2020年上海市初三四校自主招生数学模拟试卷

合集下载

2020年上海市中考数学模拟试题(PDF版)

2020年上海市中考数学模拟试题(PDF版)

上海中考数学模拟卷考生注意:1.本试卷共25题;2.试卷满分150分,考试时间100分钟3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;4.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.在下列各数中,是无理数的是()【A 】π;【B 】722;【C 】9;【D 】4.2.在下列方程中,有实数根的是()【A 】2310x x ++=【B 1=-【C 】2230x x ++=【D 】111x x x =--3.如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么()【A 】0k >,0b >【B 】0k >,0b <【C 】0k <,0b >【D 】0k <,0b <4.六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这六个数的中位数为()【A 】3【B 】4【C 】5【D 】65.在下列图形中,为中心对称图形的是()【A 】等腰梯形;【B 】平行四边形;【C 】正五边形;【D 】等腰三角形.6.已知四边形ABCD 中,90A B C === ∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是()【A 】90D = ∠【B 】AB CD =【C 】AD BC =【D 】BC CD=二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.计算:=•2324a a _____________.8.不等式组⎩⎨⎧>+>-0563x x 的解集是.9.方程x x =+32的解是.10.在一个不透明的袋中装有6个白球和若干个黑球,每个球除颜色外都相同,如果任意摸出一个球是黑球的概率为14,那么袋中的黑球有个.11.已知一次函数y kx b =+的图像经过第三象限且截距为3,那么反比例函数k y x =,在每个象限内,y 随x 的增大而________(填“增大”或“减小”).12.抛物线2421y x x =++的顶点坐标是.13.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O 设向量AD a = 、AB b = ,则向量=DO __________.(结果用a 、b 表示)14.某工厂从100万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这100万件产品中合格品约为万件15.工厂2016年的年利润为100万元,2017年和2018年连续增长,且这两年的增长率相同,据统计2018年的年利润为136万元,若设这个相同的增长率为x ,那么可列出的方程是________16.如图,在Rt △ABC 中,∠ACB=90°,将边AC 绕着点C 顺时针旋转120°,点A 的对应点是A′,当点A′正好落到边BC 的垂直平分线上时,则A′C:BC 的值为_________17.如图,四边形ABCD 是平行四边形,AB=2,AD=4,且∠B=60°,若以A 为圆心作圆,点C 在⊙A 内,点D 在⊙A 外,以B 为圆心的圆与⊙A 内切,则⊙B 的半径r 的取值范围是__________18.定义梯形较短的腰与较长的腰的比为“对腰比”。

2020年上海市中考数学模拟试卷(含答案)

2020年上海市中考数学模拟试卷(含答案)

