f (x 2-x 1)>1,∴f (x 2-x 1)-1>0. 由(2)知x 1∈R ,f (x 1)>0.所以f (x 2)-f (x 1)>0,即f (x 1)<f (x 2). 故函数f (x )在(,)-∞+∞上是增函数.由f (3-2x )>4,得f (3-2x )>f (2),即3-2x >2.解得x <12. 所以,不等式的解集是1,2⎛∞-⎫ ⎪⎝⎭.。
高一数学第一章练习题

高一数学第一章练习题高一数学第一章通常涉及基础代数和函数的概念。
以下是一些练习题,供学生练习。
练习题一:代数表达式的简化1. 简化以下代数表达式:- \( 3x^2 - 2x + 1 - 5x^2 + 4x - 3 \)- \( \frac{2x}{y} + \frac{3y}{x} - \frac{5}{xy} \)2. 将下列表达式因式分解:- \( 6x^3 - 12x^2 + 6x \)- \( x^2 - 4y^2 \)练习题二:解一元一次方程1. 解下列方程:- \( 3x + 7 = 19 \)- \( 2x - 5 = 3x + 1 \)2. 写出方程 \( ax + b = 0 \) 的解,并讨论 \( a \) 不等于零和等于零时的情况。
练习题三:函数的概念和性质1. 给定函数 \( f(x) = 2x - 3 \),求:- 当 \( x = 4 \) 时,\( f(x) \) 的值- \( f(x) \) 的反函数2. 讨论函数 \( y = x^2 \) 的增减性,并找出其增减区间。
练习题四:不等式的解法1. 解下列不等式:- \( 2x - 5 < 3x + 1 \)- \( |x - 3| \geq 4 \)2. 找出不等式 \( x^2 - 4x + 3 \leq 0 \) 的解集。
练习题五:指数和对数1. 计算下列指数表达式的值:- \( 2^3 \)- \( (1/2)^{-2} \)2. 解下列对数方程:- \( \log_2 8 = x \)- \( 10^y = 100 \)练习题六:多项式函数1. 找出多项式 \( p(x) = x^3 - 6x^2 + 11x - 6 \) 的根。
2. 利用多项式根的性质,判断多项式 \( q(x) = x^3 - 3x^2 + 2x - 1 \) 是否有实根。
请同学们认真完成这些练习题,以巩固和加深对高一数学第一章内容的理解。
高中人教A版数学必修1单元测试:第一章 集合与函数概念(二)及解析

A 卷 数 学班级:________ 姓名:________ 得分:________第一章 集合与函数概念(二) (函数的概念与基本性质) (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=12x -3的定义域是( ) A. 0,32 B. 32,+∞ C. -∞,32 D.32,+∞ 2.函数y =f (x )的图象与直线x =2的公共点有( ) A .0个 B .1个 C .0个或1个 D .不能确定 3.函数y =x 2-4x +1,x ∈2,5]的值域是( ) A .1,6] B .-3,1] C .-3,6] D .-3,+∞)4.已知函数f (x )=x (x ≥0),x 2 (x <0),则f (f (-2))的值是( )A .2B .-2C .4D .-45.已知函数f (x )=(a -x )|3a -x |,a 是常数且a >0,下列结论正确的是( )A .当x =2a 时,有最小值0B .当x =3a 时,有最大值0C .无最大值也无最小值D .有最小值,但无最大值6.定义域为R 的函数y =f (x )的值域为a ,b ],则函数y =f (x +a )的值域为( )A .2a ,a +b ]B .a ,b ]C.0,b-a] D.-a,a+b]7.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x+2 B.3x+1 C.3x-1 D.3x+48.设f(x)是R上的偶函数,且在(-∞,0)上为减函数,若x1<0,且x1+x2>0,则()A.f(x1)>f(x2) B.f(x1)=f(x2)C.f(x1)<f(x2) D.无法比较f(x1)与f(x2)的大小9.已知反比例函数y=kx的图象如图所示,则二次函数y=2kx2-4x+k2的图象大致为()10.若φ(x),g(x)都是奇函数,f(x)=aφ(x)+bg(x)+2在(0,+∞)上有最大值5,则f(x)在(-∞,0)上有()A.最小值-5 B.最大值-5C.最小值-1 D.最大值-311.已知f(x)为奇函数,在区间3,6]上是增函数,且在此区间上的最大值为8,最小值为-1,则2f(-6)+f(-3)=()A.-15 B.-13 C.-5 D.512.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f (x )-f (-x )x<0的解集为( ) A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为________.14.已知函数f (x )满足f (x +y )=f (x )+f (y )(x ,y ∈R ),则下列各式恒成立的是________.①f (0)=0;②f (3)=3f (1);③f12=12f (1);④f (-x )·f (x )<0.15.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.16.若函数f (x )=x 2-(2a -1)x +a +1是(1,2)上的单调函数,则实数a 的取值范围为______________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知二次函数f (x )=x 2+2(m -2)x +m -m 2.(1)若函数的图象经过原点,且满足f (2)=0,求实数m 的值; (2)若函数在区间2,+∞)上为增函数,求m 的取值范围.18.(本小题满分12分) 已知函数f (x )=1+x 21-x 2. (1)求f (x )的定义域; (2)判断并证明f (x )的奇偶性;(3)求证:f1x =-f (x ).19.(本小题满分12分)已知函数f (x )的定义域为(-2,2),函数g (x )=f (x -1)+f (3-2x ). (1)求函数g (x )的定义域;(2)若f (x )是奇函数,且在定义域上单调递减,求不等式g (x )≤0的解集.20.(本小题满分12分)已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x . (1)当x <0时,求f (x )的解析式;(2)作出函数f (x )的图象,并指出其单调区间.21.(本小题满分12分)已知函数f (x )的定义域为(0,+∞),且f (x )为增函数,f (x ·y )=f (x )+f (y ).