实验五 岩石单轴压缩实验(DOC)

合集下载

岩石压缩实验

岩石压缩实验

实验十 岩石压缩实验(一)实验目的:在单轴压力下作出岩石样品的应力与应变的关系曲线(σ-ε),以确定压缩时岩石的强度极限σb 。

观察岩石压缩时的变形及破裂过程。

(二)设备∶1.压力试验机2.电阻应变仪3.X-Y函数记录仪4.应变片5. 游标卡尺(三)原理及试验装置∶为了真实反映岩石的强度,根据国际岩石力学标准化委员会试验的建议方法,用来试验用的试件通常规定,2≤h/d≤3,试件直径与岩石内最大颗粒尺寸的比大于10。

我们试验用岩石试件一般制成园柱形,其尺寸约为 L∶50mm Φ∶25mm或 L∶100mm Φ∶50mm。

为了尽量使试件承受轴向压力,试件两端必须完全平行(一般要求<5丝),并且与试件轴线保持垂直,其端面还应制作光滑,以减小摩擦力的影响,必要时端面可涂薄薄的一层油。

放置试件时要将其置于压机的中心,使压力通过试件的轴心。

实验装置如图一所示:(1)压力试验机 (2)试件 (3)应变片 (4)载荷传感器(5)电桥盒 (6)电阻箱图一 压缩实验装置图试验利用X-Y函数记录仪绘出 σ-ε 曲线,图二∶ 图二 σ-ε 曲线图中OA段为做功硬化阶段,试件中裂隙闭合,AB为弹性变形阶段,BC为塑性变形,试件应变软化。

当加载至最大载荷Pb 时,试件破裂,在曲线上即C点,也可通过计算得出其强度极限σb 。

当试件破裂时,压力试验机的测力指针迅速倒退,由随动指针可读出最大载荷Pb 值。

破坏的破裂面与试件轴线约成45°左右的倾斜裂纹或X型裂纹,破坏主要是由剪应力引起的。

(四)实验步骤∶1.试件准备:用游标卡尺测量试件两端及中部三处截面的直径,取三处中最小一处的平均直径来计算截面面积,并根据此试件及破坏时载荷计算出其 强度极限σb 。

贴应变片;(1)先用细砂纸将样品中部待贴片 处〔如图三〕打磨, 一处为贴纵向应变片,一处为贴横向应变片。

(2)用丙酮棉球将贴片处清洗干净;(3) 将应变片的引线先镀上焊锡;并用万用表检查应变片是否通路,阻值大小;(4)一手捏住应 图三 电阻应变片的粘贴 变片引出线,一手拿502粘结剂瓶,在应变片基 底面上及试件欲贴片处均匀涂上一层粘结剂,注意 不可涂抹太多,以免影响应变片的性能;应变片底 面向下平放在试件贴片处,将一小片聚四氟乙烯薄 膜盖在应变片上,然后用拇指按住薄膜挤出多余的 粘接剂〔注意按时不要使应变片移动〕,拇指按住 保持不动并施予压力约1—2分钟放开,轻轻掀开薄膜,检查应变片处有无气泡、翘曲、脱胶等现象, 图四 电桥盒接线图εε象,否则需重新粘贴。

2014-1岩石单轴抗压强度实验

2014-1岩石单轴抗压强度实验

岩石单轴抗压强度实验指导书黄冬梅适用专业:采矿工程、安全工程等山东科技大学资矿业与安全工程学院2014年 11 月前言岩石在狭义上说来包括岩块和岩体,岩块一般是指从岩体中取出的、尺寸不大的岩石。

它由一种(如石英岩、大理岩等)或几种(如花岗岩、玄武岩等)矿物组成,具有相对的均匀性。

由于尺寸较小而在其中不可能有大的地质构造的影响。

实验室试验的试件是岩块的一种。

岩体是指工程实际中较大范围的岩石。

它可由一种或几种岩石组成,并可能为岩脉或裂隙充填物所侵入,包括地质构造作用的明显影响,并为结构面(层面、节理、裂隙等)所切割。

实验室内岩块和工程现场岩体均属于岩石,它们是两个既有相互联系又有不同的概念,二者的力学性质有相互关系但不能直接代用。

室内煤岩力学试验采用的是尺寸很小的岩块,采矿工程实际中考虑的对象是煤岩体。

一般的,由于现场岩体试验复杂、费用高,人们很少进行,只是在室内进行小块的煤岩进行力学参数测试,将其结果运用到工程中去。

因而对煤岩试块和现场煤岩体的力学性质(主要是强度)间关系的研究很有实际意义。

单轴抗压强度实验是采矿相关专业岩石力学实验课程中必不可少的组成部分,学生通过实验验证和推导理论知识,又用理论知识解释和分析实验结果,以达到巩固理论知识和掌握实验方法的目的。