2020年上海市中考数学模拟试卷含答案一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.3.如图,下列能判断BC∥ED的条件是()A. = B. = C. = D. =4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<105.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm 为半径画圆,那么该圆与底边的位置关系是()A.相离 B.相切 C.相交 D.不能确定二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么= .8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c= .10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m= .11.设α是锐角,如果tanα=2,那么cotα=.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是.13.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= .15.如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为米.16.如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.17.如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= .18.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B= .三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=, =,请用向量、表示和(直接写出结果)21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)1.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)【考点】二次函数的性质.【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选B.2.在△ABC中,∠C=90°,AB=5,BC=4,那么∠A的正弦值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据sinA=代入数据直接得出答案.【解答】解:∵∠C=90°,AB=5,BC=4,∴sinA==,故选D.3.如图,下列能判断BC∥ED的条件是()A. = B. = C. = D. =【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理,对每一项进行分析即可得出答案.【解答】解:∵=,∴BC∥ED;故选C.4.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是()A.2<O1O2<4 B.2<O1O2<6 C.4<O1O2<8 D.4<O1O2<10【考点】圆与圆的位置关系.【分析】本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:两圆半径差为4,半径和为8,两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,所以,4<O1O2<8.故选C.5.已知非零向量与,那么下列说法正确的是()A.如果||=||,那么=B.如果||=|﹣|,那么∥C.如果∥,那么||=|| D.如果=﹣,那么||=||【考点】*平面向量.【分析】根据向量的定义,可得答案.【解答】解:A、如果||=||,与的大小相等,与的方向不一向相同,故A错误;B、如果||=||,与的大小相等,与不一定平行,故B错误;C、如果∥,与的大小不应定相等,故C错误;D、如果=﹣,那么||=||,故D正确;故选:D.6.已知等腰三角形的腰长为6cm,底边长为4cm,以等腰三角形的顶角的顶点为圆心5cm为半径画圆,那么该圆与底边的位置关系是()A.相离 B.相切 C.相交 D.不能确定【考点】直线与圆的位置关系;等腰三角形的性质.【分析】作AD⊥BC于D,由等腰三角形的性质得出BD=CD=BC=2,由勾股定理求出AD=4>5,即d>r,即可得出结论.【解答】解:如图所示:在等腰三角形ABC中,作AD⊥BC于D,则BD=CD=BC=2,∴AD===4>5,即d>r,∴该圆与底边的位置关系是相离;故选:A.二、填空题(本大题共12题,每题4分,满分48分)7.如果3x=4y,那么= .【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:由3x=4y,得x:y=4:3,故答案为:.8.已知二次函数y=x2﹣2x+1,那么该二次函数的图象的对称轴是x=1 .【考点】二次函数的性质.【分析】用配方法将抛物线的一般式转化为顶点式,可求抛物线的对称轴.【解答】解:∵y=x2﹣2x+1=(x﹣1)2,对称轴是:x=1.故本题答案为:x=1.9.已知抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),那么c= ﹣3 .【考点】二次函数图象上点的坐标特征.【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,c),再根据已知条件得出c的值.【解答】解:当x=0时,y=c,∵抛物线y=3x2+x+c与y轴的交点坐标是(0,﹣3),∴c=﹣3,故答案为﹣3.10.已知抛物线y=﹣x2﹣3x经过点(﹣2,m),那么m= 4 .【考点】二次函数图象上点的坐标特征.【分析】直接把点(﹣2,m)代入抛物线y=﹣x2﹣3x中,列出m的一元一次方程即可.【解答】解:∵y=﹣x2﹣3x经过点(﹣2,m),∴m=﹣×22﹣3×(﹣2)=4,故答案为4.11.设α是锐角,如果tanα=2,那么cotα=.【考点】同角三角函数的关系.【分析】根据一个角的余切等于它余角的正切,可得答案.【解答】解:由α是锐角,如果tanα=2,那么cotα=,故答案为:.12.在直角坐标平面中,将抛物线y=2x2先向上平移1个单位,再向右平移1个单位,那么平移后的抛物线解析式是y=2(x﹣1)2+1 .【考点】二次函数图象与几何变换.【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的规律写出(0,0)平移后对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=2x2的顶点坐标为(0,0),把点(0,0)向上平移1个单位,再向右平移1个单位所得对应点的坐标为(1,1),所以平移后的抛物线解析式为y=2(x﹣1)2+1.故答案为y=2(x﹣1)2+1.13.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是AB>2 .【考点】点与圆的位置关系.【分析】根据点P在圆外⇔d>r,可得线段AB长度的取值范围是AB>2.【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.14.如图,点G是△ABC的重心,联结AG并延长交BC于点D,GE∥AB交BC与E,若AB=6,那么GE= 2 .【考点】三角形的重心;平行线分线段成比例.【分析】先根据点G是△ABC的重心,得出DG:DA=1:3,再根据平行线分线段成比例定理,得出=,即=,进而得出GE的长.【解答】解:∵点G是△ABC的重心,∴DG:AG=1:2,∴DG:DA=1:3,∵GE∥AB,∴=,即=,∴EG=2,故答案为:2.15.如图,在地面上离旗杆BC底部18米的A处,用测角仪测得旗杆顶端C的仰角为30°,已知测角仪AD的高度为1.5米,那么旗杆BC的高度为6+1.5 米.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据正切的定义求出CE,计算即可.【解答】解:在Rt△CDE中,tan∠CDE=,∴CE=DE•tan∠CDE=6,∴BC=CE+BE=6+1.5(米),故答案为:6+1.5.16.如图,⊙O1与⊙O2相交于A、B两点,⊙O1与⊙O2的半径分别是1和,O1O2=2,那么两圆公共弦AB的长为.【考点】相交两圆的性质.【分析】首先连接O1A,O2A,设AC=x,O1C=y,由勾股定理可得方程组,解方程组即可求得x 与y的值,继而求得答案.【解答】解:连接O1A,O2A,如图所示设AC=x,O1C=y,则AB=2AC=2x,∵O1O2=2,∴O2C=2﹣y,∵AB⊥O1O2,∴AC2+O1C2=O1A2,O2C2+AC2=O2A2,∴,解得:,∴AC=,∴AB=2AC=;故答案为:.17.如图,在梯形ABCD中,AD∥BC,AC与BD交于O点,DO:BO=1:2,点E在CB的延长线上,如果S△AOD:S△ABE=1:3,那么BC:BE= 2:1 .【考点】相似三角形的判定与性质;梯形.【分析】由平行线证出△AOD∽△COB,得出S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,由S△AOD:S=1:3,得出S△ABC:S△ABE=2:1,即可得出答案.△ABE【解答】解:∵AD∥BC,∴△AOD∽△COB,∵DO:BO=1:2,∴S△AOD:S△COB=1:4,S△AOD:S△AOB=1:2,∵S△AOD:S△ABE=1:3,∴S△ABC:S△ABE=6:3=2:1,∴BC:BE=2:1.18.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE 沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B= 或7.【考点】翻折变换(折叠问题);勾股定理.【分析】分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD 的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA′E=∠A,A′D=AD=5,由矩形性质和勾股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF,同理可以求出A′B的长.【解答】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A,A′D=A D=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4﹣3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8﹣1=7,∴A′H=A′E﹣EH=7﹣6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E 交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.三、解答题(本大题共7题,满分78分)19.计算:sin30°•tan30°﹣cos60°•cot30°+.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=×﹣××+=﹣+2=+2.20.如图,在△ABC中,D是AB中点,联结CD.(1)若AB=10且∠ACD=∠B,求AC的长.(2)过D点作BC的平行线交AC于点E,设=, =,请用向量、表示和(直接写出结果)【考点】相似三角形的判定与性质;*平面向量.【分析】(1)求出AD=AB=5,证明△ACD∽△ABC,得出,即可得出结果;(2)由平行线的性质得出AE=EC,由向量的定义容易得出结果.【解答】解:(1)∵D是AB中点,∴AD=AB=5,∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴,∴AC2=AB•AD=10×5=50,∴AC==5;(2)如图所示:∵DE∥BC,D是AB的中点,∴AD=DB,AE=EC,∵=, =,∴==,∴,∵==,∴.21.如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA=,cot∠ABC=,AD=8.求(1)⊙D的半径;(2)CE的长.【考点】圆周角定理;解直角三角形.【分析】(1)根据三角函数的定义得出CD和BD,从而得出⊙D的半径;(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由三角函数的定义得出BE,从而得出CE即可.【解答】解:(1)∵CD⊥AB,AD=8,tanA=,在Rt△ACD中,tanA==,AD=8,CD=4,在Rt△CBD,cot∠ABC==,BD=3,∴⊙D的半径为3;(2)过圆心D作DH⊥BC,垂足为H,∴BH=EH,在Rt△CBD中∠CDB=90°,BC==5,cos∠ABC==,在Rt△BDH中,∠BHD=90°,cos∠ABC==,BD=3,BH=,∵BH=EH,∴BE=2BH=,∴CE=BC﹣BE=5﹣=.22.如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2)米.(1)求背水坡AD的坡度;(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.【考点】解直角三角形的应用﹣坡度坡角问题;梯形.【分析】(1)作CP⊥AB于点P,即可知四边形CDGP是矩形,从而得CP=DG=2、CD=GP=6,由BP==2根据AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根据题意得EF=MN=4、ME=CD=6、∠B=30°,由BF=、HN=、NF=ME,根据HB=HN+NF+BF可得答案.【解答】解:(1)如图,过点C作CP⊥AB于点P,则四边形CDGP是矩形,∴CP=DG=2,CD=GP=6,∴BP===2,∴AG=AB﹣GP﹣BP=8+2﹣6﹣2=2=DG,∴背水坡AD的坡度DG:AG=1:1;(2)由题意知EF=MN=4,ME=CD=6,∠B=30°,则BF===4,HN===4,NF=ME=6,∴HB=HN+NF+BF=4+6+4=10+4,答:加高后坝底HB的宽度为(10+4)米.23.如图,已知正方形ABCD,点E在CB的延长线上,联结AE、DE,DE与边AB交于点F,FG∥BE且与AE交于点G.(1)求证:GF=BF.(2)在BC边上取点M,使得BM=BE,联结AM交DE于点O.求证:FO•ED=OD•EF.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据已知条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF=FB;(2)延长GF交AM于H,根据平行线分线段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代换得到,即,于是得到结论.【解答】证明:(1)∵四边形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴,∵AB∥CD,∴,∵AD=CD,∴GF=BF;(2)延长GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,∴,∴,∴FO•ED=OD•EF.24.在平面直角坐标系中,抛物线y=﹣x2+2bx+c与x轴交于点A、B(点A在点B的右侧),且与y轴正半轴交于点C,已知A(2,0)(1)当B(﹣4,0)时,求抛物线的解析式;(2)O为坐标原点,抛物线的顶点为P,当tan∠OAP=3时,求此抛物线的解析式;(3)O为坐标原点,以A为圆心OA长为半径画⊙A,以C为圆心, OC长为半径画圆⊙C,当⊙A与⊙C外切时,求此抛物线的解析式.【考点】圆的综合题.【分析】(1)利用待定系数法即可确定出函数解析式;(2)用tan∠OAP=3建立一个b,c的关系,再结合点A得出的等式即可求出b,c进而得出函数关系式;(3)用两圆外切,半径之和等于AC建立方程结合点A代入建立的方程即可得出抛物线解析式.【解答】解:(1)把点A(2,0)、B(﹣4,0)的坐标代入y=﹣x2+2bx+c得,,∴b=﹣1.c=8,∴抛物线的解析式为y=﹣x2﹣2x+8;(2)如图1,设抛物线的对称轴与x轴的交点为H,把点A(2,0)的坐标代入y=﹣x2+2bx+c 得,﹣4+4b+c=0①,∵抛物线的顶点为P,∴y=﹣x2+2bx+c=﹣(x﹣b)2+b2+c,∴P(b,b2+c),∴PH=b2+c,AH=2﹣b,在Rt△PHA中,tan∠OAP=,∴=3②,联立①②得,,∴(不符合题意,舍)或,∴抛物线的解析式为y=﹣x2﹣2x+8;(3)∵如图2,抛物线y=﹣x2+2bx+c与y轴正半轴交于点C,∴C(0,c)(c>0),∴OC=c,∵A(2,0),∴OA=2,∴AC=,∵⊙A与⊙C外切,∴AC=c+2=,∴c=0(舍)或c=,把点A(2,0)的坐标代入y=﹣x2+2bx+c得,﹣4+4b+c=0,∴b=,∴抛物线的解析式为y=﹣x2+x+.25.已知△ABC,AB=AC=5,BC=8,∠PDQ的顶点D在BC边上,DP交AB边于点E,DQ交AB 边于点O且交CA的延长线于点F(点F与点A不重合),设∠PDQ=∠B,BD=3.(1)求证:△BDE∽△CFD;(2)设BE=x,OA=y,求y关于x的函数关系式,并写出定义域;(3)当△AOF是等腰三角形时,求BE的长.【考点】相似形综合题.【分析】(1)根据两角对应相等两三角形相似即可证明.(2)过点D作DM∥AB交AC于M(如图1中).由△BDE∽△CFD,得=,推出FC=,由DM∥AB,得=,推出DM=,由DM∥AB,推出∠B=∠MDC,∠MDC=∠C,CM=DM=,FM=﹣,于DM∥AB,得=,代入化简即可.(3)分三种情形讨论①当AO=AF时,②当FO=FA时,③当OA=OF时,分别计算即可.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠EDC=∠B+∠BED,∴∠FDC+∠EDO=∠B+∠BED,∵∠EDO=∠B,∴∠BED=∠EDC,∵∠B=∠C,∴△BDE∽△CFD.(2)过点D作DM∥AB交AC于M(如图1中).∵△BDE∽△CFD,∴=,∵BC=8,BD=3,BE=x,∴=,∴FC=,∵DM∥AB,∴=,即=,∴DM=,∵DM∥AB,∴∠B=∠MDC,∴∠MDC=∠C,∴CM=DM=,FM=﹣,∵DM∥AB,∴=,即=,∴y=(0<x<3).(3)①当AO=AF时,由(2)可知AO=y=,AF=FC﹣AC=﹣5,∴=﹣5,解得x=.∴BE=②当FO=FA时,易知DO=AM=,作DH⊥AB于H(如图2中),BH=BD•cos∠B=3×=,DH=BD•sin∠B=3×=,∴HO==,∴OA=AB﹣BH﹣HO=,由(2)可知y=,即=,解得x=,∴BE=.③当OA=OF时,设DP与CA的延长线交于点N(如图3中).∴∠OAF=∠OFA,∠B=∠C=∠ANE,由△ABC≌△CDN,可得CN=BC=8,ND=5,由△BDE≌△NAE,可得NE=BE=x,ED=5﹣x,作EG⊥BC于G,则BG=x,EG=x,∴GD=,∴BG+GD=x+=3,∴x=>3(舍弃),综上所述,当△OAF是等腰三角形时,BE=或.。

上海市2020年中考数学模拟试卷(含答案解析)

上海市2020年中考数学模拟试卷(含答案解析)

