高三数学导数基础讲义教案
高中求导课程讲解教案模板

课程目标:1. 理解导数的概念,掌握导数的定义及求导方法。
2. 熟悉常见的导数公式,能够灵活运用公式进行求导。
3. 学会求复合函数的导数,掌握复合函数求导法则。
4. 培养学生分析问题和解决问题的能力。
教学对象:高中一年级学生教学时间:2课时教学重点:1. 导数的定义及求导方法。
2. 常见导数公式的运用。
3. 复合函数求导法则。
教学难点:1. 导数的概念理解。
2. 复合函数求导法则的运用。
教学过程:第一课时一、导入1. 复习函数的概念,引出函数的增减性。
2. 提出问题:如何判断函数在某一点的增减性?二、新课讲解1. 导数的定义:介绍导数的概念,讲解导数的定义式。
2. 求导方法:讲解导数的四种求导方法,即直接求导、链式求导、乘积求导、商求导。
3. 常见导数公式:介绍常见的导数公式,如常数、幂函数、三角函数、指数函数、对数函数等。
三、课堂练习1. 让学生独立完成一些求导题目,巩固所学知识。
2. 教师巡视指导,解答学生在求导过程中遇到的问题。
四、总结1. 总结本节课所学内容,强调导数的概念和求导方法。
2. 布置课后作业,巩固所学知识。
第二课时一、复习1. 回顾上节课所学内容,检查学生对导数概念和求导方法的掌握情况。
2. 让学生独立完成一些求导题目,巩固所学知识。
二、复合函数求导1. 介绍复合函数的概念,讲解复合函数求导法则。
2. 通过实例讲解复合函数求导法则的运用。
3. 让学生独立完成一些复合函数求导题目,巩固所学知识。
三、课堂练习1. 让学生独立完成一些复合函数求导题目,巩固所学知识。
2. 教师巡视指导,解答学生在求导过程中遇到的问题。
四、总结1. 总结本节课所学内容,强调复合函数求导法则。
2. 布置课后作业,巩固所学知识。
教学反思:1. 本节课通过讲解导数的概念、求导方法以及复合函数求导法则,帮助学生掌握了求导的基本技能。
2. 在课堂练习环节,注重培养学生的实际操作能力,提高学生的解题技巧。
3. 教师应关注学生的学习情况,及时解答学生在学习过程中遇到的问题,确保教学效果。
高中阶段数学导数教案设计

高中阶段数学导数教案设计课题:导数教学目标:1. 了解导数的定义和性质2. 掌握导数的计算方法3. 能够应用导数解决实际问题教学重点:1. 导数的定义和性质2. 导数的计算方法教学难点:1. 导数的应用教学准备:1. 教材:高中数学教材2. 教具:白板、彩色粉笔、计算器教学过程:一、导入(5分钟)教师简要介绍导数的概念,并通过举例让学生了解导数的意义。
二、导数的定义和性质(15分钟)1. 导数的定义:导数表示函数在某一点处的变化率,用极限的方式定义。
2. 导数的性质:导数存在性的条件,导数的代数性质等。
三、导数的计算方法(20分钟)1. 导数的基本公式:常数函数、幂函数、指数函数、对数函数、三角函数等函数的导数计算方法。
2. 导数的运算法则:和差积商的导数、复合函数的导数等计算方法。
四、导数的应用(20分钟)1. 导数的几何意义:导数表示函数在某一点处的切线斜率。
2. 导数的物理意义:导数表示物体在某一时刻的速度。
3. 导数在实际问题中的应用:最值问题、曲线图像的特征等。
五、小结与拓展(10分钟)教师对导数的内容进行小结,并引导学生思考导数在其他学科中的应用。
辅助材料:1. 复习导数的基本概念和计算方法2. 阅读相关教材和课外书籍教学反思:本节课通过导数的定义、性质、计算方法及应用,使学生全面了解导数的概念和作用,并能够熟练应用导数解决实际问题。
但在教学过程中,教师需要注意引导学生形成正确的数学思维方式,多进行案例分析和实际问题的讨论,提高学生的数学应用能力。
高中导数教案