指导书从实验目的、原理、仪器设备、方法步骤、注意事项、结果整理等方面对实验进行了介绍,并提出了要求,旨在让学生掌握力学实验的基本知识、技能和方法,培养学生的动手能力和分析、解决问题的能力,增强学生开拓创新的意识。

岩石单轴抗压强度试验一、实验目的熟悉与掌握测定岩石单轴抗压强度的实验设备、仪器、实验方法与计算方法。

二、实验内容测定规则形状岩石试件的单轴压强度。

三、实验条件(1)实验地点与场地:MTS岩石伺服实验室(资源与环境工程学院121)。

(2)实验设备与耗材:实验加工机械(钻石机或车床、锯石机、磨石机或磨床);检验工具(游标卡尺、直角尺、水平检测台、千分表架及千分表);加载设备(普通材料试验机)。

90度预置裂纹岩石单轴压缩实验

90度预置裂纹岩石单轴压缩实验

90度预置裂纹岩石单轴压缩实验
90度预置裂纹岩石单轴压缩实验是一种实验方法,用于研究岩石在单轴压缩加载条件下的断裂行为和力学性质。

该实验通过预先制造90度夹角的裂纹样本,模拟真实岩石中存在的裂纹结构,以便更好地理解岩石的力学行为。

在实验过程中,首先需要制备裂纹样本,通常是在岩石试样上切割出相应的裂纹结构。

然后将样本放入单轴压缩机中,施加垂直于裂纹面的压力加载,即使裂纹打开并产生位移,直至岩石试样破裂。

实验中通常测量试样的应力-应变关系、强度、变形特征等数据,以评估岩石的力学性质和断裂行为。

这种实验方法可以帮助研究人员更好地理解和模拟地壳中岩石的断裂行为,对于地质工程、矿山工程等领域具有重要的理论和实际意义。

岩石力学实验报告

岩石力学实验报告

湖南工业大学岩石力学实验报告
班级:
学号:
姓名:
日期:
成绩:
四、岩石单轴压缩及变形试验(综合)
一、试验目的: 二、设备名称:
三、试验步骤: 1.测定岩石试件的尺寸; 2.贴应变片…… 3.…… 4、…… 5、……
1、 四、成果整理和计算: 按下式计算岩石密度: V
M =
ρ 式中: (── 为试样的密度, g/cm3 ;
M ── 为试样的质量, g ; V ── 试件体积,cm 3
2、 计算过程:
按下式计算岩石抗压强度、弹性模量和泊松比:
⑴ 岩石抗压强度计算公式:
σ = P / A
式中: (── 单轴抗压强度, MPa ; P ──岩石试件最大破坏载荷, N ; A ──试件受压面积, mm2 ⑵ 岩石弹性模量、泊松比计算公式: E = σc(50) / εh(50) μ = |εd (50) / εh(50) | 式中: E ── 试件弹性模量, GPa ;
(c(50) ── 试件单轴抗压强度的50(, MPa ;
εh(50) 、εd(50) ── 分别为σc(50) 处对应的轴向压缩应变和径向拉伸应变;
μ── 泊松比。

3、 计算过程:
4、 计算结果见表4-1。

表4-1 岩石单轴压缩及变形试验记录表
根据岩石变形数据绘制应力与应变关系曲线: 下图
注:在坐标纸上画应力与应变关系曲线图要标清图号, 各个坐标的单位、名称等。