(1)求证:fx y =f (x )-f (y );(2)若f (3)=1,且f (a )>f (a -1)+2,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+2x +ax ,x ∈1,+∞). (1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈1,+∞),f (x )>0恒成立,试求实数a 的取值范围.详解答案第一章 集合与函数概念(二) (函数的概念与基本性质) 名师原创·基础卷]1.D 解析:由2x -3>0得x >32.2.C 解析:如果x =2与函数y =f (x )有公共点,则只有一个公共点,因为自变量取一个值只对应一个函数值;若无交点,则没有公共点,此时的x =2不在y =f (x )的定义域内.3.C 解析:函数y =(x -2)2-3在2,+∞)上是增函数,所以最小值为f (2)=-3,又x ∈2,5],故最大值为f (5)=6.4.C 解析:∵x =-2<0,∴f (-2)=(-2)2=4. 又4>0,∴f (f (-2))=f (4)=4.5.C 解析:由f (x )=(x -2a )2-a 2,x ≤3a ,-(x -2a )2+a 2,x >3a ,可画出简图.分析知C 正确.6.B 解析:y =f (x +a )可由y =f (x )的图象向左或向右平移|a |个单位得到,因此,函数y =f (x +a )的值域与y =f (x )的值域相同.7.C 解析:设x +1=t ,则x =t -1,∴f (t )=3(t -1)+2=3t -1, ∴f (x )=3x -1,故选C.解题技巧:采用换元法求函数解析式是常用方法.换元时,一定注意自变量的取值范围的变化情况.8.C 解析:x 1<0,且x 1+x 2>0,∴x 1>-x 2. 又f (x )在(-∞,0)上为减函数,∴f (x 1)<f (-x 2). 又f (x )是偶函数,∴f (x 1)<f (x 2).9.D 解析:由反比例函数的图象知k <0,∴二次函数开口向下,排除A ,B ,又对称轴为x =1k <0,排除C.10.C 解析:由已知对任意x ∈(0,+∞),f (x )=aφ(x )+bg (x )+2≤5. 对任意x ∈(-∞,0),则-x ∈(0,+∞),且φ(x ),g (x )都是奇函数,有f (-x )=aφ(-x )+bg (-x )+2≤5.即-aφ(x )-bg (x )+2≤5, ∴aφ(x )+bg (x )≥-3.∴f (x )=aφ(x )+bg (x )+2≥-3+2=-1.11.A 解析:因为函数在3,6]上是增函数,所以f (6)=8,f (3)=-1,又函数f (x )为奇函数,所以2f (-6)+f (-3)=-2f (6)-f (3)=-2×8+1=-15,故选A.12.D 解析:∵f (x )为奇函数,∴f (x )=-f (-x ),∴f (x )-f (-x )x =2f (x )x <0,即f (x )<0,x >0或f (x )>0,x <0.因为f (x )是奇函数且在(0,+∞)上是增函数,故f (x )在(-∞,0)上是增函数.由f (1)=0知f (-1)=0,∴f (x )<0,x >0可化为f (x )<f (-1),x >0,∴0<x <1;f (x )>0,x <0可化为f (x )>f (1),x <0,∴-1<x <0.13.-1,-12 解析:由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为-1,-12. 解题技巧:已知f (x )的定义域为a ,b ],求f (g (x ))的定义域,可从a ≤g (x )≤b 中解得x 的取值范围,即为f (g (x ))的定义域.14.①②③ 解析:令x =y =0,得f (0)=0;令x =2,y =1,得f (3)=f (2)+f (1)=3f (1);令x =y =12,得f (1)=2f 12,∴f12=12f (1); 令y =-x ,得f (0)=f (x )+f (-x ),即f (-x )=-f (x ), ∴f (-x )·f (x )=-f (x )]2≤0.15.-2x 2+4 解析:f (x )=(x +a )(bx +2a )=bx 2+(2a +ab )x +2a 2为偶函数,则2a +ab =0,∴a =0或b =-2.又f (x )的值域为(-∞,4],∴a ≠0,b =-2,∴2a 2=4. ∴f (x )=-2x 2+4.16.a ≥52或a ≤32 解析:函数f (x )的对称轴为x =2a -12=a -12,∵函数在(1,2)上单调,∴a -12≥2或a -12≤1,即a ≥52或a ≤32.17.解:(1)∵f (0)=0,f (2)=0,∴m 2-5m +4=0,m -m 2=0,∴m =1. (2)∵y =f (x )在2,+∞)为增函数, ∴对称轴x =-2(m -2)2≤2, ∴m ≥0.18.(1)解:由1-x 2≠0得x ≠±1, ∴f (x )的定义域为{x |x ≠±1,x ∈R }.(2)解:f (x )是偶函数,证明如下:设x ∈{x |x ≠±1,x ∈R },则-x ∈{x |x ≠±1,x ∈R }. ∵f (-x )=1+(-x )21-(-x )2=1+x 21-x 2=f (x ), ∴f (x )是偶函数.(3)证明:∵f1x =1+1x 21-1x 2=1+1x 21-1x 2=x 2+1x 2-1=-1+x 21-x 2= -f (x ),∴f1x =-f (x )成立.19.解:(1)由题意可知-2<x -1<2,-2<3-2x <2,∴-1<x <3,12<x <52.解得12<x <52.故函数f (x )的定义域为12,52.(2)由g (x )≤0,得f (x -1)+f (3-2x )≤0, ∴f (x -1)≤-f (3-2x ).∵f (x )为奇函数,∴f (x -1)≤f (2x -3). 而f (x )在(-2,2)上单调递减,∴x -1≥2x -3,12<x <52.解得12<x ≤2.∴g (x )≤0的解集为12,2.20.解:(1)当x <0时,-x >0, ∴f (-x )=(-x )2-2(-x )=x 2+2x .又f (x )是定义在R 上的偶函数, ∴f (-x )=f (x ).∴当x <0时,f (x )=x 2+2x .(2)由(1)知,f (x )=x 2-2x (x ≥0),x 2+2x (x <0).作出f (x )的图象如图所示.由图得函数f (x )的递减区间是(-∞,-1],0,1]. f (x )的递增区间是-1,0],1,+∞).21.