编码器输出形式.
编码器技术参数

编码器技术参数编码器是一种用于测量物理量并将其转换为数字信号的设备,广泛应用于工业自动化、机械领域等。
编码器的技术参数取决于其具体类型和应用场景。
以下是一些常见的编码器技术参数,这些参数可能在不同的编码器类型中有所差异:1.分辨率:定义:分辨率是编码器能够区分的最小位移或角度的量度。
单位:通常以每圈的脉冲数或每毫米的脉冲数表示。
2.精度:定义:精度表示编码器输出值与实际位置之间的误差。
单位:以百分比或特定单位(如角度或长度)表示。
3.脉冲输出类型:定义:脉冲输出的类型,常见的有两相正交信号、单路脉冲、SSI(Synchronous Serial Interface)等。
特点:不同的输出类型适用于不同的应用场景,例如位置控制或速度控制。
4.工作电压:定义:编码器工作所需的电源电压。
范围:典型的工作电压包括 5V、12V 或 24V。
5.工作温度范围:定义:编码器能够正常工作的温度范围。
范围:通常在摄氏度或华氏度下表示,例如 -20°C 到 +85°C。
6.防护等级:定义:编码器外壳的防护等级,表示其对于灰尘、水分、震动等环境的抵抗能力。
示例:IP65 表示防尘、防喷水。
7.最大转速:定义:编码器能够测量的最大转速。
单位:典型的单位包括 RPM(每分钟转数)。
8.安装方式:定义:编码器的安装方式,例如轴向安装、法兰盘安装等。
特点:不同的安装方式适用于不同的机械结构。
9.输出信号类型:定义:编码器输出的信号类型,例如 TTL、HTL 等。
特点:不同的输出信号类型适用于不同的控制系统。
10.抗干扰性能:定义:编码器对于外部干扰的抵抗能力。
特点:对于工业环境中可能存在的电磁干扰具有重要意义。
11.寿命:定义:编码器的使用寿命,通常以小时或循环数表示。
取决于:受材料、工作条件等多个因素影响。
12.通信接口:定义:编码器与其他设备通信的接口,例如 Modbus、Profinet 等。
特点:通信接口决定了编码器的可集成性。
旋转编码器种类及信号输出形式

旋转编码器种类及信号输出形式
旋转编码器是一种计数器,其功能是使用旋转轴旋转来检测和记录物体的旋转角度或位移距离。
它的编码方式有多种不同的类型,每种类型的输出信号形式也不同。
本文将介绍常见的四种旋转编码器类型,即定子磁极编码器、绝对式编码器、相位型编码器和编码器阵列。
定子磁极编码器是最常见的旋转编码器之一,它是在旋转轴上安装了一组磁极,当旋转轴旋转时,它们会产生电磁强度变化并由传感器检测,从而测量出旋转角度。
它的输出信号一般是四相编码信号,也称为ABZ信号,即A相、B相和Z相的模拟信号,这三个相位的变化是交互的,当旋转轴逆时针旋转时,A相和B相信号会按照特定规律交替变化而不会同时变化,而Z相信号由高电平变成低电平时则表示旋转轴的一个周期循环完成,同时也可以通过A相和B相的变化比例来检测旋转轴的角度变化。
绝对式编码器是一种新型编码器,与定子磁极编码器不同,绝对式编码器使用磁性存储介质来记录旋转角度,它具有比定子磁极编码器更高的精度和更长的工作寿命。
编码器输出是脉冲

编码器输出是脉冲。
你需要用脉冲计数器来转换成距离。
简单的就是用PLC把脉冲转换成距离。
另外没有什么计算公式。
你的编码器一小格齿轮也就是一个脉冲,你看下编码器的说明书就可以了。
一个齿轮是多少距离。
然后多少脉冲乘下就是距离了。
详细的要靠PLC 计算脉冲就可以了。
另外编码器是装在你位移的轴上的。
不是装在电机上的。
控制电机正反转似乎不需要旋转编码器,编码器是用来测速的,
1,开关量控制:将PLC的输出触点与变频器的正转,反转,高速,中速,低速触点连接,再在变频器上设置高中低档频率,用PLC直接控制这些触点的闭开即可。
2,模拟量控制,将PLC的输出触点与变频器的电流输入或电压输入触点连接,再在PLC 上设置电压或电流再用D/A转换即可调节频率,正反转就是正负电平。
3,现场总线:使用CCLINK现场总线。
旋转编码器的使用:旋转编码器一般是测量电机速度用的,使用带晶体管接口的PLC,将编码器接近开关信号输入到PLC高速输入接口,再在PLC内编制相关程序,即可算出当前速度,与所需速度比较,以便及时调整。