左图 应力与应变关系曲线图(该图在
坐标纸上绘制)
5、 岩石应力应
变数据记录见表4-2
表4-2 岩石应力应变数据记录表。

岩石力学实验-单轴抗拉试验

岩石力学实验-单轴抗拉试验

实验五、煤(岩)石单轴抗拉强度测试一、实验目的煤(岩石)在单轴拉伸荷载作用下达到破坏时所能承受的最大拉应力称为岩石的单轴抗拉强度简称抗拉强度。

通常所说的抗拉实验是指直接拉伸破坏实验,如金属拉伸实验。

由于煤(岩石)进行直接拉伸实验在准备试件方面要花费大量的人力、物力和时间,因此采用间接拉伸实验方法,来测试岩石的抗拉强度。

劈裂法是最基本的方法。

二、实验仪器及工具(1)钻石机或车床,锯石机,磨石机或磨床。

(2)劈裂法实验夹具,或直径2.0mm钢丝数根。

(3)游标卡尺(精度0.02mm),直角尺,水平检测台,百分表架和百分表。

(4)材料试验机。

三、实验原理在压应力的作用下,沿圆盘直径y-y的应力分布图。

在圆盘边缘处,沿y-y方向(σy)和垂直y-y方向(σT)均为压应力,而离开边缘后,沿y-y方向仍为压应力,但应力值比边缘处显著减少,并趋于均匀化;垂直y-y方向(σΤ)变成拉应力。

并在沿y-y的很长一段距离上呈均匀分布状态,虽然拉应力的值比压应力值低很多,但由于岩石的抗拉强度很低,所以试件还是由于x方向的拉应力而导致试件沿直径的劈裂破坏,破坏是从直径中心开始,然后向两端发展,反映了岩石的抗拉强度比抗压强度要低得多的事实。

四、实验步骤(1)测定前核对岩石名称和岩样编号,对试件颜色、颗粒、层理、裂隙、风化程度、含水状态以及加工过程中出现的问题进行描述,并填入记录表内。

(2)检查试件加工精度,测量试件尺寸,填入记录表内。

(3)选择材料试验机度盘时,一般应满足下式:0.2P0<P max<0.8P0式中P max——预计最大破坏载荷,kN;P0——材料实验机度盘最大值,kN。

(4)通过试件直径的两端,沿轴线方向画两条互相平行的线作为加载基线。

把试件放入夹具内,夹具上、下刀刃对准加载基线,用两侧夹持螺钉固定好试件,或用两根直径 2.0mm的钢丝放在加载基线上,钢丝间用橡皮筋固定。

(5)把夹好试件的夹具或夹好钢丝的试件放入材料试验机的上、下承压板之间,使试件的中心线和材料试验机的中心线在一条直线上。

岩石单轴抗压强度试验报告

岩石单轴抗压强度试验报告

岩石单轴抗压强度试验报告一、实验目的本次实验的主要目的是测定岩石单轴抗压强度,以评估岩石的力学性质和工程应用价值。

通过实验数据分析,掌握岩石单轴抗压强度试验方法及其基本原理。

二、实验原理岩石单轴抗压强度试验是一种常用的评估岩石力学性质的方法。

该试验通过将圆柱形或立方体样品放置在垂直于其长轴方向的压力下,测定样品在压力作用下发生破坏前所承受的最大应力值。

根据这个最大应力值可以计算出该种岩石材料的单轴抗压强度。

三、实验设备1. 岩石单轴抗压试验机;2. 岩石样品制备设备;3. 电子天平;4. 液晶显示器及计算机。

四、实验步骤1. 制备岩石样品:选择代表性好、无裂缝、无夹杂物等缺陷的均质样品进行测试,将其制成圆柱形或立方体形。

2. 样品称重:使用电子天平对样品进行称重,并记录下质量值。

3. 安装样品:将样品放置于试验机的压力板上,并用夹具夹紧,使其垂直于压力板。

4. 施加压力:根据试验要求,按照一定速度施加压力,记录下每个时间点的应力值和位移值。

5. 结束试验:当样品发生破坏时,停止施加压力,并记录下此时的应力值和位移值。

五、实验数据处理1. 计算岩石单轴抗压强度:根据实验数据计算出岩石单轴抗压强度,公式为P/A,其中P为最大承载力(即最大应力值),A为样品受力面积。

2. 绘制应变-应力曲线:根据实验数据绘制出应变-应力曲线,并通过分析曲线得出岩石的弹性模量、塑性模量和极限应变等参数。

六、实验结果分析通过对实验数据的处理和分析,得出了该种岩石材料的单轴抗压强度及其它相关参数。

进一步地,在工程实际中可以根据这些数据来评估该种岩石材料在不同工程环境下的力学性质和应用价值。

同时,该实验还可以为岩石材料的选取和设计提供重要参考依据。

七、实验注意事项1. 岩石样品的制备应注意保持其均质性和无缺陷;2. 在试验过程中,应严格按照操作规程进行,确保安全;3. 在施加压力时,应控制速度,并记录下每个时间点的数据;4. 在实验结束后,要对设备进行清洁和维护。