2020年上海市中考数学模拟试卷含答案一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上] 1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x2【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、当 a=0 时,y=bx+c 不是二次函数;B、y=x(x﹣1)=x2﹣x 是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1 为一次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.在Rt△ABC中,∠C=90°,AC=2,下列结论中,正确的是()A.AB=2sinA B.AB=2cosA C.BC=2tanA D.BC=2cotA 【分析】直接利用锐角三角函数关系分别计算得出答案.【解答】解:∵∠C=90°,AC=2,∴cosA==,故AB=,故选项 A,B 错误;A . tanA= = ,则 BC=2tanA ,故选项 C 正确;则选项 D 错误.故选:C .【点评】此题主要考查了锐角三角函数关系,正确将记忆锐角三角函数关系是解题关键.3. 如图,在△ABC中,点D 、E 分别在边AB 、AC 的反向延长线上,下面比例式中,不能判断ED∥BC的是()B .C .D .【分析】根据平行线分线段成比例定理,对各选项进行逐一判断即可.【解答】解:A .当时,能判断ED∥BC; B. 当时,能判断ED∥BC; C. 当时,不能判断ED∥BC; D. 当时,能判断ED∥BC;故选:C .【点评】本题考查的是平行线分线段成比例定理,如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.已知,下列说法中,不正确的是()A.B.与方向相同C.D.【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、错误.应该是﹣5=;B、正确.因为,所以与的方向相同;C、正确.因为,所以∥;D、正确.因为,所以||=5||;故选:A.【点评】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.5.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是()A.B.C.D.【分析】根据相似三角形的性质进行解答即可.【解答】解:∵在平行四边形 ABCD 中,∴AE∥CD,∴△EAF∽△CDF,∵,∴,∴,∵AF∥BC,∴△EAF∽△EBC,∴=,故选:D.【点评】此题考查相似三角形的判定和性质,综合运用了平行四边形的性质和相似三角形的性质是解题关键.6.如图,已知AB和CD是⊙O的两条等弦.OM ⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.4【分析】如图连接 OB、OD,只要证明Rt△OMB≌Rt△OND,Rt△OPM≌Rt△OPN 即可解决问题.【解答】解:如图连接 OB、OD;∵AB=CD,∴=,故①正确∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正确,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正确,∵AM=CN,∴PA=PC,故③正确,故选:D.【点评】本题考查垂径定理、圆心角、弧、弦的关系、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型.二.填空题(本大题共 12 题,每题 4 分,满分 48 分)7.如果 =,那么= .【分析】利用比例的性质由=得到=,则可设a=2t,b=3t,然后把a=2t,b=3t代入中进行分式的运算即可.【解答】解:∵=,∴=,设 a=2t,b=3t,∴==.故答案为.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.8.已知线段a=4厘米,b=9厘米,线段c是线段a和线段b的比例中项,线段c的长度等于6 厘米.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),∴c=6cm,故答案为:6.【点评】本题考查比例线段、比例中项等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.9.化简:=﹣4+7 .【分析】根据屏幕绚丽的加法法则计算即可【解答】解::=﹣4+6=﹣4+7,故答案为;【点评】本题考查平面向量的加减法则,解题的关键是熟练掌握平面向量的加减法则,注意平面向量的加减适合加法交换律以及结合律,适合去括号法则.10.在直角坐标系平面内,抛物线y=3x2+2x在对称轴的左侧部分是下降的(填“上升”或“下降”)【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案.【解答】解:∵在 y=3x2+2x 中,a=3>0,∴抛物线开口向上,∴在对称轴左侧部分 y 随 x 的增大而减小,即图象是下降的,故答案为:下降.【点评】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键.11.二次函数y=(x﹣1)2﹣3的图象与y轴的交点坐标是(0,﹣2).【分析】求自变量为0时的函数值即可得到二次函数的图象与y轴的交点坐标.【解答】解:把x=0代入y=(x﹣1)2﹣3得y=1﹣3=﹣2,所以该二次函数的图象与y轴的交点坐标为(0,﹣2),故答案为(0,﹣2).【点评】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为0.12.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是y=2(x+3)2+1 .【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【解答】解:抛物线 y=2x2 平移,使顶点移到点 P(﹣3,1)的位置,所得新抛物线的表达式为 y=2(x+3)2+1.故答案为:y=2(x+3)2+1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.在直角坐标平面内有一点A(3,4),点A与原点O的连线与x轴的正半轴夹角为α,那么角α的余弦值是.【分析】利用锐角三角函数的定义、坐标与图形性质以及勾股定理的知识求解.【解答】解:∵在直角坐标平面内有一点A(3,4),∴OA==5,∴cosα=.故答案为:.【点评】本题考查了解直角三角形、锐角三角函数的定义、坐标与图形性质以及勾股定理的知识,此题比较简单,易于掌握.14.如图,在△ABC中,AB=AC,点D、E分别在边BC、AB上,且∠ADE=∠B,如果DE:AD=2:5,BD=3,那么AC= ,.【分析】根据∠ADE=∠B,∠EAD=∠DAB,得出△AED∽△ABD,利用相似三角形的性质解答即可.【解答】解:∵∠ADE=∠B,∵∠EAD=∠DAB,∴△AED∽△ABD,∴,即,∴AB=,∵AB=AC,∴AC=,故答案为:,【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.15.如图,某水库大坝的横断面是梯形ABCD,坝顶宽AD=6米,坝高是20 米,背水坡 AB的坡角为30°,迎水坡CD的坡度为1:2,那么坝底 BC 的长度等于(46+20)米(结果保留根号)【分析】过梯形上底的两个顶点向下底引垂线AE、DF,得到两个直角三角形和一个矩形,分别解Rt△ABE、Rt△DCF求得线段BE、CF的长,然后与EF 相加即可求得 BC 的长.【解答】解:如图,作AE⊥BC,DF⊥BC,垂足分别为点E,F,则四边形ADFE 是矩形.由题意得,EF=AD=6 米,AE=DF=20 米,∠B=30°,斜坡 CD 的坡度为 1: 2,在Rt△ABE 中,∵∠B=30°,∴BE=AE=20米.在Rt△CFD中,∵=,∴CF=2DF=40 米,∴BC=BE+EF+FC=20+6+40=46+20(米).所以坝底BC的长度等于(46+20)米.故答案为(46+20).【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义.16.已知Rt△ABC中,∠C=90°,AC=3,BC=,CD⊥AB,垂足为点D,以点D为圆心作⊙D,使得点A在⊙D外,且点B在⊙D内.设⊙D的半径为r,那么r的取值范围是.【分析】先根据勾股定理求出AB的长,进而得出CD的长,由点与圆的位置关系即可得出结论.【解答】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,∴AB==4.∵CD⊥AB,∴CD=.∵AD•BD=CD2,设AD=x,BD=4﹣x.解得x=∴点 A 在圆外,点 B 在圆内,r的范围是,故答案为:.【点评】本题考查的是点与圆的位置关系,熟知点与圆的三种位置关系是解答此题的关键.17.如图,点D在△ABC的边BC上,已知点E、点F分别为△ABD和△ADC 的重心,如果BC=12,那么两个三角形重心之间的距离EF的长等于4 .【分析】连接AE并延长交BD于 G,连接AF并延长交CD于 H,根据三角形的重心的概念、相似三角形的性质解答.【解答】解:如图,连接 AE 并延长交 BD 于 G,连接 AF 并延长交 CD 于 H,∵点 E、F 分别是△ABD 和△ACD 的重心,∴DG=BD,DH=CD,AE=2GE,AF=2HF,∵BC=12,∴GH=DG+DH= (BD+CD)= BC= ×12=6,∵AE=2GE,AF=2HF,∠EAF=∠GAH,∴△EAF∽△GAH,∴==,∴EF=4,故答案为:4.【点评】本题考查了三角形重心的概念和性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.18.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC 上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE= .