(1)证明:∵f (x )=fx y ·y =fx y +f (y )(y ≠0),∴fx y =f (x )-f (y ). (2)解:∵f (3)=1,∴f (9)=f (3·3)=f (3)+f (3)=2. ∴f (a )>f (a -1)+2=f (a -1)+f (9)=f 9(a -1)]. 又f (x )在定义域(0,+∞)上为增函数, ∴a >0,a -1>0,a >9(a -1),∴1<a <98.22.解:(1)当a =12时,f (x )=x +12x +2,设x 2>x 1>1,则f (x 2)-f (x 1)=x 2+12x 2+2- x 1+12x 1+2 =(x 2-x 1)+x 1-x 22x 1x 2=(x 2-x 1)1-12x 1x 2. ∵x 2>x 1>1,∴x 2-x 1>0,12x 1x 2<12,1-12x 1x 2>0,∴f (x 2)-f (x 1)>0,∴f (x )在1,+∞]上单调递增.∴f (x )在区间1,+∞)上的最小值为f (1)=72. (2)在区间1,+∞)上,f (x )=x 2+2x +ax>0恒成立, 等价于x 2+2x +a >0恒成立. 设y =x 2+2x +a ,x ∈1,+∞).∵y =x 2+2x +a =(x +1)2+a -1在1,+∞)上单调递增, ∴当x =1时,y min =3+a .于是,当且仅当y min =3+a >0时,f (x )>0恒成立. ∴a >-3.解题技巧:不等式的恒成立问题常转化为函数的最值问题,分离参数法是求解此类问题的常用方法.B 卷数学班级:________姓名:________得分:________第一章集合与函数概念(二)(函数的概念与基本性质)(时间:120分钟 满分:150分)第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四组函数中,表示同一函数的是()A.y=x-1与y=(x-1)2B.y=x-1与y=x-1 x-1C.y=4lg x与y=2lg x2D.y=lg x-2与y=lgx 1002.已知f:x→x2是集合A到集合B={0,1,4}的一个映射,则集合A中的元素个数最多有()A.3个B.4个C.5个D.6个3.函数f(x)=x+1x-1的定义域是()A.-1,1) B.-1,1)∪(1,+∞) C.-1,+∞) D.(1,+∞)4.函数y=2--x2+4x的值域是()A.-2,2] B.1,2]C.0,2] D.-2,2]5.已知f (x )的图象如图,则f (x )的解析式为( )A .f (x )=1,0≤x ≤1-x -2,1<x ≤2B .f (x )=-1,0≤x ≤1x +2,1<x ≤2C .f (x )=-1,0≤x ≤1x -2,1<x ≤2 D .f (x )=-1,0≤x ≤1-x +2,1<x ≤26.定义两种运算:a ⊕b =a 2-b 2,a b =(a -b )2,则函数f (x )=2⊕x (x 2)-2的解析式为( )A .f (x )=4-x 2x ,x ∈-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪2,+∞)C .f (x )=-x 2-4x ,x ∈(-∞,-2]∪2,+∞)D .f (x )=-4-x 2x ,x ∈-2,0)∪(0,2]7.函数f (x )=1x -x 的图象关于( )A .坐标原点对称B .x 轴对称C .y 轴对称D .直线y =x 对称8.设f (x )是定义在-6,6]上的偶函数,且f (4)>f (1),则下列各式一定成立的是( )A .f (0)<f (6)B .f (4)>f (3)C .f (2)>f (0)D .f (-1)<f (4)9.若奇函数f (x )在1,3]上为增函数,且有最小值0,则它在-3,-1]上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值010.已知函数f (x )=a x (x <0),(a -3)x +4a (x ≥0),满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a 的取值范围是( ) A.0,14 B .(0,1) C.14,1 D .(0,3)11.若f (x )是R 上的减函数,且f (x )的图象经过点A (0,4)和点B (3,-2),则当不等式|f (x +t )-1|<3的解集为(-1,2)时,t 的值为( )A .0B .-1C .1D .212.已知函数y =f (x )满足:①y =f (x +1)是偶函数;②在1,+∞)上为增函数.若x 1<0,x 2>0,且x 1+x 2<-2,则f (-x 1)与f (-x 2)的大小关系是( )A .f (-x 1)>f (-x 2)B .f (-x 1)<f (-x 2)C .f (-x 1)=f (-x 2)D .无法确定第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数f (x )=ax 7+bx -2,且f (2 014)=10,则f (-2 014)的值为________.14.若函数f (x )=ax +1x +2在x ∈(-2,+∞)上单调递减,则实数a 的取值范围是________.15.已知函数f (x )=x +3x +1,记f (1)+f (2)+f (4)+f (8)+f (16)=m ,f12+f 14+f 18+f116=n ,则m +n =________. 16.设a 为常数且a <0,y =f (x )是定义在R 上的奇函数,当x <0时,f (x )=x +a 2x -2.若f (x )≥a 2-1对一切x ≥0都成立,则a 的取值范围为________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)已知f (x -2)=3x -5,求f (x );(2)若f (f (f (x )))=27x +26,求一次函数f (x )的解析式.18.(本小题满分12分) 已知f (x )=1x -1,x ∈2,6].(1)证明:f (x )是定义域上的减函数; (2)求f (x )的最大值和最小值.19.(本小题满分12分)某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=400x -12x 2,0≤x ≤400,80 000,x >400,其中x 是仪器的月产量.(1)将利润f (x )表示为月产量x 的函数;(2)当月产量x为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)20.(本小题满分12分)已知函数f(x)=x2+2ax+2,x∈-5,5].(1)当a=-1时,求函数的最大值和最小值;(2)若y=f(x)在区间-5,5]上是单调函数,求实数a的取值范围.21.(本小题满分12分)已知二次函数f(x)=ax2+bx(a,b∈R),若f(1)=-1且函数f(x)的图象关于直线x=1对称.