高中导数教案高中导数教案一、教学目标1. 理解导数的概念,能够正确计算导数;2. 掌握导数的基本求法:用定义法、利用导数的基本运算法则、利用导函数法;3. 能够正确应用导数,求解实际问题;4. 培养学生的数学思维能力和创造性思维能力。
二、教学重点和难点1. 导数的概念和计算方法;2. 导数的应用。
三、教学内容与教学过程1. 导数的概念导数的概念:函数在某一点的导数是函数在该点的变化率的极限值,也可以理解为函数的切线斜率。
导数的计算:利用定义法计算导数;利用导数的基本运算法则计算导数;利用导函数法计算导数。
2. 导数的应用导数的应用包括但不限于以下几个方面:(1) 函数的单调性与极值问题:- 如何判断一个函数在某个区间上是增函数还是减函数?- 如何求函数的极大值和极小值?(2) 函数的凹凸性与拐点问题:- 如何判断一个函数在某个区间上是凹函数还是凸函数?- 如何求函数的拐点?(3) 函数的图像与导数的关系:- 如何根据导数的信息画出函数的图像?(4) 物理问题中的导数应用:- 如何应用导数求解速度、加速度、最值等问题?四、教学方法为了达到以上教学目标,我们将采用以下教学方法:1. 教师讲授与学生自主学习相结合的教学方法,通过讲解、示范和练习等方式帮助学生理解导数的概念和计算方法;2. 利用课堂互动的方式,让学生主动参与教学过程,培养学生的数学思维能力;3. 引导学生思考和独立解决问题,培养学生的创造性思维能力。
五、教学资源主要教学资源包括但不限于教材、教具、多媒体教学设备。
六、教学评价根据学生在课堂上的表现和课后练习的完成情况,进行教学评价。
可以采用口头回答问题、书面测试、作业完成情况等方式进行评价。
七、教学反思与改进根据学生的学习情况和问题反馈,及时调整教学内容和方法,帮助学生更好地理解和掌握导数的概念和应用。
通过不断反思和改进,提高教学效果和学生的学习动力。
高中数学导数整章教案

高中数学导数整章教案
一、导数基本概念
导数是描述函数变化率的概念,通俗地讲,导数就是函数在某一点的斜率。
导数的定义如下:
设函数y=f(x),在点x处的导数为:
f'(x) = lim(h->0) [f(x+h) - f(x)] / h
二、导数计算方法
1. 导数的基本运算法则
常数函数求导、幂函数求导、和差函数求导、积函数求导、商函数求导、复合函数求导等。
2. 特殊函数的导数
指数函数、对数函数、三角函数等特殊函数的导数计算方法。
3. 隐函数求导
当函数无法直接表示为y=f(x)的形式时,可以通过求导法则计算其导数。
三、导数的应用
1. 函数的极值与最值
通过导数的符号来判断函数的增减性,进而确定函数的极值和最值。
2. 函数的凹凸性
通过函数的二阶导数来判断函数的凹凸性,并且可以得出函数的拐点。
3. 泰勒公式
泰勒公式是一种通过函数在某点的导数来逼近函数值的方法,可以用来展开任意函数。
四、实际应用
导数在物理学、生物学、经济学等各个领域都有着广泛的应用,比如速度与加速度的关系、生物种群的增长与衰退等。
五、典型例题解析
通过典型例题的讲解和解题,帮助学生熟练掌握导数的概念和计算方法。
六、作业布置
布置一些与导数相关的练习题,让学生巩固所学知识。
七、知识点总结
总结导数的基本概念、计算方法以及应用,帮助学生理清知识点。
以上为高中数学导数整章教案范本,希朅对您有所帮助。
导数及其应用教案

导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。
本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。
二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。
2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。
3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。
三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。
2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。
5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。
四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。
2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。
3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。
4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。
五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。
2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。
3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。
六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。
高三导数教案