实验五岩石单轴压缩实验(DOC)

实验五岩石单轴压缩实验(DOC)

实验五岩石单轴压缩实验一.实验目的岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。

通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。

二.实验设备、仪器和材料1.钻石机、锯石机、磨石机;2.游标卡尺,精度0.02mm;3.直角尺、水平检测台、百分表及百分表架;4.YE-600型液压材料试验机;5.JN-16型静态电阻应变仪;6.电阻应变片(BX-120型);7.胶结剂,清洁剂,脱脂棉,测试导线等。

三.试样的规格、加工精度、数量及含水状态1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度:a 平行度:试样两端面的平行度偏差不得大于0.1mm。

检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。

b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。

c 轴向偏差:试样的两端面应垂直于试样轴线。

检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。

3.试样数量: 每种状态下试样的数量一般不少于3个。

4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。

四.电阻应变片的粘贴1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。

2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。

3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。

实验五岩石单轴压缩实验

实验五岩石单轴压缩实验

实验五岩石单轴压缩实验一.实验目的岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。

通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。

二.实验设备、仪器和材料1.钻石机、锯石机、磨石机;2.游标卡尺,精度0.02mm;3.直角尺、水平检测台、百分表及百分表架;型液压材料试验机;型静态电阻应变仪;6.电阻应变片(BX-120型);7.胶结剂,清洁剂,脱脂棉,测试导线等。

三.试样的规格、加工精度、数量及含水状态1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度:a 平行度:试样两端面的平行度偏差不得大于0.1mm 。

检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。

b 直径偏差:试样两端的直径偏差不得大于0.2 mm ,用游标卡尺检查。

c 轴向偏差:试样的两端面应垂直于试样轴线。

检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。

3.试样数量: 每种状态下试样的数量一般不少于3个。

4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。

四.电阻应变片的粘贴1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过Ω。

1—百分表 2-百分表架 3-试样4水平检测台1—直角尺 2-试样 3- 水平检测台图5-3 电阻应变片粘试2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五岩石单轴压缩实验一.实验目的岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。

通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。

二.实验设备、仪器和材料1.钻石机、锯石机、磨石机;2.游标卡尺,精度0.02mm;3.直角尺、水平检测台、百分表及百分表架;4.YE-600型液压材料试验机;5.JN-16型静态电阻应变仪;6.电阻应变片(BX-120型);7.胶结剂,清洁剂,脱脂棉,测试导线等。

三.试样的规格、加工精度、数量及含水状态1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度:a 平行度:试样两端面的平行度偏差不得大于0.1mm。

检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。

b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。

c 轴向偏差:试样的两端面应垂直于试样轴线。

检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。

3.试样数量: 每种状态下试样的数量一般不少于3个。

4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。

四.1.0.5Ω2.纵向、横向应变片排列采用“┫”等弱面。

3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。

五.实验步骤1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、裂隙、风化程度、含水状态等进行描述。

2. 检查试样加工精度。

并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。

3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公共补偿半桥连接方式。

4. 将试样放置在试验机的承压板中心,然后对纵向、横向应变片分别进行反复预调平衡。

5. 施加初载荷,检查试验机和应变片工作情况,正常后以1.0~2.0 kN/s 的加载速度均匀加载,按估计破坏载荷的十分之一间隔读数,纪录相应载荷下的纵向、横向应变,均匀加载直至试样完全破坏。

每个测试过程读数不得少于7个点,同一试样的纵向、横应变尽可能同时读出。

1—百分表 2-百分表架 3-试样 4水平检测台图5-1 试样平行度检测示意图图5-3 电阻应变片粘贴6.记录破坏载荷值及加载过程中出现的现象,并对试样破坏形态进行描述。