(1)求a,b的值;(2)若函数f(x)在k,k+1](k≥1)上的最大值为8,求实数k的值.22.(本小题满分12分)已知二次函数f(x)的图象过点(0,4),对任意x满足f(3-x)=f(x),且有最小值7 4.(1)求f(x)的解析式;(2)求函数h(x)=f(x)-(2t-3)x在区间0,1]上的最小值,其中t∈R;(3)在区间-1,3]上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围.详解答案第一章集合与函数概念(二)(函数的概念与基本性质)名校好题·能力卷]1.D 解析:∵y =x -1与y =(x -1)2=|x -1|的对应关系不同,∴它们不是同一函数;y =x -1(x ≥1)与y =x -1x -1(x >1)的定义域不同,∴它们不是同一函数;又y =4lg x (x >0)与y =2lg x 2(x ≠0)的定义域不同,因此它们也不是同一函数,而y =lg x -2(x >0)与y =lg x 100=lg x -2(x >0)有相同的定义域、值域与对应关系,因此它们是同一函数.2.C 解析:令x 2=0,1,4,解得x =0,±1,±2.故选C.3.B 解析:由x +1≥0,x -1≠0,解得x ≥-1,且x ≠1.4.C 解析:令t =-x 2+4x ,x ∈0,4],∴t ∈0,4].又∵y 1=x ,x∈0,+∞)是增函数∴ t ∈0,2],-t ∈-2,0],∴y ∈0,2].故选C.5.C 解析:当0≤x ≤1时,f (x )=-1;当1<x ≤2时,设f (x )=kx +b (k ≠0),把点(1,-1),(2,0)代入f (x )=kx +b (k ≠0),则f (x )=x -2.所以f (x )=-1,0≤x ≤1,x -2,1<x ≤2.故选C.6.D 解析:f (x )=2⊕x (x 2)-2=22-x 2(x -2)2-2=4-x 2|x -2|-2.由4-x 2≥0,|x -2|-2≠0,得-2≤x ≤2且x ≠0.∴f (x )=-4-x 2x . 7.A 解析:函数f (x )的定义域关于原点对称,又∵f (-x )=1-x+x =-1x -x =-f (x ),∴f (x )为奇函数,其图象关于坐标原点对称. 8.D 解析:∵f (x )是定义在-6,6]上的偶函数,∴f (-1)=f (1).又f (4)>f (1),f (4)>f (-1).9.D 解析:因为奇函数f (x )在1,3]上为增函数,且有最小值0,所以f (x )在-3,-1]上是增函数,且有最大值0.10.A 解析:由于函数f (x )=a x (x <0),(a -3)x +4a (x ≥0)满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,所以该函数为R 上的减函数,所以0<a <1,a -3<0,4a ≤a 0,解得0<a ≤14.解题技巧:本题主要考查了分段函数的单调性,解决本题的关键是利用好该函数为R 上的减函数这一条件.应特别注意隐含条件“a 0≥4a ”.11.C 解析:由不等式|f (x +t )-1|<3,得-3<f (x +t )-1<3,即-2<f (x +t )<4.又因为f (x )的图象经过点A (0,4)和点B (3,-2),所以f (0)=4,f (3)=-2,所以f (3)<f (x +t )<f (0).又f (x )在R 上为减函数,则3>x +t >0,即-t <x <3-t ,解集为(-t,3-t ).∵不等式的解集为(-1,2),∴-t =-1,3-t =2,解得t =1.故选C.12.A 解析:由y =f (x +1)是偶函数且把y =f (x +1)的图象向右平移1个单位可得函数y =f (x )的图象,所以函数y =f (x )的图象关于x =1对称,即f (2+x )=f (-x ).因为x 1<0,x 2>0,且x 1+x 2<-2,所以2<2+x 2<-x 1.因为函数在1,+∞)上为增函数,所以f (2+x 2)<f (-x 1),即f (-x 1)>f (-x 2),故选A.13.-14 解析:设g (x )=ax 7+bx ,则g (x )是奇函数,g (-2 014)=-g (2 014).∵f (2 014)=10且f (2 014)=g (2 014)-2,∴g (2 014)=12,∴g (-2 014)=-12,∴f (-2 014)=g (-2 014)-2,∴f (-2 014)=-14.14.a <12 解析:f (x )=ax +1x +2=a +1-2a x +2.∵y =1x +2在x ∈(-2,+∞)上是减函数,∴1-2a >0,∴a <12.15.18 解析:因为函数f (x )=x +3x +1,所以f 1x =1+3x x +1. 又因为f (x )+f 1x =4(x +1)x +1=4, f (1)+f (2)+f (4)+f (8)+f (16)+f 12+f 14+f 18+f116 =f (1)+f (2)+f 12+f (4)+f 14+f (8)+f 18+f (16)+f116=f (1)+4×4=18,所以m +n =18.解题技巧:本题主要考查了学生的观察、归纳、推理的能力,解决本题的关键是挖掘出题目中隐含的规律f (x )+f1x =4. 16.-1≤a <0 解析:当x =0时,f (x )=0,则0≥a 2-1,解得-1≤a ≤1,所以-1≤a <0.当x >0时,-x <0,f (-x )=-x +a 2-x-2,则f (x )=-f (-x )=x +a 2x +2.由对数函数的图象可知,当x =a 2=|a |=-a 时,有f (x )min =-2a +2,所以-2a +2≥a 2-1,即a 2+2a -3≤0,解得-3≤a ≤1.又a <0, 所以-3≤a <0.综上所述,-1≤a <0.17.解:(1)令t =x -2,则x =t +2,t ∈R ,由已知有f (t )=3(t +2)-5=3t +1,故f (x )=3x +1.(2)设f (x )=ax +b (a ≠0),f (f (x ))=a 2x +ab +b ,f (f (f (x )))=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b ,∴a 3=27,a 2b +ab +b =26, 解得a =3,b =2.则f (x )=3x +2.18.(1)证明:设2≤x 1<x 2≤6,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1), 因为x 1-1>0,x 2-1>0,x 2-x 1>0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以f (x )是定义域上的减函数.