【分析】设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF ∽△BCA,可得=,即=,进而得到BE=.【解答】解:如图,由折叠可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折叠可得,AF=A'F,设 BE=x,则 AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴=,即=,解得x=,∴BE=,故答案为:.【点评】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.三、解答题(本大题共 7 题,满分 78 分)19.(10分)计算:45°.【分析】直接利用特殊角的三角函数值进而代入化简得出答案.【解答】解:原式=﹣×= ﹣= .【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 20.(10分)已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.【分析】设一般式y=ax2+bx+c,把A、B、D点的坐标代入得,然后解法组即可得到抛物线的解析式,再把 C(m,2m+3)代入解析式得到关于 m 的方程,解关于 m 的方程可确定 C 点坐标.【解答】解:设抛物线的解析式为 y=ax2+bx+c,把A(0,﹣3),B(1,0),D(﹣1,﹣2)代入得,解得,∴抛物线的解析式为 y=2x2+x﹣3,把C(m,2m+3)代入得2m2+m﹣3=2m+3,解得m1=﹣,m2=2,∴C点坐标为(﹣,0)或(2,7).【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与 x 轴有两个交点时,可选择设其解析式为交点式来求解.21.(10分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.【分析】如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题;【解答】解:如图,连接 OA.交 BC 于 H.∵点A为的中点,∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵sinC==,AC=9,∴AH=3,设⊙O 的半径为 r,在Rt△BOH 中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半径为.【点评】本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.22.(10分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使a:b=c:x他的作法如下:(1)、以点O为端点画射线OM,ON.(2)、在OM上依次截取OA=a,AB=b.(3)、在ON上截取OC=c.(4)、联结AC,过点B作BD∥AC,交ON于点D.所以:线段CD 就是所求的线段x.①试将结论补完整②这位同学作图的依据是平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例③如果OA=4,AB=5,,试用向量表示向量.【分析】①根据作图依据平行线分线段成比例定理求解可得;②根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;③先证△OAC∽△OBD得= ,即BD= AC,从而知= =﹣=﹣.【解答】解:①根据作图知,线段 CD 就是所求的线段 x,故答案为:CD;②这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;③∵OA=4、AB=5,且BD∥AC,∴△OAC∽△OBD,∴=,即=,∴BD=AC,∴= =﹣=﹣.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握平行线分线段成比例定理及向量的计算.23.(12分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【解答】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴= ,∴AB•BC=BD•BE.【点评】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.24.(12分)如图,已知在平面直角坐标系中,已知抛物线y=ax2+2ax+c(其中a、c为常数,且a<0)与x轴交于点A,它的坐标是(﹣3,0),与y轴交于点B,此抛物线顶点C到x轴的距离为4(1)求抛物线的表达式;(2)求∠CAB的正切值;(3)如果点P是抛物线上的一点,且∠ABP=∠CAO,试直接写出点P的坐标.【分析】(1)先求得抛物线的对称轴方程,然后再求得点 C 的坐标,设抛物线的解析式为y=a(x+1)2+4,将点(﹣3,0)代入求得a的值即可;(2)先求得A、B、C的坐标,然后依据两点间的距离公式可得到BC、AB、AC的长,然后依据勾股定理的逆定理可证明∠ABC=90°,最后,依据锐角三角函数的定义求解即可;(3)记抛物线与x轴的另一个交点为D.先求得D(1,0),然后再证明∠DBO=∠CAB,从而可证明∠CAO=ABD,故此当点P与点D重合时,∠ABP=∠CAO;当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.先证明∠EPB=∠CAB,则tan∠EPB=,设BE=t,则PE=3t,P(﹣3t,3+t),将P(﹣3t,3+t)代入抛物线的解析式可求得t的值,从而可得到点P的坐标.【解答】解:(1)抛物线的对称轴为x=﹣=﹣1.∵a<0,∴抛物线开口向下.又∵抛物线与 x 轴有交点,∴C 在 x 轴的上方,∴抛物线的顶点坐标为(﹣1,4).设抛物线的解析式为 y=a(x+1)2+4,将点(﹣3,0)代入得:4a+4=0,解得:a=﹣1,∴抛物线的解析式为 y=﹣x2﹣2x+3.(2)将x=0代入抛物线的解析式得:y=3,∴B(0,3).∵C(﹣1,4)、B(0,3)、A(﹣3,0),∴BC=,AB=3,AC=2,∴BC2+AB2=AC2,∴∠ABC=90°.∴tan∠CAB==.(3)如图1所示:记抛物线与x轴的另一个交点为D.∵点 D 与点 A 关于 x=﹣1 对称,∴D(1,0).∴tan∠DBO=.又∵由(2)可知:tan∠CAB=.∴∠DBO=∠CAB.又∵OB=OA=3,∴∠BAO=∠ABO.∴∠CAO=∠ABD.∴当点 P 与点 D 重合时,∠ABP=∠CAO,∴P(1,0).如图2所示:当点P在AB的上时.过点P作PE∥AO,过点B作BF∥AO,则PE∥BF.∵BF∥AO,∴∠BAO=∠FBA.又∵∠CAO=∠ABP,∴∠PBF=∠ CAB.又∵PE∥BF,∴∠EPB=∠PBF,∴∠EPB=∠CAB.∴tan∠EPB=.设BE=t,则PE=3t,P(﹣3t,3+t).将P(﹣3t,3+t)代入抛物线的解析式得:y=﹣x2﹣2x+3得:﹣9t2+6t+3=3+t,解得t=0(舍去)或t=.∴P(﹣,).综上所述,点P的坐标为P(1,0)或P(﹣,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、勾股定理的逆定理、等腰直角三角形的性质、锐角三角函数的定义,用含 t 的式子表示点 P 的坐标是解题的关键.25.(14分)如图1,∠BAC的余切值为2,AB=2,点D是线段AB上的一动点(点D不与点A、B重合),以点D为顶点的正方形DEFG的另两个顶点E、F都在射线AC上,且点F在点E的右侧,联结BG,并延长BG,交射线EC于点P.(1)点D在运动时,下列的线段和角中,④⑤是始终保持不变的量(填序号);①AF;②FP;③BP;④∠BDG;⑤∠GAC;⑥∠BPA;(2)设正方形的边长为x,线段AP的长为y,求y与x之间的函数关系式,并写出定义域;(3)如果△PFG与△AFG相似,但面积不相等,求此时正方形的边长.【分析】(1)作BM⊥AC于M,交DG于N,如图,利用三角函数的定义得到=2,设BM=t,则AM=2t,利用勾股定理得(2t)2+t2=(2)2,解得t=2,即BM=2,AM=4,设正方形的边长为x,则AE=2x,AF=3x,由于tan∠GAF==,则可判断∠GAF为定值;再利用DG∥AP得到∠BDG=∠BAC,则可判断∠BDG为定值;在Rt△BMP中,利用勾股定理和三角函数可判断PB在变化,∠BPM在变化,PF在变化;(2)易得四边形DEMN为矩形,则NM=DE=x,证明△BDG∽△BAP,利用相似比可得到y与x的关系式;(3)由于∠AFG=∠PFG=90°,△PFG与△AFG相似,且面积不相等,利用相似比得到PF=x,讨论:当点P在点F点右侧时,则AP=x,所以=x,当点P在点F点左侧时,则AP= x,所以=x,然后分别解方程即可得到正方形的边长.【解答】解:(1)作BM⊥AC于M,交DG于N,如图,在Rt△ABM中,∵cot∠BAC==2,设 BM=t,则 AM=2t,∵AM2+BM2=AB2,∴(2t)2+t2=(2)2,解得t=2,∴BM=2,AM=4,设正方形的边长为 x,在Rt△ADE中,∵cot∠DAE==2,∴AE=2x,∴AF=3x,在Rt△GAF中,tan∠GAF===,∴∠GAF 为定值;∵DG∥AP,∴∠BDG=∠BAC,∴∠BDG 为定值;在Rt△BMP中,PB=,而PM在变化,∴PB 在变化,∠BPM 在变化,∴PF 在变化,所以∠BDG 和∠GAC 是始终保持不变的量;故答案为④⑤;(2)易得四边形DEMN为矩形,则NM=DE=x,∵DG∥AP,∴△BDG∽△BAP,∴=,即=,∴y=(1≤x<2)(3)∵∠AFG=∠PFG=90°,△PFG与△AFG相似,且面积不相等,∴=,即=,∴PF=x,当点P在点F点右侧时,AP=x,∴=x,解得x=,当点P在点F点左侧时,AP=AF﹣PF=3x﹣x=x,∴=x,解得x=,综上所述,正方形的边长为或.【点评】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.。