用PLC发脉冲给步进驱动器,把绝对式编码器进行反馈给PLC。
反馈给plc有什么作用???谢谢大师指点,很急,万分感谢问题补充:
请说出个具体点的控制流程,谢谢。
不一定要反馈的那种。
最佳答案
为了精确定位啊,,,你发脉冲给步进驱动器,PLC不知道步进驱动器驱动的步进电机有没有执行,所以就用连接在电机上的编码器告诉PLC。
编码器的分类

、编码器的分类根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。
,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。
重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。
摆锤冲击实验机,利用编码器计算冲击是摆角变化。
2、长度测量计米器,利用滚轮周长来测量物体的长度和距离。
拉线位移传感器,利用收卷轮周长计量物体长度距离。
联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。
介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。
3、速度测量线速度,通过跟仪表连接,测量生产线的线速度角速度,通过编码器测量电机、转轴等的速度测量4、位置测量机床方面,记忆机床各个坐标点的坐标位置,如钻床等自动化控制方面,控制在牧歌位置进行指定动作。
编码器三种输出形式

编码器三种输出形式编码器是一种将输入数据转换为特定形式的设备或程序。
在计算机科学与信息技术领域,我们常常使用编码器来将信息从一种形式转换为另一种形式。
这种转换可以是数字到文本、文本到音频、图像到视频等。
在本文中,我将介绍三种常见的编码器输出形式。
1.数字编码:数字编码是一种将输入数据转换为一系列数字的编码形式。
这种编码形式通常用于数字信号处理、通信系统和计算机网络中。
数字编码可以是离散的或连续的。
离散的数字编码将输入数据表示为一系列离散的数字,例如二进制编码、格雷码等。
连续的数字编码将输入数据表示为一系列连续的数字,例如模拟信号的采样。
2.文本编码:文本编码是一种将输入数据转换为文本形式的编码形式。
这种编码形式通常用于自然语言处理、信息检索和文本分类等应用中。
文本编码将输入数据表示为一系列字符或单词。
常见的文本编码方法包括词袋模型、TF-IDF向量、词嵌入等。
词袋模型将文本表示为单词的频率向量,TF-IDF向量将文本表示为单词的重要性权重向量,词嵌入将文本表示为低维向量空间中的点。
3.图像编码:图像编码是一种将输入数据转换为图像形式的编码形式。
这种编码形式通常用于计算机视觉、图像处理和图像压缩等应用中。
图像编码将输入数据表示为一系列像素或色彩。
常见的图像编码方法包括位图、矢量图、JPEG、PNG等。
位图将图像表示为像素点的颜色值,矢量图将图像表示为几何图形的描述,JPEG和PNG是两种常用的图像压缩编码方法。
除了上述三种常见的编码器输出形式,还有许多其他特定领域的编码形式。
例如音频编码将音频数据表示为一系列音频样本,视频编码将视频数据表示为一系列视频帧。
编码器的输出形式取决于输入数据的类型,以及应用领域对输出数据的需求。
不同的编码形式具有不同的特点和应用场景。
了解和理解不同的编码形式有助于我们选择合适的编码方法,以及对编码数据进行正确的解码和处理。
在实际应用中,经常需要将不同编码形式的数据进行转换和交互,这也是编码器的重要功能之一。
编码器的集电极开路输出原理

编码器的集电极开路输出原理1. 引言1.1 编码器的作用编码器是一种常用的传感器设备,用于将机械运动转换为数字信号。
它的主要作用是对机械运动进行测量和控制,通常用于工业自动化系统中。
编码器可以精确地测量物体的位置、速度和角度,从而实现精准的定位和控制。
它在各种领域中都有广泛的应用,如机械制造、自动化设备、医疗器械等。
集电极开路输出是编码器的一种常见输出方式,其原理是利用编码器内部的传感器检测物体的运动,并将信号转换为开路或闭路状态。