(2)由(1)的结论可得,f (x )min =f (6)=15,f (x )max =f (2)=1.19.解:(1)当0≤x ≤400时,f (x )=400x -12x 2-100x -20 000=-12x 2+300x -20 000.当x >400时,f (x )=80 000-100x -20 000=60 000-100x ,所以f (x )= -12x 2+300x -20 000,0≤x ≤400,60 000-100x ,x >400.(2)当0≤x ≤400时, f (x )=-12x 2+300x -20 000=-12(x -300)2+25 000;当x =300时,f (x )max =25 000;当x >400时,f (x )=60 000-100x <f (400)=20 000<25 000;所以当x =300时,f (x )max =25 000.故当月产量x 为300台时,公司获利润最大,最大利润为25 000元.20.解:(1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.又因为x ∈-5,5].所以函数的最大值为37,最小值为1.(2)若y =f (x )在区间-5,5]上是单调函数,则有-a ≤-5或-a ≥5解得a ≤-5或a ≥5.解题技巧:本题主要考查了二次函数在给定区间上的最值与单调性.解决本题的关键是确定对称轴和区间端点的关系.注意分类讨论.21.解:(1)由题意可得f (1)=a +b =-1且-b 2a =1,解得a =1,b =-2.(2)f (x )=x 2-2x =(x -1)2-1.因为k ≥1,所以f (x )在k ,k +1]上单调递增,所以f (x )max =f (k +1)=(k +1)2-2(k +1)=8,解得k =±3.又k ≥1,所以k =3.22.解:(1)由题知二次函数图象的对称轴为x =32,又最小值是74,则可设f (x )=ax -322+74(a ≠0), 又图象过点(0,4),则a0-322+74=4,解得a =1. ∴f (x )=x -322+74=x 2-3x +4. (2)h (x )=f (x )-(2t -3)x =x 2-2tx +4=(x -t )2+4-t 2,其对称轴x =t .①t ≤0时,函数h (x )在0,1]上单调递增,最小值为h (0)=4; ②当0<t <1时,函数h (x )的最小值为h (t )=4-t 2;③当t ≥1时,函数h (x )在0,1]上单调递减,最小值为h (1)=5-2t ,所以h (x )min = 4,t ≤0,4-t 2,0<t <1,5-2t ,t ≥1.(3)由已知:f (x )>2x +m 对x ∈-1,3]恒成立, ∴m <x 2-5x +4对x ∈-1,3]恒成立. ∴m <(x 2-5x +4)min (x ∈-1,3]).∵g (x )=x 2-5x +4在x ∈-1,3]上的最小值为-94, ∴m <-94.。
必修一-函数的概念练习题(含答案)

函数的概念 【2 】 一.选择题 1.聚集A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x 2.某物体一天中的温度是时光t 的函数:T (t )=t 3-3t +60,时光单位是小时,温度单位为℃,t =0表示12:00,厥后t 的取值为正,则上午8时的温度为( )A .8℃B .112℃C .58℃D .18℃3.函数y =1-x2+x2-1的界说域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}4.已知f (x )的界说域为[-2,2],则f (x 2-1)的界说域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]5.若函数y =f (3x -1)的界说域是[1,3],则y =f (x )的界说域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]6.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上7.函数f (x )=1ax2+4ax +3的界说域为R ,则实数a 的取值规模是( ) A .{a |a ∈R } B .{a |0≤a ≤34}C .{a |a >34} D .{a |0≤a <34} 8.某汽车运输公司购置了一批奢华大客车投入运营.据市场剖析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时光不超过( )年.A .4B .5C .6D .79.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x2x2(x ≠0),那么f ⎝⎛⎭⎫12等于( ) A .15 B .1C .3 D .3010.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二.填空题11.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其界说域为________.12.函数y =x +1+12-x的界说域是(用区间表示)________.三.解答题13.求一次函数f (x ),使f [f (x )]=9x +1.14.将进货单价为8元的商品按10元一个发卖时,天天可卖出100个,若这种商品的发卖单价每涨1元,日发卖量就削减10个,为了获得最大利润,发卖单价应定为若干元?15.求下列函数的界说域.(1)y =x +1x2-4; (2)y =1|x|-2;(3)y =x2+x +1+(x -1)0. 16.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的界说域.17.(1)已知f (x )的界说域为 [ 1,2 ] ,求f (2x -1)的界说域;(2)已知f (2x -1)的界说域为 [ 1,2 ],求f (x )的界说域;(3)已知f (x )的界说域为[0,1],求函数y =f (x +a )+f (x -a )(个中0<a <12)的界说域.18.用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此框架的面积y 与x 的函数关系式及其界说域.1.2.1 函数的概念答案一.选择题1.[答案] C[解析] 对于选项C,当x =4时,y =83>2不合题意.故选C. 2.[答案] A[解析] 12:00时,t =0,12:00今后的t 为正,则12:00以前的时光负,上午8时对应的t =-4,故T (-4)=(-4)3-3(-4)+60=8.3.[答案] D[解析] 使函数y =1-x2+x2-1有意义应知足⎩⎪⎨⎪⎧ 1-x2≥0x2-1≥0,∴x 2=1,∴x =±1. 