高三导数教案教案标题:高三导数教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法和常用公式;3. 运用导数解决实际问题。
教学重点:1. 导数的定义和计算方法;2. 导数与函数图像的关系;3. 导数在实际问题中的应用。
教学难点:1. 导数的概念和意义的深入理解;2. 导数在实际问题中的应用能力培养。
教学准备:1. 教学课件和教材;2. 导数相关的练习题和实例;3. 计算器和图形绘制工具。
教学过程:一、导入(5分钟)1. 利用一个简单的实例引入导数的概念,如小车行驶的速度和位置之间的关系。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义:函数在某一点处的变化率;2. 讲解导数的计算方法,包括用极限定义导数和常用导数公式。
三、导数与函数图像(20分钟)1. 解释导数与函数图像的关系,导数的正负表示函数的增减性;2. 利用导数的概念和计算方法,分析函数在不同区间的变化趋势。
四、导数在实际问题中的应用(25分钟)1. 介绍导数在实际问题中的应用,如最优化问题和曲线的切线问题;2. 给出实际问题的例子,并引导学生运用导数求解。
五、练习与巩固(20分钟)1. 分发练习题,让学生独立或小组完成;2. 引导学生分析和解答练习题,巩固导数的计算和应用能力。
六、总结与拓展(10分钟)1. 总结导数的概念、计算方法和应用;2. 提出导数进一步拓展的方向,如高阶导数和导数的几何意义。
教学延伸:1. 鼓励学生自主学习更多导数的应用领域,如物理学和经济学;2. 提供更多的练习题和实例,帮助学生巩固和拓展导数的应用能力。
教学评估:1. 课堂练习题的完成情况和答案讲解;2. 学生对导数概念和应用的理解程度;3. 学生在实际问题中运用导数解决问题的能力。
教学反思:1. 教学过程中是否能够引起学生的兴趣和参与度;2. 学生对导数概念和应用的理解是否清晰;3. 是否需要调整教学方法和内容,以提高学生的学习效果。
高中直播数学导数教案模板

高中直播数学导数教案模板
一、教学内容
1. 导数的概念和性质
2. 导数的计算方法
3. 导数在实际问题中的应用
二、教学目标
1. 理解导数的概念和性质
2. 熟练掌握导数的计算方法
3. 能够运用导数解决实际问题
三、教学重点
1. 导数的概念和性质
2. 导数的计算方法
四、教学难点
1. 导数的应用
五、教学过程
1. 导入:通过举例引入导数的概念,让学生了解导数的作用和意义。
2. 教学核心:讲解导数的定义和性质,以及导数的计算方法,通过实例逐步深入理解。
3. 拓展应用:结合实际问题,引导学生运用导数解决具体的应用问题。
4. 总结归纳:总结导数的相关知识点,强化学生的理解和记忆。
六、作业布置
1. 完成课后练习题,巩固导数的相关知识。
2. 设计一个实际问题,用导数方法求解。
七、教学反思
1. 教学过程中是否引导学生深入思考,掌握导数的本质?
2. 学生对导数的理解和应用是否到位,是否需要加强弱项的练习和指导?
以上是一份高中直播数学导数教案的模板范本,教师可根据实际情况和教学需求进行调整和完善。
高中数学导数简单解释教案