通过读取这些开路或闭路信号,可以确定物体的位置和运动方向。
集电极开路输出通常用于需要高精度测量和控制的应用场合,如机器人控制、数控机床和印刷设备等。
编码器的作用是实现对机械运动的精确测量和控制,而集电极开路输出则是其中一种常见的输出方式,具有高精度和稳定性的特点,适用于需要精确定位和控制的各种应用领域。
1.2 集电极开路输出的定义编码器是一种用于将机械位移转换成数字信号的装置,常用于测量和控制系统中。
集电极开路输出是一种编码器的输出信号类型,通常用于表示某种状态或事件发生。
具体来说,集电极开路输出是指编码器输出的信号线上出现开路状态,表示编码器所测量的位置或事件未发生。
这种输出方式通常用于需要简单状态表示的应用中,能够提供清晰的信号反馈。
在集电极开路输出中,编码器的输出线路上只有在被触发后才会导通电流,否则会保持断开状态。
这种设计使得集电极开路输出具有较高的抗干扰能力,能够在复杂环境下稳定地传输信号。
集电极开路输出也具有快速响应的特点,能够在瞬间反映出编码器所测量的状态变化。
集电极开路输出是一种简单且可靠的编码器输出方式,适用于需要快速、准确地获取状态信息的场合。
它在各种测量和控制系统中得到广泛应用,为系统的稳定运行和精准控制提供了重要支持。
2. 正文2.1 编码器工作原理编码器是一种用于测量和控制运动系统的装置,主要用于将位置、速度和方向等信息转换成电信号输出。
编码器工作原理是利用编码盘和传感器之间的光电原理来实现。
编码器的工作原理介绍

访问其它设备的过程,如何回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了
消息域格局和内容的公共格式。
当在一 Modbus 网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识
别按地址发来的消息,决定要产生何种行动。 如果需要回应,控制器将生成反馈信息并用
Modbus 协议发出。在其它网络上,包含了 Modbus 协议的消息转换为在此网络上使用的帧或
起始地址 读取点数 CRC 校验码
站 功 低 高 号能
︵码
地
址 ︶
编码器答:
01 03 02 XX XX XX XX
数据 CRC 校验码
Ⅱ波特率 : 2400bps 4800bps 9600bps 19200bps 57600bps
※ 出厂默认设置:①无奇偶校验位②波特率 19200bps③地址 0x01
※ 改变参数时,不要定时发送为避免损坏器件内部结构。发送一次返回数据匹
配代表设置成功。
Ⅲ功能码 03:
利用 Modbus 通信协议的 03 功能码,读取编码器数值。 主机的命令格式是从机地址、功能码、起始地址、字节数及 CRC 码。
低 高
站功
号能
︵码 地
址
︶
编码器答:
01 03 04 00 0X XX XX XX XX
数据 数据 CRC 校验码
² 此类型编码器具有国际流行的同步串行接口,可与德国西门子 PLC 等系统接口通 讯,具有速度快,效率高等优点
3、异步串行(Mudbus)输出
Modbus 是由 Modicon(现为施耐德电气公司的一个品牌)在 1979 年发明的,是全球第 一个真正用于工业现场的总线协议。为更好地普及和推动 Modbus 在基于以太网上的分布式 应用,目前施耐德公司已将 Modbus 协议的所有权移交给 IDA(Interface for Distributed Automation,分布式自动化接口)组织,并成立了 Modbus-IDA 组织,为 Modbus 今后的发展 奠定了基础。在中国,Modbus 已经成为国家标准 GB/T19582-2008。据不完全统计:截止到 2007 年,Modbus 的节点安装数量已经超过了 1000 万个。
绝对值编码器的信号输出形式

绝对值编码器的信号输出形式绝对值编码器信号输出有并行输出、串行输出、总线型输出、变送一体型输出1.并行输出:绝对值编码器输出的是多位数码(格雷码或纯二进制码),并行输出就是在接口上有多点高低电平输出,以代表数码的1 或0,对于位数不高的绝对编码器,一般就直接以此形式输出数码,可直接进入PLC 或上位机的I/O 接口,输出即时,连接简单。