4.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.5.[答案] C[解析] 因为y =f (3x -1)的界说域为[1,3],∴3x -1∈[2,8],∴y =f (x )的界说域为[2,8].6.[答案] C[解析] 当a 在f (x )界说域内时,有一个交点,不然无交点.7.[答案] D[解析] 由已知得ax 2+4ax +3=0无解当a =0时3=0,无解;当a ≠0时,Δ<0即16a 2-12a <0,∴0<a <34, 综上得,0≤a <34,故选D. 8.[答案] D[解析] 由图得y =-(x -6)2+11,解y ≥0得6-11≤x ≤6+11,∴营运利润时光为211.又∵6<211<7,故选D.9.[答案] A[解析] 令g (x )=1-2x =12得,x =14,∴f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫g ⎝⎛⎭⎫14=1-⎝⎛⎭⎫142⎝⎛⎭⎫142=15,故选A. 10.[答案] C二.填空题11.y =2.5x ,x ∈N *,界说域为N *12. [-1,2)∪(2,+∞)[解析] 使函数有意义应知足:⎩⎪⎨⎪⎧x +1≥02-x≠0∴x ≥-1且x ≠2,用区间表示为[—1,2)∪(2,+∞). 三.解答题13. [解析] 设f (x )=ax +b ,则f [f (x )]=a (ax +b )+b =a 2x +ab +b =9x +1,比较对应项系数得,⎩⎪⎨⎪⎧ a2=9ab +b =1⇒⎩⎪⎨⎪⎧ a =3b =14或⎩⎪⎨⎪⎧a =-3b =-12, ∴f (x )=3x +14或f (x )=-3x -12. 14. [解析] 设发卖单价定为10+x 元,则可售出100-10x 个,发卖额为(100-10x )(10+x )元,本金为8(100-10x )元,所以利润y =(100-10x )(10+x )-8(100-10x )=(100-10x )(2+x )=-10x 2+80x +200=-10(x -4)2+360所以当x =4时,y max =360元.答:发卖单价定为14元时,获得利润最大.15.[解析] (1)要使函数y =x +1x2-4有意义,应知足x 2-4≠0,∴x ≠±2, ∴界说域为{x ∈R |x ≠±2}.(2)函数y =1|x|-2有意义时,|x |-2>0,∴x >2或x <-2.∴界说域为{x ∈R |x >2或x <-2}.(3)∵x 2+x +1=(x +12)2+34>0, ∴要使此函数有意义,只须x -1≠0,∴x ≠1,∴界说域为{x ∈R |x ≠1}.16.[解析] (1)当x 分离取0,1,2,3时,y 值依次为-3,-1,1,3,∴f (x )的值域为{-3,-1,1,3}.(2)∵-2≤y ≤4,∴-2≤3x +4≤4,即⎩⎪⎨⎪⎧ 3x +4≥-23x +4≤4,∴⎩⎨⎧x≥-2x≤0, ∴-2≤x ≤0,即函数的界说域为{x |-2≤x ≤0}.17.解析:对于抽象函数的界说域,必须在透辟懂得函数f (x )的界说域的概念的基本上,灵巧应用.(1)∵f (x )的界说域为 [ 1 , 2 ]. ∴12x ≤≤∴1212x -≤≤∴312x ≤≤.∴f (2x —1)的界说域为 [ 1 ,32].(2)设t =2x —1, ∵f (2x —1) 的界说域为 [ 1,2 ].∴12x ≤≤, ∴1≤2x —1≤3即:1≤t ≤3, ∴f (x )的界说域为[ 1,3 ].(3)∵f (x )的界说域为[0,1],∴0101x a x a ≤+≤⎧⎨≤-≤⎩,∵0<a <12. 在数轴上不雅察得a ≤x ≤1—a .∴f (x )的界说域为[a ,1—a ].思虑:若a ∈R,若何求f (x )的界说域?18.解:∵半圆的半径为x .∴矩形的另一边长为2π2L x x--.∴2π2π222L x x y x x --=+=2π(2)2x L x -++⋅.又∵201(2π)02x L x x ⎧⎪⎨--⎪⎩>> ∴0<x <2πL +. 2πL+。
函数的概念练习题

函数的概念练习题一、选择题1. 下列哪个选项不是函数的三要素?A. 定义域B. 值域C. 对应法则D. 自变量2. 设f(x) = x²,那么f(2)的值为:A. 2B. 4C. 0D. 83. 下列哪个函数是增函数?A. y = xB. y = x²C. y = 1/xD. y = x²4. 若函数f(x) = 2x + 3的定义域为[1, 3],则f(x)的值域为:A. [5, 9]B. [3, 7]C. [2, 8]D. [4, 6]二、填空题1. 设f(x) = 3x 1,则f(1) = _______。
2. 若函数g(x) = x² 2x + 1的定义域为[0, 2],则g(x)的值域为 _______。
3. 已知函数h(x) = |x|,那么h(3) = _______。
4. 若函数f(x) = 2x² 4x + 3,求f(x)在x = 2时的函数值_______。
三、判断题1. 函数的定义域和值域都可以是全体实数。
_______2. 两个函数的定义域和对应法则相同,则这两个函数一定相等。
_______3. 函数y = x³是奇函数。
_______4. 函数y = |x|是偶函数。
_______四、解答题1. 设f(x) = (x 1) / (x + 2),求f(x)的定义域。
2. 已知函数g(x) = √(4 x²),求g(x)的定义域和值域。
3. 判断函数h(x) = x² 2x是否为单调函数,并说明理由。
4. 已知函数f(x) = 2x² 4x + 3,求f(x)在x = 1时的函数值。
5. 设函数g(x) = (1/2)²x,求g(x)的值域。
五、应用题2. 一辆汽车以每小时60公里的速度行驶,其油耗量(升/小时)与行驶时间(小时)的关系可以用函数g(t) = 0.05t + 1表示。
函数概念练习题训练

函数概念练习题训练一、选择题1.函数的定义是()。
A.一一对应的关系B.随机的关系C.多对多的关系D.一对多的关系2.下列哪个不是函数?A. y = 2x + 3B. y² = xC. y = √(x + 2)D. y = |x|3.设函数 f(x) = x² + 3x,则 f(2) 的值为()。
A. -1B. 5C. 4D. 74.已知函数 f(x) = 2x + 1,则 f(-3) 的值为()。
A. -5B. 2C. -4D. -75.设函数 f(x) = 3x - 2,则 f(0) 的值为()。
A. -2B. 3C. -5D. 0二、计算题1. 设函数 f(x) = 2x - 1,计算 f(3) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(3) = 2(3) - 1 = 6 - 1 = 5。