高中数学导数简单解释教案教学目标:1. 了解导数的概念及意义;2. 掌握导数的计算方法;3. 运用导数解决实际问题。
教学内容:1. 导数的概念及意义;2. 导数的计算方法:基本函数导数、常用导数公式;3. 导数的性质:导数与函数的关系、导数的物理意义;4. 运用导数解决实际问题。
教学重点:1. 导数的概念及意义;2. 导数的计算方法;3. 运用导数解决实际问题。
教学难点:1. 导数的物理意义;2. 运用导数解决实际问题。
教学准备:1. PowerPoint 等教学PPT;2. 教学板书及笔;3. 实例问题练习题;4. 实验器材(如位置传感器等)。
教学过程:一、导入(5分钟)通过引入一个生活中的例子,引起学生对导数概念的兴趣和认识。
二、概念解释(10分钟)1. 定义导数:函数在某一点的导数表示函数在这一点斜率的大小;2. 导数的意义:导数可以描述函数的变化速率、趋势和曲率。
三、计算方法(15分钟)1. 基本函数的导数计算方法;2. 常用导数公式;3. 解题练习。
四、性质探讨(10分钟)1. 导数与函数的关系;2. 导数的物理意义:速度、加速度等概念。
五、综合运用(15分钟)通过一些实际问题,让学生应用导数的知识解决实际问题。
六、作业布置(5分钟)布置导数相关的练习题,巩固学生的知识。
七、课堂小结(5分钟)总结导数的基本概念和计算方法,强调导数在解决实际问题中的重要性和应用。
教学反思:本节课主要围绕导数的概念、计算方法和应用展开,通过生活例子和实际问题的引入,帮助学生理解和掌握导数的知识。
同时,引入一些物理意义,增加了导数概念的深度和广度,提高了学生的学习热情和参与度。
在教学过程中,注重培养学生的问题解决能力和思维方式,引导学生主动探索和学习导数知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学导数基础讲义教案二、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, logx的导数)。
掌a握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。
三、复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.x的导数)。
2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, loga掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合。
掌握复合函数的求导法则,并会用法则解决一些简单问题。
四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
5.瞬时速度在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 6.导数的定义 7.导数的几何意义函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 ))(('000x x x f y y -=-特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x = 8.和(或差)的导数 9.积的导数10.商的导数11. 导数与函数的单调性的关系范例分析例1.⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,则=a =b 例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆例3.观察1)(-='n nnxx ,x x cos )(sin =',x x sin )(cos -=',是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。
例4.(1)求曲线122+=x xy 在点(1,1)处的切线方程; (2)运动曲线方程为2221t tt S +-=,求t=3时的速度。
例5. 求下列函数单调区间 (1)5221)(23+--==x x x x f y (2)xx y 12-=(3)x xk y +=2)0(>k (4)αln 22-=x y 例6.求证下列不等式(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x (2)πxx 2sin >)2,0(π∈x(3)x x x x -<-tan sin )2,0(π∈x例7.利用导数求和:(1); (2)。
例8.求满足条件的a(1)使ax x y +=sin 为R 上增函数 (2)使a ax x y ++=3为R 上…… (3)使5)(23-+-=x x ax x f 为R 上↑例9.(1)),0(∞+∈x 求证x x x x 11ln 11<+<+ (2)N n ∈ 2≥n 求证 11211ln 13121-+++<<+++n n n例10. 设0>a ,求函数),0()(ln()(+∞∈+-=x a x x x f 的单调区间.例11.已知抛物线42-=x y 与直线y=x+2相交于A 、B 两点,过A 、B 两点的切线分别为1l 和2l 。
(1)求A 、B 两点的坐标; (2)求直线1l 与2l 的夹角。
例12.( 天津卷)设0>a ,x x eaa e x f +=)(是R 上的偶函数。
(I )求a 的值;(II )证明)(x f 在),0(+∞上是增函数。
例13.(2000年全国、天津卷)设函数ax x x f -+=1)(2,其中0>a 。
(I )解不等式1)(≤x f ;(II )证明:当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数。
例14. 已知0>a ,函数),,0(,1)(+∞∈-=x x ax x f 设ax 201<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。
(Ⅰ)求l 的方程;(Ⅱ)设l 与x 轴的交点为)0,(2x ,证明:①a x 102≤<②若a x 11<,则ax x 121<< 七、强化训练1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( )A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x 轴的点的坐标是 ( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2)4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-15D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么tst ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( )A .4)(x x f = B .2)(4-=x x f C .1)(4+=x x f D .2)(4+=x x f 9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -16 10.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 ( ) (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000。
A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4)11.( 普通高等学校招生全国统一考试(上海卷理工农医类16))f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下 列关于函数g (x )的叙述正确的是( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b<0,则方程g (x )=0有大于2的实根.C .若a ≠0,b=2,则方程g (x )=0有两个实根.D .若a ≥1,b<2,则方程g (x )=0有三个实根.12.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是 13.设xx x f 1)(-=,则它与x 轴交点处的切线的方程为______________。
14.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________。
15.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________. 16.已知曲线xx y 1+=,则==1|'x y _____________。
17.y=x 2e x 的单调递增区间是18.曲线3213+=x y 在点)4,1(3处的切线方程为____________。
19.P 是抛物线2x y =上的点,若过点P 的切线方程与直线121+-=x y 垂直,则过P 点处的切线方程是____________。
20.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P 的切线与过这两点的割线平行,则P 点的坐标为_____________。