但是并行输出有如下问题:1。
必须是格雷码,因为如是纯二进制码,在数据刷新时可能有多位变化,读数会在短时间里造成错码。
2。
所有接口必须确保连接好,因为如有个别连接不良点,该点电位始终是0,造成错码而无法判断。
3。
传输距离不能远,一般在一两米,对于复杂环境,最好有隔离。
4。
对于位数较多,要许多芯电缆,并要确保连接优良,由此带来工程难度,同样,对于编码器,要同时有许多节点输出,增加编码器的故障损坏率。
2.串行SSI 输出:串行输出就是通过约定,在时间上有先后的数据输出,这种约定称为通讯规约,其连接的物理形式有RS232、RS422(TTL)、RS485 等。
由于绝对值编码器好的厂家都是在德国,所以串行输出大部分是与德国的西门子配套的,如SSI 同步串行输出。
SSI 接口(RS422 模式),以两根数据线、两根时钟线连接,由接收设备向编码器发出中断的时钟脉冲,绝对的位置值由编码器与时钟脉冲同步输出至接收设备。
由接收设备发出时钟信号触发,编码器从高位(MSB)开始输出与时钟信号同步的串行信号. 串行输出连接线少,传输距离远,对于编码器的保护和可靠性就大大提高了。
一般高位数的绝对编码器都是用串行输出的。
3.现场总线型输出现场总线型编码器是多个编码器各以一对信号线连接在一起,通过设定地址,用通讯方式传输信号,信号的接收设备只需一个接口,就可以读多个编码器信号。
总线型编码器信号遵循RS485 的物理格式,其信号的编排方式称为通讯规。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 编码器基础1.1光电编码器编码器是传感器的一种,主要用来检测机械运动的速度、位置、角度、距离和计数等,许多马达控制均需配备编码器以供马达控制器作为换相、速度及位置的检出等,应用范围相当广泛。
按照不同的分类方法,编码器可以分为以下几种类型:根据检测原理,可分为光学式、磁电式、感应式和电容式。
根据输出信号形式,可以分为模拟量编码器、数字量编码器。
根据编码器方式,分为增量式编码器、绝对式编码器和混合式编码器。
光电编码器是集光、机、电技术于一体的数字化传感器,主要利用光栅衍射的原理来实现位移——数字变换,通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
典型的光电编码器由码盘、检测光栅、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。
光电编码器具有结构简单、精度高、寿命长等优点,广泛应用于精密定位、速度、长度、加速度、振动等方面。
这里我们主要介绍SIMATIC S7系列高速计数产品普遍支持的增量式编码器和绝对式编码器。
1.2增量式编码器增量式编码器提供了一种对连续位移量离散化、增量化以及位移变化(速度)的传感方法。
增量式编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,它能够产生与位移增量等值的脉冲信号。
增量式编码器测量的是相对于某个基准点的相对位置增量,而不能够直接检测出绝对位置信息。
如图1-1所示,增量式编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。
在码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期。
检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线,它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90°。
当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相差90°的近似于正弦波的电信号,电信号经过转换电路的信号处理,就可以得到被测轴的转角或速度信息。
图1-1增量式编码器原理图一般来说,增量式光电编码器输出A、B 两相相位差为90°的脉冲信号(即所谓的两相正交输出信号),根据A、B两相的先后位置关系,可以方便地判断出编码器的旋转方向。