六.实验结果整理1. 岩石单轴抗压强度:式中:R C—试样单轴抗压强度,MPa;P—试样破坏载荷,N;S—试样初始截面积,mm2。

岩石单轴抗压强度测定结果填入表5-1。

表5-1 岩石单轴抗压强度测定结果2. 绘制岩石单轴压缩应力-应变曲线实验结束后检查每一组的实验结果,废弃可疑数据,分别计算试样所受应力σ和与之对应的纵向应变ε1、横向应变ε2以及体积应变值εv,体积应变值按下式计算:将单轴压缩实验记录与计算结果填入表5-2。

然后以纵向应力为纵坐标,以应变为横坐标描出并光滑连接测点。

岩石试样单轴压缩实验的应力-应变曲线,如图5-4。

表5-2 岩石单轴压缩变形测定纪录3.式中: △△σ ε50—试样与σ50对应的纵向应变值。

4.泊松比:岩石在单轴压缩过程中纵向变形的同时横向也发生相应变形,在轴向应力-纵向应变与轴向应力-横向应变曲线上,对应直线段纵向应变和横向应变的平均值计算泊松比μ: 式中:μ—岩石的泊松比;ε1p —纵向应力-纵向应变曲线中对应直线段部分的应变的平均值; ε2p —纵向应力-横向应变曲线中对应直线段部分的应变的平均值。

弹性模量E τ、变形模量E 50及泊松比μ测定结果填入表5-3:表5-3 弹性模量E τ、变形模量E 50及泊松比μ测定结果ε1/10图5-4 岩石单轴压缩实验的应力-应变曲线 3D七.实验报告要求实验结束后认真独立填写实验报告,实验报告应包括以下内容:1.实验目的;2.主要实验仪器;3.实验步骤;4.原始数据及实验数据整理;5.对本实验的建议。

八.思考题1. 试验机上为何要配备球形调节座2. 影响单轴压缩实验结果的实验因素有那些3. 单轴压缩破坏的类型有那几种实验六岩石常规三轴压缩实验一.实验目的岩石常规三轴压缩实验是指岩石试样在轴对称应力组合方式(σ1>σ2=σ3)的三轴压缩实验。

通过该实验使学生掌握岩石常规三轴实验方法,并能根据岩石在不同围压下实验结果计算出内摩擦角 与粘结力c,绘制出岩石的强度曲线,进一步理解岩石的强度准则。

二.实验设备、仪器和材料1.钻石机、锯石机、磨石机;2.游标卡尺,精度0.02mm;3.干燥器;4.直角尺、水平检测台、百分表及百分表架;5.YE-2000型液压材料试验机;6.三轴室,三轴液压源;7.热缩管、胶带、密封圈等。

三.试样的规格、加工精度、数量及含水状态1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体。

2. 加工精度:a 平行度:试样两端面的平行度偏差不得大于0.1mm。

检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。

b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。

c 轴向偏差:试样的两端面应垂直于试样轴线。

检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。

3.试样数量:每种岩石同一状态下,试样数量一般不少于5个,每个试样在一定围压下的进行实验。

4.含水状态:采用自然状态,试样制成后放在底部有水的干燥器内1~2 d,以保持一定的湿度,但试样不得接触水面。

四.实验步骤1.测定前核对岩石名称和试样编号,并对试样的颜色、颗粒、层理、裂隙、风化程度、含水状态等进行描述。

2.检查试样加工精度。

并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。

3.围压一般取5MPa、10 MPa、15 MPa、20 MPa和25 MPa。

4.试验机量程,一般应满足0.2P0<P max<0.8P0,式中:P0为试验机最大量程,kN;P max为预计试样最大破坏载荷,kN。

5.试样的安装,首先把钢垫块端部擦净,将试样置于上、下垫块之间,使三者中心为一条直线,再将试样与垫块套上热缩管,热缩管长度稍大于试样高度,用吹风机缓慢加热热缩管,并再用密封胶带固定试样两端,见图6-1。

6.打开三轴室上压盖,再将制备好的试样下垫块置下放入三轴室底座中心,上好压力室顶盖活塞,将装有试样的三轴室放入试验机的下承压板上,并使三轴压力室的中心与试验机的中心一致。

