数列专项练习题
数列测试题及答案

数列测试题及答案一、选择题1. 已知数列\( a_n \)的通项公式为\( a_n = 3n - 1 \),那么第10项的值为:A. 29B. 28C. 27D. 26答案:A2. 若数列\( b_n \)的前n项和为\( S_n \),且\( S_n = n^2 \),求数列\( b_n \)的第3项:A. 5B. 6C. 7D. 8答案:B二、填空题1. 给定等差数列\( c_n \),首项\( c_1 = 5 \),公差\( d = 3 \),其第5项为________。
答案:202. 若数列\( d_n \)是等比数列,且\( d_1 = 2 \),公比\( q = 4 \),求第4项:________。
答案:64三、解答题1. 已知数列\( e_n \)的前n项和为\( S_n \),若\( S_3 = 21 \),\( S_5 = 45 \),求\( e_4 + e_5 \)。
解:由题意得\( e_4 + e_5 = S_5 - S_3 = 45 - 21 = 24 \)。
2. 某等差数列的前5项和为50,且第3项为15,求该数列的首项和公差。
解:设该等差数列的首项为\( a \),公差为\( d \),则有:\[ 5a + 10d = 50 \]\[ a + 2d = 15 \]解得:\( a = 5 \),\( d = 5 \)。
四、证明题1. 证明等差数列中,任意两项的等差中项等于它们的算术平均数。
证明:设等差数列\( f_n \)的首项为\( f_1 \),公差为\( d \),任取两项\( f_m \)和\( f_n \)(\( m < n \)),则它们的等差中项为\( f_{\frac{m+n}{2}} \)。
根据等差数列的性质,有:\[ f_{\frac{m+n}{2}} = f_1 + \left(\frac{m+n}{2} -1\right)d \]而算术平均数为:\[ \frac{f_m + f_n}{2} = \frac{f_1 + (m-1)d + f_1 + (n-1)d}{2} = f_1 + \frac{(m+n-2)d}{2} \]由于\( \frac{m+n}{2} - 1 = \frac{m+n-2}{2} \),所以两者相等,证明了等差中项等于算术平均数。
数列练习题

数列练习题一、等差数列1. 已知等差数列的前三项分别是2,5,8,求第10项的值。
2. 一个等差数列的前5项和为35,前10项和为110,求该数列的公差。
3. 已知等差数列的公差为3,第5项为12,求第8项的值。
4. 等差数列的前7项和为49,第8项为11,求第4项的值。
5. 已知等差数列的公差为2,第3项为8,求前6项的和。
二、等比数列1. 已知等比数列的前三项分别是2,6,18,求第6项的值。
2. 一个等比数列的前4项和为21,前8项和为189,求该数列的公比。
3. 已知等比数列的公比为3,第4项为81,求第7项的值。
4. 等比数列的前5项和为31,第6项为48,求第3项的值。
5. 已知等比数列的公比为1/2,第2项为4,求前5项的和。
三、数列的通项公式1. 已知数列的前三项分别是1,3,5,推测数列的通项公式。
2. 已知数列的前四项分别是2,6,12,20,推测数列的通项公式。
3. 已知数列的前三项分别是1,4,9,推测数列的通项公式。
4. 已知数列的前四项分别是1,4,9,16,推测数列的通项公式。
5. 已知数列的前三项分别是1,2,3,推测数列的通项公式。
四、数列的求和1. 求等差数列1,3,5,7,9,…的前10项和。
2. 求等比数列3,6,12,24,…的前6项和。
3. 求等差数列2,5,8,11,…的前8项和。
4. 求等比数列2,4,8,16,…的前5项和。
5. 求数列1,3,6,10,15,…的前7项和。
五、综合运用1. 已知数列的前三项分别是2,4,8,求该数列的前10项和。
2. 已知等差数列的公差为2,前5项和为35,求该数列的前7项和。
3. 已知等比数列的公比为3,第3项为27,求该数列的前5项和。
4. 已知数列的通项公式为an = n^2 + n,求前8项的和。
5. 已知数列的通项公式为an = 2^n 1,求前6项的和。
六、数列的递推关系1. 已知数列满足递推关系an = an1 + 3,且a1 = 2,求a5的值。
数列练习题高中

数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。
2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。
3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。
4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。
二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。
2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。
3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。
4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。
三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。
2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。
3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。
4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。
四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。
2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。
3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。
五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。
2. 一等比数列的第3项为12,第6项为48,求首项和公比。
3. 一数列的前n项和为2^n 1,求第10项的值。
4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。
六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。
4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。
数列练习题(附答案)