另外,码盘一般还提供用作参考零位的N 相标志(指示)脉冲信号,码盘每旋转一周,会发出一个零位标志信号。
图1-2增量式编码器输出信号1.3绝对式编码器绝对式编码器的原理及组成部件与增量式编码器基本相同,与增量式编码器不同的是,绝对式编码器用不同的数码来指示每个不同的增量位置,它是一种直接输出数字量的传感器。
图1-3绝对式编码器原理图如图1-3所示,绝对式编码器的圆形码盘上沿径向有若干同心码道,每条码道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数。
在码盘的一侧是光源,另一侧对应每一码道有一光敏元件。
当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
显然,码道越多,分辨率就越高,对于一个具有n位二进制分辨率的编码器,其码盘必须有n 条码道。
根据编码方式的不同,绝对式编码器的两种类型码盘(二进制码盘和格雷码码盘),如图1-4所示。
图1-4绝对式编码器码盘绝对式编码器的特点是不需要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码,即直接读出角度坐标的绝对值。
另外,相对于增量式编码器,绝对式编码器不存在累积误差,并且当电源切除后位置信息也不会丢失。
二进制码和格雷码的区别,格雷码如何转换成二进制码2 编码器输出信号类型一般情况下,从编码器的光电检测器件获取的信号电平较低,波形也不规则,不能直接用于控制、信号处理和远距离传输,所以在编码器内还需要对信号进行放大、整形等处理。
经过处理的输出信号一般近似于正弦波(电流或电压),或矩形波(TTL、HTL),因为矩形波输出信号容易进行数字处理,所以在控制系统中应用比较广泛。
增量式光电编码器的信号输出有集电极开路输出、电压输出、线驱动输出和推挽式输出等多种信号形式。
2.1集电极开路输出集电极开路输出是以输出电路的晶体管发射极作为公共端,并且集电极悬空的输出电路。
根据使用的晶体管类型不同,可以分为NPN集电极开路输出(也称作漏型输出,当逻辑1时输出电压为0V,如图2-1所示)和PNP集电极开路输出(也称作源型输出,当逻辑1时,输出电压为电源电压,如图2-2所示)两种形式。
在编码器供电电压和信号接受装置的电压不一致的情况下可以使用这种类型的输出电路。
图2-1 NPN集电极开路输出图2-2 PNP集电极开路输出对于PNP型的集电极开路输出的编码器信号,可以接入到漏型输入的模块中,具体的接线原理如图2-3所示。
注意:PNP型的集电极开路输出的编码器信号不能直接接入源型输入的模块中。
图2-3 PNP型输出的接线原理对于NPN型的集电极开路输出的编码器信号,可以接入到源型输入的模块中,具体的接线原理如图2-4所示。
注意:NPN型的集电极开路输出的编码器信号不能直接接入漏型输入的模块中。
图2-4 NPN型输出的接线原理2.2电压输出型电压输出是在集电极开路输出电路的基础上,在电源和集电极之间接了一个上拉电阻,这样就使得集电极和电源之间能有了一个稳定的电压状态,如图2-5。
一般在编码器供电电压和信号接受装置的电压一致的情况下使用这种类型的输出电路。
图2-5电压输出型2.3推挽式输出又叫推拉式输出NPN电压输出线路的主要局限性是因为它们使用了电阻,在晶体管关闭时表现出比晶体管高得多的阻抗,为克服些这缺点,在推挽式线路中额外接入了另一个晶体管,这样无论是正方向还是零方向变换,输出都是低阻抗。
推挽式线路提高了频率与特性,有利于更长的线路数据传输,即使是高速率时也是如此。
信号饱和的电平仍然保持较低,但与上述的逻辑相比,有时较高。
任何情况下推挽式线路也都可应用于NPN或PNP线路的接收器推挽式输出方式由两个分别为PNP型和NPN型的三极管组成,如图2-6所示。
当其中一个三极管导通时,另外一个三极管则关断,两个输出晶体管交互进行动作。
这种输出形式具有高输入阻抗和低输出阻抗,因此在低阻抗情况下它也可以提供大范围的电源。
由于输入、输出信号相位相同且频率范围宽,因此它还适用于长距离传输。