2020年最新上海市中考数学模拟试题(含答案)

2020年最新上海市中考数学模拟试题(含答案)

2020年最新上海市中考数学模拟试题含答案(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.5的相反数是(▲) (A) 2;(B)﹣5; (C)5; (D)51. 2.方程01232=+-x x 实数根的个数是(▲)(A)0; (B)1; (C)2; (D)3.3.下列函数中,满足y 的值随x 的值增大而增大的是(▲) (A)x y 2-=; (B)3-=x y ; (C)xy 1=; (D)2x y =. 4.某老师在试卷分析中说:参加这次考试的41位同学中,考121分的人数最多,虽然最高的同学获得了满分150分,但是十分遗憾最低的同学仍然只得了56分,其中分数居第21位的同学获得116分。

这说明本次考试分数的中位数是(▲) (A)21; (B)103; (C)116; (D)121. 5.下列命题为真命题的是(▲)(A)有两边及一角对应相等的两三角形全等;(B) 两个相似三角形的面积比等于其相似比; (C) 同旁内角相等; (D)两组对边分别相等的四边形是平行四边形.6.如图1,△ABC 中,点D 、F 在边AB 上,点E 在边AC 上, 如果DE ∥BC ,EF ∥CD ,那么一定有(▲)(A) AE AD DE ⋅=2; (B)AB AF AD ⋅=2; (C)AD AF AE ⋅=2; (D)AC AE AD ⋅=2.二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7.计算:=÷-3165 ▲ . 8.计算:2)2(b a -= ▲ . 9.计算:321x x ⋅= ▲ . 10.方程0=+x x 的解是 ▲ .11.如果正比例函数x k y )1(-=的图像经过原点和第一、第三象限,那么k ▲ . 12.二次函数x x y 22-=图像的对称轴是直线 ▲ .13. 一枚(形状为正方体的)骰子可以掷出1、2、3、4、5、6这六个数中的任意一个,用这个骰子随机掷出的一个数替代二次根式3-x 中的字母x ,使该二次根式有意义的概率是 ▲ .14.为了解某中学九年级学生的上学方式,从该校九年级全体300名学生中,随机抽查了60名学生,结果显示有5名学生“骑共享单车上学”.由此,估计该校九年级全体学生中约有___▲ 名学生“骑共享单车上学”.15.已知在△ABC 中,点M 、N 分别是边AB 、AC 的中点,如果a AB =,b AC =,那么向量MN = ▲ (结果用a 、b 表示).16.如图2,在□ABCD 中,,5,3==BC AB 以点B 为圆心,以任意长为半径作弧,分别交BC BA 、于 点Q P 、,再分别以Q P 、为圆心,以大于PQ 21ABCDE F 图1图2的长为半径作弧,两弧在ABC ∠内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为_________.17.已知一条长度为10米的斜坡两端的垂直高度差为6米,那么该斜坡的坡角度数约为 ▲ (备用数据:tan31cot590.6,sin37cos530.6︒=︒≈︒=︒≈). 18.如图3,E 、F 分别为正方形ABCD 的边AB 、AD 上的点,且 AE=AF ,联接EF ,将△AEF 绕点A 逆时针旋转45°,使E 落在E 1,F 落在F 1,联接BE 1并延长交DF 1于点G ,如果 AB=22,AE=1,则DG= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)化简,再求值:22482++-x x ,其中5=x .20.(本题满分10分)解方程组:21.(本题满分10分)如图4,在△ABC 中,∠B =45°,点D 为△ABC 的边AC 上一点,且AD :CD=1:2.过D作DE ⊥AB 于E ,C 作CF ⊥AB 于F ,联接BD ,如果AB =7,BC=24、求线段CF 和BE 的长度.F BCADE图3CA BFDE22.(本题满分10分,每小题满分各5分)如图5,由正比例函数x y -=沿y 轴的正方向平移4个单位而成的一次函数b x y +-= 的图像与反比例函数xky =(0≠k )在第一象限的图像交于A (1,n )和B 两点. (1)求一次函数b x y +-=和反比例函数的解析式;(2)求△AB O 的面积.23.(本题满分12分,每小题满分各6分)如图6,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF , (1)求证:CF =2AF ; (2)求tan ∠CFD 的值.24. (本题满分12分,每小题满分各4分) 如图7,已知直线221-=x y 与x 轴交于点B ,与y 轴交于点C ,抛物线2212-+=bx x y 与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C. (1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△AB M 和△ABC 相似,求点M 的坐标;F DACEB图4图6图5(3)连接AC ,求顶点D 、E 、F 、G 在△ABC 各边上的矩形DEFC 面积最大时,写出该矩形在AB 边上的顶点的坐标.25. (本题满分14分,每小题满分分别为5分、5分、4分)如图8,在△ABC 中,∠ACB 为直角,AB=10,30=∠A °,半径为1的动圆Q 的圆心从点C 出发,沿着CB 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5)以P 为圆心,PB 长为半径的⊙P 与AB 、BC 的另一个交点分别为E 、D ,连结ED 、EQ . (1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值; (2)当⊙P 和AC 相交时,设CQ 为x ,⊙P 被AC 截得的弦长为y ,求y 关于x 的函数; 并求当⊙Q 过点B 时⊙P 被AC 截得的弦长; (3)若⊙P 与⊙Q 相交,写出t 的取值范围.图8图7ED B CAQ P答 案一、选择题:(本大题共6题,每题4分,满分24分) 1、B ; 2、A ; 3、B ; 4、C ; 5、D ; 6、B ; 二、填空题:(本大题共12题,每题4分,满分48分)7、25-; 8、2244b ab a +-; 9、2x ; 10、0=x ; 11、1>k ; 12、1=x ; 13、32; 14、25; 15、a b 2121-; 16、2; 17、37; 18、554.三、解答题:(本大题共7题,满分78分) 19.解: 原式=4)2(24822--+-x x x …………………………3分 =4422-+x x ……………………………………………3分 =22-x……………………………………………2分 当5=x 时,原式=452252+=-…………2分说明:分式的通分、加法、约分、二次根式分母有理化等每一步各2---3分,代入(或约分或分母有利化方法不限)得出答案可以分别为1分. 20.解:0)4)(4(16222=--+-=-+-y x y x y xy x)3)(3(922y x y x y x -+=-=0, ………………………2分则原方程可化为:……………………4分解这些方程组得:……………………4分说明:知道通过因式分解降次2-分,上下两两组合和解得答案各4-分,每一个答案可以分别为1分. 21.解:∵CF ⊥AB ,∠B =45°,BC= 24,∴在RT △BCF 中 ,CF=42224sin =⋅=⋅B BC ,……………2分∴ BF=BC B cos ⋅=42224=⋅………………………2分 ∵AB=7,∴AF = AB 3=-BF ………………………1分 ∵DE ⊥ AB ,∴DE ∥CF , ………………………1分 ∴AE :EF=AD :CD=1:2, ………………………2分 ∴EF=2, ∴BE=6 ………………………2分22.解:(1)题意易得一次函数b x y +-=的解析式为:4+-=x y ,………1分∵点),1(n A 在直线4+-=x y 上,∴3=n ,∴点)3,1(A …………1分将)3,1(A 代入反比例函数xky =, ……………………1分 得3=k ,反比例函数的解析式为:xy 3=. ………………………2分(2) 由题意易得方程组解得: )3,1(A 、)1,3(B ……………………2分∴设一次函数4+-=x y 和y 轴的交点为N ,与x 轴交于点M ,. 易知:M (4,0),点N (0,4), NA :AB :BM=1:2:1 ……………2分 ∴S 4442142=⋅⋅⋅==∆∆NOM ABO S …………………………1分 23.解:(1) ∵ABCD 为矩形, ∴AD ∥BC ,AD =BC , ∠D=90°, ………………2分 ∴△AEF ∽△CBF , ……………………………1分∵E 是AD 边的中点, ∴AF :CF=AE :BC=1:2……………………………2分 ∴CF =2AF ; ……………………………1分 (2) 过D 作DH ⊥AC 于H ,∵BE ⊥A C ,∴DH ∥BE ……………………………2分 ∴AF :FH=AE :ED=1:1 ∴AF=FH=HC设AF=a ,则AH=2a CH=a …………………………………1分 ∵∠DAH=∠CDH=90°-∠ADH易知:Rt △ADH ∽Rt △DCH ,∴ BF=a 2 ……………………………2分 ∴tan ∠CFD=t 2 …………………………………1分 24.解:(1) 由题意:直线221-=x y 与x 轴交于点B (4,0),……………………1分 与y 轴交于点C 点C (0,-2), …………………………1分将点B (4,0)代入抛物线2212-+=bx x y 易得23-=b ……………………1分∴所求抛物线解析式为:223212--=x x y …………………………1分(2) ∵222AB BC AC =+, ∴△ABC 为直角三角形,∠BCA=90°…………1分∵点M 是上述抛物线上一点∴不可能有MB 与AB 或者MA 与AB 垂直…1分 当△ABM 和△ABC 相似时,一定有∠AMB=90° △BAM ≌△ABC ……1分 此时点M 的坐标为:M (3,-2) (3)∵△ABC 为直角三角形, ∠BCA=90°当矩形DEFG 只有顶点D 在AB 上时,显然点F 与点 C 重合时面积最大,如图1, 设CG =x ,∵DG ∥BC ,∴△AGD ∽△ACB. ∴AG :AC =DG ∶BC ,即5255DG x =-∴DG =2(5-x)∴S 矩形DEFG =-2(x -52)2+52 即x =25时矩形DEFG 的面积有最大值25, 当矩形DEFG 有两个顶点D 、E 在AB 上时,如图2,CO 交GF 于点H ,设DG =x ,则OH =x ,CH =2-x ,∵GF ∥AB ,∴△CGF ∽△CAB , ∴GF ∶AB =CH ∶CO ,即GF ∶5=(2-x)∶2,解得GF =52(2-x).∴S 矩形DEFG =x·52(2-x)=-52(x -1)2+52,即当x =1时矩形DEFG 的面积同样有最大值25,综上所述,无论矩形DEFG 有两个顶点或只有一个顶点在AB 上,其最大面积相同…2分 当矩形一个顶点在AB 上时, GD =2(5-x)=5,AG =52, ∴AD =52, OD =AD -OA =32, ∴D(32,0). ………………………1分当矩形DEFG 有两个顶点D 、E 在AB 上时,∵DG =1, ∴DE =25, ∵DG ∥OC ,∴△ADG ∽△AOC ,∴AD ∶AO =DG ∶OC ,解得AD =12,∴OD =12, OE =52-12=2, ∴D(-12,0),E(2,0).………………………1分综上所述,满足题意的矩形在AB 边上的顶点的坐标为D(32,0)或D(-12,0)、E(2,0) .25. 解:(1)连接PD ,∵B 、E 、D 都在⊙P 上∴PB=PD ,∠PBD=∠PDB , PD=PE ,∠PDE=∠PED …………………1分 ∵△BDE 的内角和为180° ∴∠BDE=∠BDP+∠PDE=90°, ∴即:DE ⊥BC …………1分 ∵∠BCA=90°,30=∠A °∴DE ∥CA ,∴△BDE ∽△BCA , …………1分∴21==BA BC BE BD 设CQ=CD=t ,BD=5-t ,BE=2t …………1分代入有2125=-t t 解得:25=t …………1分∴当25=t 时Q 与D 重合,(2)设⊙P 和AC 相交于 M 、N ,BP=CQ=x ,AP=AB-BP=10-x 过点P 作PH ⊥AC 于点 H …1分在Rt △APH 中,易知:AP PH 21=PH=)10(21x - …………1分在Rt △PHN 中,易知:HN=22PH PN -=100203212-+x x …………1分 10020322-+==x x MH MN …………1分MH NB C APQED B CAQ PEBCAPQ当⊙Q 经过B 点时,(如图) CQ=CB ﹣QB=4, 将414==t 代入得:72=MN …………1分 (3)当Q ⊙P 与⊙Q 外切时,如图,易知此时∠QBP=60°,BQ=5-t ,PQ=t+1,BP=t49717-=t , …………2分∵从此时起直至停止运动,⊙P 与⊙Q 都处于相交位置∴⊙P 与⊙Q 相交时t 的取值范围为: 549717≤-t …………2分。

【2020年】上海市中考数学模拟试题(含答案)

【2020年】上海市中考数学模拟试题(含答案)