数列综合题一、填空题1. 各项都是正数的等比数列{a n },公比q ≠1,a 5,a 7,a 8成等差数列,则公比q= 2. 已知等差数列{a n },公差d ≠0,a 1,a 5,a 17成等比数列,则18621751a a a a a a ++++=3. 3已知数列{a n }满足S n =1+n a 41,则a n =4.已知二次函数f(x)=n(n+1)x 2-(2n+1)x+1,当n=1,2,…,12时,这些函数的图像在x 轴上截得的线段长度之和为5.已知数列{a n }的通项公式为a n =log (n+1)(n+2),则它的前n 项之积为6.数列{(-1)n-1n 2}的前n 项之和为7.一种堆垛方式,最高一层2个物品,第二层6个物品,第三层12个物品,第四层20个物品,第五层30个物品,…,当堆到第n 层时的物品的个数为8.已知数列1,1,2,…,它的各项由一个等比数列与一个首项为0的等差数列的对应项相加而得到,则该数列前10项之和为9.在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为10.已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),……,则第60个数对为 11.设等差数列{a n }的前n 项和是S n ,若a 5=20-a 16,则S 20=___________. 12.若{a n }是等比数列,a 4· a 7= -512,a 3+ a 8=124,且公比q 为整数,则a 10等于___________.13.在数列{a n }中,a 1=1,当n ≥2时,a 1 a 2… a n =n 2恒成立,则a 3+ a 5=___________. 14.设{a n }是首项为1的正项数列,且(n +1)21+n a -na 2n +a n +1 a n =0(n =1,2,3,…),则它的通项公式是a n =___________. 二.解答题1.已知数列{a n }的通项公式为a n =3n +2n +(2n-1),求前n 项和2.已知数列{a n }是公差d 不为零的等差数列,数列{a bn }是公比为q 的等比数列, b 1=1,b 2=10,b 3=46,,求公比q 及bn 。
数列专项训练试卷

数列专项训练试卷一、选择题(每题5分,共30分)1. 在等差数列{a_n}中,若a_1 = 2,a_3+a_5=10,则a_7=()A. 5.B. 8.C. 10.D. 14.2. 等比数列{a_n}的公比q = 2,a_1+a_2+a_3=21,则a_3+a_4+a_5=()A. 42.B. 84.C. 168.D. 336.3. 已知数列{a_n}的前n项和S_n=n^2-2n + 1,则a_n=()A. 2n - 3,n≥slant2;0,n = 1B. 2n - 3,n≥slant1C. 2n - 1,n≥slant2;0,n = 1D. 2n - 1,n≥slant14. 设等差数列{a_n}的前n项和为S_n,若S_10=100,S_100=10,则S_110=()A. - 90.B. 90.C. - 110.D. 110.5. 等比数列{a_n}中,a_3=9,a_5=1,则a_7=()A. (1)/(9)B. (1)/(3)C. ±(1)/(3)D. (1)/(27)6. 数列{a_n}满足a_n + 1=a_n+2n,a_1=1,则a_n=()A. n^2-n + 1B. n^2+n - 1C. n^2-1D. n^2+1二、填空题(每题5分,共20分)1. 等差数列{a_n}中,a_2=4,a_4+a_7=15,则a_n=______。
2. 等比数列{a_n}的前n项和S_n=2^n-1,则a_1^2+a_2^2+·s+a_n^2=______。
3. 已知数列{a_n}满足a_1=1,a_n + 1=3a_n+1,则a_n=______。
4. 数列{a_n}的通项公式a_n=(n + 1)/(n),则它的前n项和S_n=______。
三、解答题(每题10分,共50分)1. 已知等差数列{a_n}的前n项和为S_n,a_3=5,S_6=36。
求数列{a_n}的通项公式;设b_n=2^a_n,求数列{b_n}的前n项和T_n。
数列 练习题