推挽式输出电路可以直接与NPN和PNP集电极开路输入的电路连接,即可以接入源型或漏型输入的模块中。
图2-6推挽式输出2.4线驱动输出如图2-7所示,线驱动输出接口采用了专用的IC 芯片,输出信号符合RS-422标准,以差分的形式输出,因此线驱动输出信号抗干扰能力更强,可以应用于高速、长距离数据传输的场合,同时还具有响应速度快和抗噪声性能强的特点。
图2-7线驱动输出此外,总线驱动器的发送和接收都是以差动方式进行的,或者说互补的发送通道上是电压的差。
因此对共模干扰它不是第三者,这种传送方式在采用DC5V系统时可认为与RS422兼容;在特殊芯片时,电源可达DC24V,可以在恶劣的条件(电缆长,干扰强烈等)下使用。
说明:除了上面所列的几种编码器输出的接口类型外,现在好多厂家生产的编码器还具有智能通信接口,比如PROFIBUS总线、CAN总线接口等。
这种类型的编码器可以直接接入相应的总线网络,通过通信的方式读出实际的计数值或测量值,这里不做说明。
3 高速计数模块与编码器的兼容性高速计数模块主要用于评估接入模块的各种脉冲信号,用于对编码器输出的脉冲信号进行计数和测量等。
西门子SIMATIC S7的全系列产品都有支持高速计数功能的模块,可以适应于各种不同场合的应用。
根据产品功能的不同,每种产品高速计数功能所支持的输入信号类型也各不相同,在系统设计或产品选型时要特别注意。
下表3-1给出了西门子高速计数产品与编码器的兼容性信息,供选型时参考。
表3-1高速计数产品与编码器的兼容性SIMATIC S7 系列产品增量型编码器绝对值编码器24V PNP 24VNPN24V推挽式5V 差分SSIS7-200 /S7-200 Smart CPU 集成的HSC√√√--S7-1200 CPU 集成的HSC√√√--S7-300 CPU31xC 集成的HSC√-√--FM350-1 √√√√-FM350-2 √-√--SM338 ----√S7-400 FM450-1 √√√√-ET200S 1Count 24V √√√--1Count 5V ---√-1SSI ----√√√--S7-1500 TM Count2x24VTM PosInput2 ---√√√√√--ET200SP TM Count1x24VTM PosInput1 ---√√√兼容; - 不兼容4 编码器使用的常见问题4.1编码器选型时要考虑哪些参数在编码器选型时,可以综合考虑以下几个参数:编码器类型:根据应用场合和控制要求确定选用增量型编码器还是绝对型编码器。
输出信号类型:对于增量型编码根据需要确定输出接口类型(源型、漏型)。
信号电压等级:确认信号的电压等级(DC24V、DC5V等)。
最大输出频率:根据应用场合和需求确认最大输出频率及分辨率、位数等参数。
安装方式、外形尺寸:综合考虑安装空间、机械强度、轴的状态、外观规格、机械寿命等要求。
4.2如何判断编码器的好坏可以通过以下几种方法判断编码器的好坏:将编码器接入PLC的高速计数模块,通过读取实际脉冲个数或码值来判断编码器输出是否正确。
通过示波器查看编码器输出波形,根据实际的输出波形来判断编码器是否正常。
通过万用表的电压档来测量编码器输出信号电压来判断编码器是否正常,具体操作方法如下:1)编码器为NPN晶体管输出时,用万用表测量电源正极和信号输出线之间的电压∙导通时输出电压接近供电电压∙关断时输出电压接近0V2)编码器为PNP晶体管输出时,用万用表测量测量电源负极和信号输出线之间的电压∙导通时输出电压接近供电电压∙关断时输出电压接近0V4.3计数不准确的原因及相应的避免措施在实际应用中,导致计数或测量不准确的原因很多,其中主要应注意以下几点: 编码器安装的现场环境有抖动,编码器和电机轴之间有松动,没有固定紧。
旋转速度过快,超出编码器的最高响应频率。
编码器的脉冲输出频率大于计数器输入脉冲最高频率。
信号传输过程中受到干扰。
针对以上问题的避免措施:检查编码器的机械安装,是否打滑、跳齿、齿轮齿隙是否过大等。
计算一下最高脉冲频率,是否接近或超过了极限值。
确保高速计数模块能够接收的最大脉冲频率大于编码器的脉冲输出频率。
检查信号线是否过长,是否使用屏蔽双绞线,按要求做好接地,并采取必要抗干扰措施。