2020年上海市中考数学模拟试题含答案(满分150分,100分钟完成)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂] 1. 212-等于(A )2; (B )2-; (C )22; (D )22-. 2.下列二次根式里,被开方数中各因式的指数都为1的是(A )22y x ; (B )22y x +; (C )2)(y x +; (D )2xy . 3.关于x 的一元二次方程012=--mx x 的根的情况是(A )有两个不相等的实数根; (B )有两个相等的实数根; (C )没有实数根; (D )不能确定.4.一次数学作业共有10道题目,某小组8位学生做对题目数的情况如下表:那么这8位学生做对题目数的众数和中位数分别是(A )9和8; (B )9和8.5 ; (C )3和2; (D )3和1. 5.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为(A )正五边形; (B )正六边形; (C )等腰梯形; (D )平行四边形.做对题目数 6 7 8 9 10 人数112316.已知四边形ABCD 中,对角线AC 与BD 相交于点O ,AD //BC ,下列判断中错误..的是 (A )如果AB =CD ,AC =BD ,那么四边形ABCD 是矩形; (B )如果AB //CD ,AC =BD ,那么四边形ABCD 是矩形; (C )如果AD =BC ,AC ⊥BD ,那么四边形ABCD 是菱形; (D )如果OA =OC ,AC ⊥BD ,那么四边形ABCD 是菱形. 二、填空题:(本大题共12题,每题4分,满分48分) [在答题纸相应题号后的空格内直接填写答案] 7.计算:=--0122 ▲ .8.在实数范围内分解因式:=-622x ▲ .9.不等式组⎩⎨⎧->->-5,032x x 的解集是 ▲ .10.函数32--=x x y 的定义域是 ▲ . 11.如果函数xm y 13-=的图像在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大,那么m 的取值范围是 ▲ . 12.如果实数x 满足02)1()1(2=-+-+x x x x ,那么xx 1+的值是 ▲ . 13.为了解全区5000名初中毕业生的体重情况,随机抽 测了400名学生的体重,频率分布如图所示(每小 组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克 的学生人数约为 ▲ 人.14.布袋里有三个红球和两个白球,它们除了颜色外其他都相同, 从布袋里摸出两个球,摸到两个红球的概率是 ▲ . 15.如图,在△ABC 中,点D 是边AC 的中点,如果b BC a AB ==,, 那么= ▲ (用向量表示). 16.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上, △AEF 是等边三角形,如果AB =1,那么CE 的长是 ▲ . ABCD F(第16题图)(第15题图)AD(第13题图)组距频率 体重(千克)40 45 50 55 60 65 7017. 在Rt △ABC 中,∠C =90°,∠B =70°,点D 在边AB 上, △ABC 绕点D 旋转后点B 与点C 重合,点C 落在点C ’, 那么∠ACC ’的度数是 ▲ .18.如图,⊙A 和⊙B 的半径分别为5和1,AB =3,点O 在直线 AB 上,⊙O 与⊙A 、⊙B 都内切,那么⊙O 半径是 ▲ .三、解答题:(本大题共7题,满分78分)[将下列各题的解答过程,做在答题纸的相应位置上]19.(本题满分10分) 化简:(632-++x x x -42-x x )21+÷x ,并求321-=x 时的值. 20.(本题满分10分)解方程:.1521=-++x x 21.(本题满分10分,每小题满分5分)已知:如图,在Rt △ABC 和Rt △BCD 中,∠ABC =∠BCD =90°,BD 与AC 相交于点E ,AB =9,53cos =∠BAC ,125tan =∠DBC .求:(1)边CD 的长; (2)△BCE 的面积.22.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)有两种包装盒,大盒比小盒可多装20克某一物品.已知120克这一物品单独装满小盒比单独装满大盒多1盒.(1)问小盒每个可装这一物品多少克?(2)现有装满这一物品两种盒子共50个.设小盒有n 个,所有盒子所装物品的总量为w 克.①求w 关于n 的函数解析式,并写出定义域;②如果小盒所装物品总量与大盒所装物品总量相同,求所有盒子所装物品的总量.23.(本题满分12分,第小题满分6分)已知:如图,在菱形ABCD 中,点E 在边BC 上,点F 在BA 的延长线上,BE =AF ,C F //AE ,EC(第21题图)CF 与边AD 相交于点G .求证:(1)FD =CG ; (2)FC FG CG ⋅=2.24.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知二次函数c bx x y ++-=221的图像与x 轴的正半轴相交于点A (2,0)和点B 、 与y 轴相交于点C ,它的顶点为M 、对称轴与x 轴相交于点N . (1) 用b 的代数式表示顶点M 的坐标; (2) 当tan∠MAN =2时,求此二次函数的解析式 及∠ACB 的正切值.25.(本题满分14分,第(1)小题满分6分,第(2)小题满分8分)如图,已知⊙O 的半径OA 的长为2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C ,AC 的延长线与⊙O 相交于点D .设线段AB 的长为x , 线段OC 的长为y .(1)求y 关于x 的函数解析式,并写出定义域; (2)当四边形ABDO 是梯形时,求线段OC 的长.(第25题图)ABDOC(第24题图)AOx2y2数学试卷参考答案及评分标准 一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.B ; 3.A ; 4.B ; 5.D ; 6.A .二.填空题:(本大题共12题,满分48分)7.21-; 8.)3)(3(2+-x x ; 9.523<<x ;10.3≠x ; 11.31<m ; 12.2;13.1500; 14.103; 15.a b 2121-;16.13-; 17.50°; 18.23或29.三、(本大题共7题, 第19~22题每题10分, 第23、24题每题12分, 第25题14分, 满分78分) 19.解:原式=21])2)(2()2)(3(3[+÷-+--++x x x x x x x ……………………………………(3分) =)2(])2)(2()2)(2(2[+⋅-+--++x x x xx x x ……………………………………(2分) =22-x .…………………………………………………………………………(2分) 当32321+=-=x 时,…………………………………………………………(1分) 原式=32=332.……………………………………………………………………(2分)20.解:1152+-=-x x ,………………………………………………………………(1分)112152+++-=-x x x ,…………………………………………………………(2分)x x -=+712.………………………………………………………………………(1分)2144944x x x +-=+,………………………………………………………………(2分)045182=+-x x ,……………………………………………………………………(1分)15,321==x x ,………………………………………………………………………(1分)经检验:15,321==x x 都是增根,………(1分)所以原方程无解.…………(1分)21.解:(1)在Rt △ABC 中,53cos ==∠AC AB BAC .………………………………………(1分)∴1535==AB AC ,………………………………………………………………(1分)∴BC =129152222=-=-AB AC .…………………………………………(1分)在Rt △BCD 中,125tan ==∠BC CD DBC ,………………………………………(1分)∴CD =5.…………………………………………………………………………(1分)(2)过点E 作EH ⊥BC ,垂足为H ,…………………………………………………(1分)∵∠ABC =∠BCD =90°,∴∠ABC +∠BCD =180°,∴CD //AB . ∴95==AB DC AE CE .………………………………………………………………(1分)∵∠EHC =∠ABC =90°,∴EH//AB ,∴145==CA CE AB EH .…………………(1分) ∴14459145145=⨯==AB EH .…………………………………………………(1分)∴71351445122121=⨯⨯=⋅=∆EH BC S EBC .……………………………………(1分)22.解:(1)设小盒每个可装这一物品x 克,…………………………………………………(1分)∴120120120=+-x x ,…………………………………………………………………(2分)02400202=-+x x ,……………………………………………………………(1分)60,4021-==x x ,………………………………………………………………(1分)它们都是原方程的解,但60-=x 不合题意.∴小盒每个可装这一物品40克.(1分)(2)①n n n w 203000)50(6040-=-+=,(n n ,500<<为整数)…………(2分)②)50(6040n n -=,30=n ,2400=w .…………………………………(2分)∴所有盒子所装物品的总量为2400克.23.证明:(1)∵在菱形ABCD 中,AD //BC ,∴∠FAD =∠B ,……………………………(1分)又∵AF=BE ,AD =BA ,∴△ADF ≌△BAE .……………………………………(2分)∴FD =EA ,…………………………………………………………………………(1分)∵CF //AE ,AG //CE ,∴EA =CG .…………………………………………………(1分) ∴FD=CG .…………………………………………………………………………(1分)(2)∵在菱形ABCD 中,CD //AB ,∴∠DCF =∠BFC .……………………………(1分) ∵CF //AE ,∴∠BAE =∠BFC ,∴∠DCF =∠BAE .……………………………(1分)∵△ADF ≌△BAE ,∴∠BAE =∠FDA ,∴∠DCF =∠FDA .…………………(1分) 又∵∠DFG =∠CFD ,∴△FDG ∽△FCD .……………………………………(1分) ∴FDFGFC FD =,FC FG FD ⋅=2.…………………………………………………(1分)∵FD=CG ,FC FG CG ⋅=2.……………………………………………………(1分)24.解:(1)∵二次函数c bx x y ++-=221的图像经过点A (2,0),∴c b ++⨯-=24210,………………………………………………………………(1分)∴b c 22-=,…………………………………………………………………………(1分)∴244)(212221212222+-+--=-++-=++-=b b b x b bx x c bx x y ,………(2分)∴顶点M 的坐标为(b ,2442+-b b ).……………………………………………(1分)(2)∵tan∠MAN ==ANMN2,∴MN =2AN .………………………………………………(1分)∵M (b ,2442+-b b ),∴ N (b ,0),22)2(21244-=+-=b b b MN .……(1分)①当点B 在点N 左侧时, AN =b -2,∴)2(2)2(212b b -=-,2-=b .不符合题意.…………………………………………………………………………(1分)②当点B 在点N 右侧时, AN =2-b , ∴)2(2)2(212-=-b b ,6=b .…………(1分)∴二次函数的解析式为106212-+-=x x y .………………………………………(1分)∴点C (0,–10),∵点A 、B 关于直线MN 对称,∴点B (10,0).∵OB =OC =10,∴BC =102,∠OBC =45°.………………………………………(1分)过点A 作AH ⊥BC ,垂足为H ,∵AB =8,∴AH =BH =42,∴CH =62.∴322624tan ===∠CH AH ACB .……………………………………………………(1分)25.解:(1)在⊙O 与⊙A 中,∵OA=OB ,AB=AC ,∴∠ACB =∠ABC =∠OAB .……(2分)∴△ABC ∽△OAB .…………………………………………………………………(1分)∴OAABAB BC =,∴2x x BC =,………………………………………………………(1分)∴221x BC =,∵OC=OB –BC ,∴y 关于x 的函数解析式2212x y -=,……(1分)定义域为20<<x .………………………………………………………………(1分)(2)①当OD //A B 时,∴OD AB CO BC =,∴22122122x x x=-,……………………………(1分)∴2212x x -=,∴0422=-+x x ,……………………………………………(1分)∴51±-=x (负值舍去).……………………………………………………(1分)∴AB =15-,这时AB ≠OD ,符合题意. ∴OC =15)15(21221222-=--=-x .………………………………………(1分)②当BD //OA 时,设∠ODA =α,∵BD //OA ,OA =OD ,∴∠BDA =∠OAD =∠ODA =α, 又∵OB =OD ,∴∠BOA =∠OBD =∠ODB =α2.…………………………………(1分) ∵AB =AC ,OA =OB ,∴∠OAB =∠ABC =∠ACB =∠COA +∠CAO =α3.………(1分) ∵∠AOB +∠OAB +∠OBA =180°,∴︒=++180332ααα,∴︒=5.22α,∠BOA =45°.………………………………………………………(1分)∴∠ODB =∠OBD =45°,∠BOD =90°,∴BD =22. ∵BD //OA ,∴OABDCO BC =. ∴2222=-y y ,∴222-=y .222-=OC .………………………………(1分)由于BD ≠OA ,222-=OC 符合题意.∴当四边形ABDO 是梯形时,线段OC 的长为15-或222-.或:过点B 作BH ⊥OA ,垂足为H , BH =OH =2,AH =2–2, ∴248)2()22(22222-=+-=+=BH AH AB . ∴222)224(221221222-=--=-=-=AB x OC .…………………………(1分)。