数列练习题数列练习题数列是数学中一个非常重要的概念,它在各个领域都有广泛的应用。
数列由一系列有序的数字组成,其中每个数字称为数列的项。
在数列中,每个项都有一个位置,称为项数。
数列的通项公式可以用来表示数列中任意一项的值。
在本文中,我们将通过一些练习题来巩固对数列的理解。
练习题一:等差数列1. 某等差数列的首项是3,公差是2,求该数列的第10项。
2. 某等差数列的前三项分别是1,4,7,求该数列的通项公式。
3. 某等差数列的前五项和为30,公差为3,求该数列的首项。
解答:1. 根据等差数列的通项公式an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知条件,可得a10 = 3 + (10-1)2 = 3 + 18 = 21。
2. 设该等差数列的通项公式为an = a1 + (n-1)d。
代入已知条件,可得1 = a1 + (1-1)d,4 = a1 + (2-1)d,7 = a1 + (3-1)d。
解得a1 = 1,d = 3,所以该数列的通项公式为an = 1 + (n-1)3。
3. 设该等差数列的首项为a1,前五项和为30,公差为3。
根据等差数列前n项和的公式Sn = n/2(a1 + an),代入已知条件,可得30 = 5/2(a1 + a5) = 5/2(a1 + a1 + 4d) = 5/2(2a1 + 4d) = 5/2(2a1 + 12)。
解得2a1 + 12 = 12,所以a1 = 0。
因此,该数列的首项为0。
练习题二:等比数列1. 某等比数列的首项是2,公比是3,求该数列的第5项。
2. 某等比数列的前两项分别是2,6,求该数列的通项公式。
3. 某等比数列的前三项和为21,公比为2,求该数列的首项。
解答:1. 根据等比数列的通项公式an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
代入已知条件,可得a5 = 2 * 3^(5-1) = 2 * 3^4 = 2 * 81 = 162。
数列测试题及答案解析

数列测试题及答案解析一、选择题1. 已知数列{an}满足a1=2,an+1 = 2an,判断数列{an}是否为等比数列。
A. 是B. 不是C. 无法判断答案:A2. 若数列{bn}是等差数列,且b3=5,b5=9,求b7。
A. 11B. 13C. 无法确定答案:B二、填空题1. 给定数列{cn},其中c1=1,cn+1 = cn + n,求c5的值。
答案:152. 已知等差数列{dn}的首项d1=3,公差d=2,求d20的值。
答案:43三、解答题1. 求等比数列{en}的前n项和Sn,若e1=1,公比q=3。
解:根据等比数列前n项和公式Sn = e1 * (1 - q^n) / (1 - q),代入e1=1和q=3,得到Sn = (1 - 3^n) / (1 - 3)。
2. 已知等差数列{fn}的前n项和为Tn,若f1=2,d=3,求T10。
解:根据等差数列前n项和公式Tn = n/2 * (2a1 + (n - 1)d),代入f1=2和d=3,得到T10 = 10/2 * (2*2 + (10 - 1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
四、证明题1. 证明数列{gn},其中gn = n^2,是一个单调递增数列。
证明:设n≥2,我们需要证明对于任意的n,有gn ≥ gn-1。
即证明n^2 ≥ (n-1)^2。
展开得n^2 - (n-1)^2 = 2n - 1 > 0,所以数列{gn}是单调递增的。
2. 证明等差数列{hn}的任意两项hn和hm(m > n)之和等于它们中间项的两倍。
证明:设等差数列{hn}的首项为h1,公差为d。
根据等差数列的定义,hn = h1 + (n - 1)d,hm = h1 + (m - 1)d。
将两项相加得hn + hm = 2h1 + (m + n - 2)d。
由于m > n,所以m + n - 2 = m - 1 + n - 1,即hn + hm = h1 + (m - 1)d + h1 + (n - 1)d = 2h1 + (m + n - 2)d = 2h((m + n - 1)/2),这正是它们中间项的两倍。
数列大题训练50题及答案

数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。
保持卷板整洁。
一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
B C
,等比数列
,
B C
,等比数列
或.
满足=-},公比为}
,求证:<
项和,
)求证:
)若数列
)若数列是一个有理数等差数列,求
为等比数列,项和,
满足:,是一个整数,求符合条件的自然数
,使得对任意的正整数恒有
项的和分别记为三者的关系式是
,∴
时,写出数列的前几项:时,该数列的周期是
化简
,,
时,
时可以分解成8
组,其中只有
,符合要求,此时
,
解法二
,
等差数列的前几项:
因为数列是一个有理等差数列
是一个自然数,
此时
如果没有理由,猜想:
,解答得2分
得2分
7
、(Ⅰ)(3分)
(6分)
(Ⅱ)①
②
①-②得:(9分)
整理得:(12分)
8、(1
)证明:①
②
②-①:③
任意,∴
(2
)解:计算,∴
根据数列是隔项成等差,写出数列的前几项:
所以奇数项是递增数列,偶数项是递增数列,整个数列成单调递增的充要条件是
解得
(3)解:
是一个整数,所以一共4个对一个得1分,合计4分另解:
三、填空题
9、。