2. 设函数 f(x) = x² + 2x,计算 f(-1) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(-1) = (-1)² + 2(-1) = 1 - 2 = -1。
3. 已知函数 f(x) = x³ - 2x,计算 f(2) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(2) = 2³ - 2(2) = 8 - 4 = 4。
4. 设函数f(x) = √x - 1,计算 f(4) 的值。
解:将 x 代入函数 f(x) 的表达式中得f(4) = √4 - 1 = 2 - 1 = 1。
5. 设函数 f(x) = |x - 3|,计算 f(-2) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(-2) = |-2 - 3| = |-5| = 5。
三、应用题1. 一辆汽车在行驶时,已知速度和时间的关系可以用函数表示。
若该汽车以每小时80公里的速度行驶,求3小时后汽车行驶的距离。
解:设函数 f(t) 表示汽车行驶的距离,其中 t 表示时间(小时)。
函数的概念练习题及答案解析

函数的概念练习题及答案解析Updated by Jack on December 25,2020 at 10:00 am1.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选 A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应法则是否相同.2.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3 解析:选、C 、D 的定义域均不同.3.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D.由⎩⎪⎨⎪⎧1-x ≥0x ≥0,得0≤x ≤1. 4.图中(1)(2)(3)(4)四个图象各表示两个变量x ,y 的对应关系,其中表示y 是x 的函数关系的有________.解析:由函数定义可知,任意作一条直线x =a ,则与函数的图象至多有一个交点,对于本题而言,当-1≤a ≤1时,直线x =a 与函数的图象仅有一个交点,当a >1或a <-1时,直线x =a 与函数的图象没有交点.从而表示y 是x 的函数关系的有(2)(3).答案:(2)(3)1.函数y =1x的定义域是( ) A .R B .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选 C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列式子中不能表示函数y =f (x )的是( )A .x =y 2+1B .y =2x 2+1C.x-2y=6 D.x=y解析:选A.一个x对应的y值不唯一.3.下列说法正确的是()A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应关系也就确定了解析:选C.根据从集合A到集合B函数的定义可知,强调A中元素的任意性和B中对应元素的唯一性,所以A中的多个元素可以对应B中的同一个元素,从而选项A错误;同样由函数定义可知,A、B集合都是非空数集,故选项B错误;选项C正确;对于选项D,可以举例说明,如定义域、值域均为A={0,1}的函数,对应关系可以是x→x,x∈A,可以是x→x,x∈A,还可以是x→x2,x∈A.4.下列集合A到集合B的对应f是函数的是()A.A={-1,0,1},B={0,1},f:A中的数平方B.A={0,1},B={-1,0,1},f:A中的数开方C.A=Z,B=Q,f:A中的数取倒数D.A=R,B={正实数},f:A中的数取绝对值解析:选A.按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.5.下列各组函数表示相等函数的是()A.y=x2-3x-3与y=x+3(x≠3)B.y=x2-1与y=x-1C.y=x0(x≠0)与y=1(x≠0)D.y=2x+1,x∈Z与y=2x-1,x∈Z解析:选、B与D对应法则都不同.6.设f:x→x2是集合A到集合B的函数,如果B={1,2},则A∩B一定是()A. B.或{1}C.{1} D.或{2}解析:选B.由f:x→x2是集合A到集合B的函数,如果B={1,2},则A={-1,1,-2,2}或A ={-1,1,-2}或A ={-1,1,2}或A ={-1,2,-2}或A ={1,-2,2}或A ={-1,-2}或A ={-1,2}或A ={1,2}或A ={1,-2}.所以A ∩B =或{1}.7.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12. 答案:(12,+∞) 8.函数y =x +103-2x的定义域是________. 解析:要使函数有意义,需满足⎩⎪⎨⎪⎧ x +1≠03-2x >0,即x <32且x ≠-1. 答案:(-∞,-1)∪(-1,32) 9.函数y =x 2-2的定义域是{-1,0,1,2},则其值域是________.解析:当x 取-1,0,1,2时,y =-1,-2,-1,2,故函数值域为{-1,-2,2}.答案:{-1,-2,2}10.求下列函数的定义域:(1)y =-x 2x 2-3x -2;(2)y =34x +83x -2. 解:(1)要使y =-x 2x 2-3x -2有意义,则必须 ⎩⎪⎨⎪⎧ -x ≥0,2x 2-3x -2≠0,解得x ≤0且x ≠-12, 故所求函数的定义域为{x |x ≤0,且x ≠-12}. (2)要使y =34x +83x -2有意义,则必须3x -2>0,即x >23, 故所求函数的定义域为{x |x >23}.11.已知f(x)=11+x(x∈R且x≠-1),g(x)=x2+2(x∈R).(1)求f(2),g(2)的值;(2)求f(g(2))的值.解:(1)∵f(x)=11+x,∴f(2)=11+2=1 3,又∵g(x)=x2+2,∴g(2)=22+2=6.(2)由(1)知g(2)=6,∴f(g(2))=f(6)=11+6=1 7.12.已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.解:函数y=ax+1(a<0且a为常数).∵ax+1≥0,a<0,∴x≤-1a,即函数的定义域为(-∞,-1a].∵函数在区间(-∞,1]上有意义,∴(-∞,1](-∞,-1a],∴-1a≥1,而a<0,∴-1≤a<0.即a的取值范围是[-1,0).第一课件网系列资料。
函数概念练习题(含解析)

2
, y
2x 1 的值域为 , 2
x3
2,
.