2020年上海市中考数学模拟试卷及答案解析

2020年上海市中考数学模拟试卷及答案解析

2020年上海市中考数学模拟试卷一.选择题(共6小题)1.在Rt△ABC中,∠C=90°,若a=3,b=4,则sin B的值为()A.B.C.D.2.已知线段a,b,c,如果a:b:c=1:2:3,那么的值是()A.B.C.D.3.二次函数y=(x+1)2图象的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=24.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB 的高度为()(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.905.平面直角坐标系中,点P的坐标为(m,n),则向量可以用点P的坐标表示为=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,则与互相垂直.下面四组向量:①=(3,﹣9),=(1,﹣);②=(2,π0),=(2﹣1,﹣1);③=(cos30°,tan45°),=(sin30°,tan45°);④=(+2,),=(﹣2,).其中互相垂直的组有()A.1组B.2组C.3组D.4组6.如图,分别以正△ABC三个顶点为圆心,以边长为半径画弧,得到的封闭图形叫做莱洛三角形.若AB=1,则莱洛三角形的面积为()A.π+B.C.π﹣D.二.填空题(共12小题)7.如果=,那么的值等于.8.如果两个相似三角形的相似比为2:3,两个三角形的周长的和是100cm,那么较小的三角形的周长为cm.9.如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sin B;②sinα=cosβ;③AD2=BD•DC;④AB2=BD•BC.其中正确的结论有.10.已知向量与单位向量方向相反,且,那么=(用向量的式子表示)11.如图,B处在A处的南偏西45°方向,C处在A处的南偏东20°方向,C处在B处的北偏东80°方向,则∠ACB=°.12.如图,已知D是△ABC的边AC上一点,且AD=2DC,如果=,=,那么向量关于、的分解式是.。

2020年上海市上海中学自主招生数学模拟试卷及答案解析

2020年上海市上海中学自主招生数学模拟试卷一.填空题(共8小题,满分24分)1.(3分)已知a 2﹣a =0,则a−1a+2⋅a 2−4a −2a+1÷1a −1的值是 .2.(3分)已知√a −17+2√17−a =b +8,则√a −b 的值是 .3.(3分)如图,△ABC 与△AEF 中,AB =AE ,BC =EF ,∠B =∠E ,AB 交EF 于D .给出下列结论:①∠AFC =∠AFE ;②BF =DE :③∠BFE =∠BAE ;④∠BFD =∠CAF .其中正确的结论是 .(填写所正确结论的序号).4.(3分)方程mx 2+4x +2=0有两个实根x 1,x 2,则实数m 的取值范围是 ;x 1+x 2= ;抛物线y =mx 2+4x +2的图象全在x 轴上方,且与x 轴没有公共点,则m 的取值范围是 .5.(3分)如图,直线l 与x 轴、y 轴分别交于点A 、B ,且OB =4,∠ABO =30°,一个半径为1的⊙C ,圆心C 从点(0,1)开始沿y 轴向下运动,当⊙C 与直线l 相切时,⊙C 运动的距离是6.(3分)按图中程序计算,规定:从“输入一个值x ”到“结果是否≥14”为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围为 .7.(3分)观察下面的一列数,按规律在横线上填上适当的数:﹣2,4,﹣8,16,﹣32, , ,……,第n 个数是 .8.(3分)关于x 的不等式组{4a +3x >03a −4x ≥0恰好只有三个整数解,则a 的取值范围是 二.选择题(共4小题,满分12分,每小题3分)9.(3分)下列式子中,从左到右的变形是因式分解的是( )A .(x ﹣1)(x ﹣2)=x 2﹣3x +2B .x 2﹣3x +2=(x ﹣1)(x ﹣2)C .x 2+4x +4=x (x ﹣4)+4D .x 2+y 2=(x +y )(x ﹣y )10.(3分)如图,在四边形ABCD 中,AD ∥BC ,AB =AD ,BC =6,△BCD 的面积为9,则点D 到AB 的距离为( )A .3B .4.5C .6D .911.(3分)关于x 的一元二次方程x 2+√m x +n =0(m ≠0)有两个相等的实数根,则n m 的值为( )A .4B .﹣4C .14D .−1412.(3分)如图,按大拇指,食指,中指,无名指,小指,无名指,中指,…的顺序从1开始数数,当数到2020时,对应的手指是( )A .食指B .中指C .无名指D .小指三.解答题(共2小题)13.如图,四边形ABCD 中,∠A =90°,AB =5√3,BC =8,CD =6,AD =5,试判断点A 、B 、C 、D 是否在同一个圆上,并证明你的结论.14.将一个正整数x 的首位数字与末位数字先立方再求和得到一个新数(若x <10,则直接。

2020年上海市上海中学自主招生数学模拟试卷及答案解析

第1页(共10页)
2020年上海市上海中学自主招生数学模拟试卷
一.填空题(共8小题,满分24分)
1.(3分)已知a 2﹣a =0,则a−1a+2⋅a 2−4a 2−2a+1÷1
a 2−1的值是 .
2.(3分)已知√a −17+2√17−a =b +8,则√a −b 的值是 .
3.(3分)如图,△ABC 与△AEF 中,AB =AE ,BC =EF ,∠B =∠E ,AB 交EF 于D .给
出下列结论:①∠AFC =∠AFE ;②BF =DE :③∠BFE =∠BAE ;④∠BFD =∠CAF .其中正确的结论是 .(填写所正确结论的序号).
4.(3分)方程mx 2+4x +2=0有两个实根x 1,x 2,则实数m 的取值范围是 ;x 1+x 2
= ;抛物线y =mx 2+4x +2的图象全在x 轴上方,且与x 轴没有公共点,则m 的取值范围是 .
5.(3分)如图,直线l 与x 轴、y 轴分别交于点A 、B ,且OB =4,∠ABO =30°,一个半
径为1的⊙C ,圆心C 从点(0,1)开始沿y 轴向下运动,当⊙C 与直线l 相切时,⊙C 运动的距离是
6.(3分)按图中程序计算,规定:从“输入一个值x ”到“结果是否≥14”为一次程序操
作,如果程序操作进行了两次才停止,则x 的取值范围为 .
7.(3分)观察下面的一列数,按规律在横线上填上适当的数:。