7.注油排气,打开压力室的放气阀,启动围压油泵向压力室注油排气,当压力室有油排除时关闭排气阀。

8.接通电源,开动开压力机,打开送油阀,使压送油阀,然后调整试验机上承压板位置与压力室的上压头接触,缓缓打开送油阀施加50 kN的纵向载荷固定试样。

9.施加围压,缓缓施加围压到指定值,稳定数2分钟后,使围压保持恒定时,要求变动范围不应超1—上垫块;2—密封圈;3—岩石试样;4—下垫块图6-1 试样防油安装示意图过选定的2%。

10. 再以1.0 kN/s ~2.0 kN/s 的加载速度均匀加载,直至试样破坏,立即关闭液压泵卸载阀,再打开试验机的回油阀卸轴压。

11. 纪录破坏载荷及围压值。

打开三轴室的放气阀,卸掉上压盖取出试样,破坏类型描述。

五.实验结果整理1.计算一定侧压力作用下岩石的抗压强度σ1:式中: σ1max —岩石三轴抗压强度,MPa ; P —纵向破坏载荷,N ;F —试样初始截面积,m 2。

2.计算内摩擦角和粘结力。

在直角坐标系绘制σ3-σ1的关系曲线图6-2, 对实验值采用最小二乘法进行线性回归,计算出其斜率m 和纵轴上的截距b ,即b m +=31σσ线性方程,其中m 和b 可用下式计算: 式中: σ1—岩石三轴抗压强度,MPa ;σ3—围压,MPa ; n —试样数量。

根据库伦-摩尔准则,岩石的内摩擦角φ和粘结力c 可利用参数m 和b 按下式计算:3.绘制摩尔圆及其包络线:在纵横相同比例的直角坐标系内,选取3~5个σ3值,用回归后的直线方程b m +=31σσ计算出相应的σ1值。

再分别以(σ3+σ1)/2,0为圆心,以(σ1-σ3)/2为半径绘制出一组摩尔圆,摩尔圆的外包络线,即为该组岩石的强度曲线,包络线在Y 轴上的截距为粘结力c ,与X 轴的夹角为内摩擦角φ。

岩石三轴压缩实验结果填入表6-1。

图6-2 围压与纵向抗压强度关系曲线图6-3 岩石三轴试验摩尔园及包络线1P Sσ=表6-1 三轴压缩实验结果六.实验报告要求实验结束后认真独立填写实验报告,实验报告应包括以下内容:1.实验目的;2.主要实验仪器;3.实验步骤;4.原始数据及实验数据整理;5.对本实验的建议。

七.思考题1.三轴实验过程中主要主意事项有哪几项2.通过三轴实验说明岩石承载能力与哪些因素有关3.你对本次实验的建议和意见。

4.实验七岩石抗拉强度测定一.实验目的岩石抗拉强度是指岩石承拉伸条件下能够承受的最大应力值。

通过该实验使学生掌握采用巴西劈裂法测定岩石抗拉强度的方法,并与岩石抗压强度进行比较,从而了解脆性岩石材料的强度特点。

二.实验设备、仪器和材料1.钻石机、锯石机、磨石机;2.游标卡尺,精度0.02mm ;3.劈裂夹具;5.钢丝垫条,用直径为2.0 mm ~3.0 mm 钢丝; 4. YE-300型液压材料试验机。

三.试样的规格、加工精度、数量及含水状态1.试样规格:采用直径为50 mm ,高为25 mm ~50 mm 的标准圆柱体。

2.试样数量:每种岩石同一状态下,试样数量一般不少于5块。

3.含水状态:采用自然状态,试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。

四.实验原理巴西劈裂法测定岩石抗拉强度是国际岩石力学学会标准推荐的方法,对称圆盘试样受集中载荷P 的作用下,依据弹性理论得知,圆盘加载直径上任一点(0,y )的应力状态为:(1)(2)式中:P 为载荷,D 、L 分别为试样直径和厚度,试样中心处(y =0)的应力状态为:(3) (4)由式(3)、式(4)得出,圆盘试样中心处压应力是拉应力的3倍,但由于岩石抗拉强度远低于抗压强度,一旦拉应力达到试样的抗拉强度时中心发生破6yo P DLσπ=2xoP DLσπ=-2x PDLσπ=-222244y y P D DL D σπ=-(-1)坏,通常认为拉应力对破裂起主导作用。

相关文档
最新文档