(4)令
x 1 t ,则 t 0 且 x t2 1, y 2
t2 1
t 2t 2 t 2 2 t
1 4
2
15 , 8
则当 t
1 4
时,
ymin
15 8
,
y
2x
x
1
的值域为
15 8
,
.
18.(1) R
(2){x∣1 x 4}
A. f (x) x0 与 g(x) 1
B. f (x) x 与 g(x) x2 x
C.
f
x
1,x 0, 1,x 0 与
g
x
x x
,x
1,x
0
0, D.
f
(x)
(x 1)2 与 g(x) x 1
6.若函数
f
2x 1 的定义域为1,1 ,则函数 y
f
x 1
的定义域为(
)
x 1
A. 1, 2
x 不是同一函数. 故选:C. 9.A 【分析】根据题意,由换元法,结合二次函数的最值,即可得到结果.
【详解】设 t 3 x ,则 t 0 ,即 x 3 t2 ,所以 y f t 2 3 t2 4t 2 t 12 8,
因为 t 0 ,所以当 t 1时,函数取得最大值为 8 . 故选:A 10.C 【分析】把自变量直接代入解析式即可求解.
x 1
故选:D
7.C
【分析】逐个求解函数的定义域判断即可
【详解】对于 A,由 x 0 ,得函数的定义域为[0, ) ,所以 A 错误,
答案第 2页,共 6页
对于 B,由 x 1 0 ,得 x 1 ,所以函数的定义域为 (,1) (1,) ,所以 B 错误,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念及基本性质练习题二
1. 下列各图中,不能是函数f (x )图象的是( )
2.若f (1x )=1
1+x ,则f (x )等于( )
A.1
1+x (x ≠-1) B.1+x x (x ≠0)
C.x
1+x (x ≠0且x ≠-1) D .1+x (x ≠-1)
3.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=(
) A .3x +2 B .3x -2
C .2x +3
D .2x -3
4.函数f (x )=lg(x -1)+4-x 的定义域为( )
A .(1,4]
B .(1,4)
C .[1,4]
D .[1,4)
5.已知函数f (x )=⎩⎨⎧ 2x +1,x <1
x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a 等于( )
A.12
B.45
C .2
D .9
6.下列集合A 到集合B 的对应f 是函数的是( )
A .A ={-1,0,1},
B ={0,1},f :A 中的数平方
B .A ={0,1},B ={-1,0,1},f :A 中的数开方
C .A =Z ,B =Q ,f :A 中的数取倒数
D .A =R ,B ={正实数},f :A 中的数取绝对值
7.下列各组函数表示相等函数的是( )
A .y =x 2-3
x -3与y =x +3(x ≠3)
B .y =x 2-1与y =x -1
C .y =x 0(x ≠0)与y =1(x ≠0)
D .y =2x +1,x ∈Z 与y =2x -1,x ∈Z
8.求下列函数的定义域:
(1)y =-x 2x 2-3x -2;(2)y =34x +8
3x -2
9.下列命题中,准确的是( )
A.函数y=1
x是奇函数,且在定义域内为减函数
B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数
C.函数y=x2是偶函数,且在(-3,0)上为减函数
D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数
10.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为( )
A.10 B.-10
C.-15 D.15
11.f(x)=x3+1
x的图象关于( )
A.原点对称B.y轴对称
C.y=x对称D.y=-x对称
12.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________. 13.①f(x)=x2(x2+2);②f(x)=x|x|;
③f(x)=3
x+x;④f(x)=
1-x2
x.
以上函数中的奇函数是________.
14.若f(x)是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则
f(-3
2)与f(a
2+2a+
5
2)的大小关系是( )
A.f(-3
2)>f(a
2+2a+
5
2) B.f(-
3
2)<f(a
2+2a+
5
2)
C.f(-3
2)≥f(a
2+2a+
5
2) D.f(-
3
2)≤f(a
2+2a+
5
2)
15.已知函数f(x)=ax+b
1+x2
是定义在(-1,1)上的奇函数,且f(
1
2)=
2
5,求函数f(x)
的解析式.。