2020年上海市中考数学模拟试卷

2020年上海市中考数学模拟试卷一一、选择题:本大题共6小题,每小题4分,共24分1.如果a与3互为倒数,那么a是()A.﹣3 B.3 C.﹣D.2.下列单项式中,与a2b是同类项的是()A.2a2b B.a2b2C.ab2D.3ab3.如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+34.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()次数 2 3 4 5人数 2 2 10 6A.3次B.3.5次C.4次D.4.5次5.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+D.﹣﹣6.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8二、填空题:本大题共12小题,每小题4分,共48分7.计算:a3÷a=.8.函数y=的定义域是.9.方程=2的解是.10.如果a=,b=﹣3,那么代数式2a+b的值为.11.不等式组的解集是.12.如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.13.已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.16.今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.17.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)18.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.三、解答题:本大题共7小题,共78分19.计算:|﹣1|﹣﹣+.20.解方程:﹣=1.21.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:(1)线段BE的长;(2)∠ECB的余切值.22.某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?23.已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.24.如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.(1)求这条抛物线的表达式;(2)联结AB、BC、CD、DA,求四边形ABCD的面积;(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.25.如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.2020年上海市中考数学模拟试卷二一、选择题(本大题共6小题,每小题4分,共24分)1.(4分)如果a与3互为相反数,那么a等于()A.3B.﹣3C.D.2.(4分)下列根式中,最简二次根式是()A.B.C.D.3.(4分)下列事件中,属于随机事件的是()A.()2=aB.若a>b(ab≠0),则<C.|a|•|b|=|ab|D.若m为整数,则(m+)2+是整数4.(4分)抛物线y=(x+5)2﹣1先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为()A.y=x2+18x+84B.y=x2+2x+4C.y=x2+18x+76D.y=x2+2x﹣2 5.(4分)若一个正n变形(n为大于2的整数)的半径为r,则这个正n变形的边心距为()A.r•sin B.r•cos C.r•sin D.r•cos6.(4分)下列命题中真命题的个数是()①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.A.1个B.2个C.3个D.4个二、填空题(本大题共12小题,每小题4分,共48分)7.(4分)计算:a6(﹣a2)=.8.(4分)一次函数y=﹣kx+2k(k<0)的图象不经过第象限.9.(4分)实数范围内因式分解:2x2+4xy﹣3y2=.10.(4分)若关于x的一元二次方程x2+2x=m有两个实数根,则实数m的取值范围是.11.(4分)正方形有条对称轴.12.(4分)如图,直线AB分别交直线a和直线b于点A,B,且a∥b,点C在直线b上,且它到直线a和到直线AB的距离相等,若∠ACB=77°,则∠ABC=.13.(4分)某次对中学生身高的抽样调查中测得5个同学的身高如下(单位:cm):172,171,175,174,178,则这组数据的方差为.14.(4分)一次测验中有2道题是选择题,每题均有4个选项且只有1个选项是正确的,若对这两题均每题随机选择其中任意一个选项作为答案,则2道选择题答案全对的概率为.15.(4分)点A,B分别是双曲线y=(k>0)上的点,AC⊥y轴正半轴于点C,BD⊥y轴于点D,联结AD,BC,若四边形ACBD是面积为12的平行四边形,则k=.16.(4分)△ABC中,点D在边AB上,点E在边AC上,联结DE,DE是△ABC 的一条中位线,点G是△ABC的重心,设=,=,则=(用含,的式子表示)17.(4分)我们把有一条边是另一条边的2倍的梯形叫做“倍边梯形”,在⊙O中,直径AB=2,PQ是弦,若四边形ABPQ是“倍边梯形”,那么PQ的长为.18.(4分)在矩形ABCD中,P在边BC上,联结AP,DP,将△ABP,△DCP分别沿直线AP,DP翻折,得到△AB1P,△DC1P,且点B1,C1,P在同一直线上,线段C1P交边AD于点M,联结AC1,若∠AC1D=135°,则=.三、解答题(本大题共7小题,共78分)19.(10分)计算:×cot30°﹣8+|cos30°﹣2|×20170.20.(10分)解不等式组:,并把解集在数轴上表示出来.21.(10分)如图,在△ABC中,∠A=90°,AB=3,AC=4,点D,E,F分别在边AB,BC,AC上,且四边形ADEF是正方形,联结AE.(1)求AE的长;(2)求∠AEB的正弦值.22.(10分)小金到一文具店用12元钱买某种练习本若干本,隔了一段时间他再去那个店,发现这种练习本正在“让利销售”中,每1本降价0.2元,这样用12元可以比上次多买3本,求小金第一次买的练习本的数量.23.(12分)如图,四边形ABCD是菱形,点E在AB延长线上,联结AC,DE,DE分别交BC,AC于点F,G,且CD•AE=AC•AG.求证:(1)△ABC∽△AGE;(2)AB2=GD•DE.24.(12分)如图,已知在平面直角坐标系xOy中,O为坐标原点,点A,B分别在x轴上(点A在原点左侧,点B在原点右侧),OB=4OA,经过点A,B的抛物线交y轴于点C(0,2),且∠ACB=90°.(1)求抛物线的解析式;(2)点N为该抛物线第一象限上一点,满足∠NOC=∠CBO,联结BN,NO,求△BON的面积;(3)点D为抛物线对称轴上一点,且在x轴下方,点E在y轴负半轴上,当以B,E,D为顶点的三角形与△ABC相似时(∠DBE与∠ABC为对应角),求点D的坐标.25.(14分)如图,在⊙O中,半径OA长为1,弦BC∥OA,射线BO,射线CA 交于点D,以点D为圆心,CD为半径的⊙D交BC延长线于点E.(1)若BC=,求⊙O与⊙D公共弦的长;(2)当△ODA为等腰三角形时,求BC的长;(3)设BC=x,CE=y,求y关于x的函数关系式,并写出定义域.2020年上海市中考数学模拟试卷三(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)1.两个相似三角形的面积比为1∶4,那么这两个三角形的周长比为( )(A )1∶2; (B )1∶4; (C )1∶8; (D )1∶16.2.如果向量a r 与单位向量e r 方向相反,且长度为12,那么向量a r 用单位向量e r 表示为( ) (A )12a e =r r ; (B )2a e =r r ; (C )12a e =-r r ; (D )2a e =-r r . 3.将抛物线2y x =向右平移1个单位,所得新抛物线的函数解析式是( )(A )2(1)y x =+; (B )2(1)y x =-;(C )21y x =+; (D )21y x =-.4.在Rt △ABC 中,∠A =90°,如果把这个直角三角形的各边长都扩大2倍,那么所得到的直角三角形中,∠B 的正切值( )(A )扩大2倍; (B )缩小2倍; (C )扩大4倍; (D )大小不变 .5.已知在Rt △ABC 中,△C =90°,△A =a ,BC =m ,那么AB 的长为( )(A )sin m α; (B )cos m α; (C )sin m α; (D )cos m α. 6.在平面直角坐标系中,抛物线()221y x =--+的顶点是点P ,对称轴与x 轴相交于点Q ,以点P 为圆心,PQ 长为半径画⊙P ,那么下列判断正确的是( )(A )x 轴与⊙P 相离; (B )x 轴与⊙P 相切;(C )y 轴与⊙P 与相切; (D )y 轴与⊙P 相交.二、填空题:(本大题共12题,每题4分,满分48分)7.如果23x y =,那么22x y x y +-= ▲ .8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,35DE BC =,那么CE AE的值等于▲ .9.计算:()223a b b +-=r r r▲ .10.抛物线22y x x =+的对称轴是 ▲ .11.二次函数22y x t =+的图像向下平移2个单位后经过点(1,3),那么t = ▲ . 12.已知在∠ABC 中,∠C =90°,AB =12,点G 为∠ABC 的重心,那么CG = ▲ . 13.已知在Rt ∠ABC 中,∠C =90°,BC =3AC ,那么∠A = ▲ 度. 14.已知在Rt ∠ABC 中,∠C =90°,1cot 3B =,BC =3,那么AC = ▲ .15.已知内切两圆的圆心距为6,其中一个圆的半径为4,那么另一个圆的半径为 ▲ . 16.如果正n 边形的每一个内角都等于144°,那么n = ▲ .17.正六边形的边长为a ,面积为S ,那么S 关于a 的函数关系式是 ▲ . 18.在Rt ∠ABC 中,∠C =90°,3cos 5B =, 把这个直角三角形绕顶点C 旋转后得到 Rt ∠A'B'C ,其中点B' 正好落在AB 上, A'B'与AC 相交于点D ,那么B DCD'= ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:222sin 60cos 45tan 60cos30tan 30cot 45---o o oo o o20.(本题满分10分, 其中第(1)小题6分,第(2)小题4分)已知一个二次函数2y x b x c =++的图像经过点(4,1)和(1-,6). (1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴. 21.(本题满分10分) 如图,已知AB 是∠O 的弦,点C 在线段AB 上,OC =AC =4,CB =8.求∠O 的半径.A CBB'A'D第18题图OCAB22.(本题满分10分)如图,某超市从底楼到二楼有一自动扶梯,右图是侧面示意图。

2020年上海市中考数学模拟试卷及答案解析

2020年上海市中考数学模拟试卷一.选择题(共6小题,满分24分,每小题4分)1.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y22.若a<b,则下列各式中不一定成立的是()A.a﹣1<b﹣1B.3a<3b C.﹣a>﹣b D.ac<bc3.下列函数中,当x>0时,y随x的增大而增大的是()A.y=﹣2x+1B.y =C.y=﹣2x2+1D.y=2x4.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2],其中“5”是这组数据的()A.最小值B.平均数C.中位数D.众数5.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形6.已知两圆半径分别为6.5cm和3cm,圆心距为3.5cm,则两圆的位置关系是()A.相交B.外切C.内切D.内含二.填空题(共12小题,满分48分,每小题4分)7.计算:(﹣2)2019×0.52018=.8.已知函数y =,当x=2时,函数值y为.9.已知≈1.766,≈5.586,则≈.10.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.11.从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是12.有大小两种货车,2辆大货车与1辆小货车一次可以运货7吨,1辆大货车与2辆小货第1 页共24 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自主招生数学模拟试卷
一、 填空题(每题8分,共80分)
1、 若关于x 的一元二次方程x 2+(3a −1)x +a +8=0有两个不相等的实根x 1、x 2,且x 1<1,x 2>1,则实数a 的取值范围为.
2、 设x =(√5+1)(√54+1)(√58+1)(√516+1)(x +1)48=.
3、 小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.
4、 如果不等式组{7x −a ≥08x −b <0
的整数解仅为1,2,3,那么合适这个不等式组的整数解a 、b 的有序实数对(a ,b )共有对.
5、 已知平行四边形ABCD 的周长为52,自定点D 作DE ⊥AB ,DF ⊥BC ,点E 、F 为垂足,若DE =5,DF =8,则BE +BF =.
6、 请将112、16、14、13、512、12、712、23、3
4 填入以下方格,使得每行、每列、对角线的和都相等.
7、 已知梯形的一条底边比另一条底边长100个单位,梯形两腰中点的连线把梯形分成面积比为2:3的两部分,这x 是连结梯形的两腰,平行于梯形底边,并分梯形为面积相等的两部分的线段长度,则x 2=.
8、 在△ABC 中,AB =7,BC =8,CA =9,过△ABC 的内切圆圆心I 作DE ∥BC ,分别与AB 、AC 相较于点D 、E ,则DE 的长为.
9、 实系数二次多项式p (x )满足对所有的实数x ,都有x 2−2x +2≤p (x )≤2x 2−4x +3, 已知p (11)=181,则p(16)=.
10、如图,△ABC的三边长BC=a,CA=b,AB=c,a,b,c都是整数,且a、b的最大公约
数为2,点G和点I分别为△ABC的重心和内心,且∠GIC=90°,则△ABC的周长是 .
二、解答题(共70分)
11、(本题15分)若两个不相等的实数a、b,使得a2+b和a+b2都是有理数,称数对(a,b)是和谐的.
(1)找出一对无理数,使得(a,b)是和谐的.
(2)证明:若(a,b)是和谐的,且a+b是不等于1的有理数,则a、b都是有理数.
是有理数,则a、b都是有理数.
(3)证明:若(a,b)是和谐的,且a
b
12、(本题15分)试求实数a、b,使得抛物线y1=x2+ax+b和y2=x2+bx+a与x 轴有4个交点,且相邻两点之间的距离相等.
13、(本题20分)如图,C是线段AB的中点,△DCE和△BDF都是等腰直角三角形,连结AE、AF,请猜想∠EAF的度数并证明.
14、(本题20分)已知a+b+c是a、b、c的倍数,且每个数都不大于2017,则满足条件的(a,b,c)有几组?(3个顺序不同,视为不同数组)。

相关文档
最新文档