第14章图论基本概念
数学中的图论与网络知识点

数学中的图论与网络知识点图论是数学中一个重要的分支领域,研究图的结构、性质以及与实际问题的应用。
而网络则是现代社会中的重要组成部分,图论在网络上的应用也日益广泛。
本文将介绍数学中的图论基本概念和网络知识点,以及它们在现实中的应用。
一、图论基本概念1. 图的定义与表示图是由节点(顶点)和边组成的一种数学结构。
节点表示对象,边表示节点之间的连接关系。
图可以用邻接矩阵或邻接表等方式进行表示与存储。
2. 图的分类图可以分为有向图和无向图。
有向图中的边有方向,无向图中的边没有方向。
根据边是否具有权重,图又可以分为带权图和无权图。
3. 图的性质图具有很多重要的性质,例如连通性、度、路径等。
连通性表示图中任意两个节点之间存在一条路径,度表示节点的相邻节点个数,路径是连接节点的边的序列。
二、图论中的常见算法1. 最短路径算法最短路径算法用于求解两个节点之间的最短路径,其中最著名的算法是Dijkstra算法和Floyd-Warshall算法。
Dijkstra算法适用于边权重为非负的图,而Floyd-Warshall算法适用于任意带权图。
2. 深度优先搜索与广度优先搜索深度优先搜索(DFS)和广度优先搜索(BFS)是图的遍历算法。
DFS以深度优先的方式探索图中的节点,BFS以广度优先的方式探索。
这两种算法在解决连通性、拓扑排序等问题中有广泛应用。
3. 最小生成树算法最小生成树算法用于在带权图中找到权重和最小的生成树。
其中Prim算法和Kruskal算法是两种常用的最小生成树算法。
三、网络中的图论应用1. 社交网络与关系分析社交网络是图的一种应用,其中节点表示人,边表示人与人之间的社交关系。
基于图论的算法可以分析社交网络中的社区结构、关键人物等信息。
2. 网络流与最大流问题网络流是指在图中模拟流动的过程,最大流问题是求解从源节点到汇节点的最大流量。
网络流算法可以用于优化问题的求解,如分配问题、进程调度等。
3. 路由算法与网络优化路由算法是网络中常用的算法之一,用于确定数据从源节点到目的节点的传输路径。
图论--图的基本概念

图论--图的基本概念1.图:1.1⽆向图的定义:⼀个⽆向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。
E是⽆序积V&V的有穷多重⼦集,称作边集,其元素称作⽆向边,简称边。
注意:元素可以重复出现的集合称作多重集合。
某元素重复出现的次数称作该元素的重复度。
例如,在多重集合{a,a,b,b,b,c,d}中,a,b,c,d的重复度分别为2,3,1,1。
从多重集合的⾓度考虑,⽆元素重复出现的集合是各元素重复度均为1的多重集。
1.2有向图的定义:⼀个有向图G是⼀个有序的⼆元组<V,E>,其中V是⼀个⾮空有穷集,称作顶点集,其元素称作顶点或结点。
E是笛卡尔积V✖V的有穷多重⼦集,称作边集,其元素为有向边,简称为边。
通常⽤图形来表⽰⽆向图和有向图:⽤⼩圆圈(或实⼼点)表⽰顶点,⽤顶点之间的连线表⽰⽆向边,⽤带箭头的连线表⽰有向边。
与1.1,1.2有关的⼀些概念和定义:(1)⽆向图和有向图统称为图,但有时也把⽆向图简称作图。
通常⽤G表⽰⽆向图,D表⽰有向图,有时也⽤G泛指图(⽆向的或有向的)。
⽤V(G),E(G)分别表⽰G的顶点集和边集,|V(G)|,|E(G)|分别是G的顶点数和边数,有向图也有类似的符号。
(2)顶点数称作图的阶,n个顶点的图称作n阶图。
(3)⼀条边也没有的图称作零图,n阶零图记作N n。
1阶零图N1称作平凡图。
平凡图只有⼀个顶点,没有边。
(4)在图的定义中规定顶点集V为⾮空集,但在图的运算中可能产⽣顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,并将空图记作Ø。
(5)当⽤图形表⽰图时,如果给每⼀个顶点和每⼀条边指定⼀个符号(字母或数字,当然字母还可以带下标),则称这样的图为标定图,否则称作⾮标定图。
(6)将有向图的各条有向边改成⽆向边后所得到的⽆向图称作这个有向图的基图。
(7)若两个顶点v i与v j之间有⼀条边连接,则称这两个顶点相邻。
图论知识点

图论知识点摘要:图论是数学的一个分支,它研究图的性质和应用。
图由节点(或顶点)和连接这些节点的边组成。
本文将概述图论的基本概念、类型、算法以及在各种领域的应用。
1. 基本概念1.1 节点和边图由一组节点(V)和一组边(E)组成,每条边连接两个节点。
边可以是有向的(指向一个方向)或无向的(双向连接)。
1.2 路径和环路径是节点的序列,其中每对连续节点由边连接。
环是一条起点和终点相同的路径。
1.3 度数节点的度数是与该节点相连的边的数量。
对于有向图,分为入度和出度。
1.4 子图子图是原图的一部分,包含原图的一些节点和连接这些节点的边。
2. 图的类型2.1 无向图和有向图无向图的边没有方向,有向图的每条边都有一个方向。
2.2 简单图和多重图简单图是没有多重边或自环的图。
多重图中,可以有多条边连接同一对节点。
2.3 连通图和非连通图在无向图中,如果从任意节点都可以到达其他所有节点,则称该图为连通的。
有向图的连通性称为强连通性。
2.4 树树是一种特殊的连通图,其中任意两个节点之间有且仅有一条路径。
3. 图的算法3.1 最短路径算法如Dijkstra算法和Bellman-Ford算法,用于在加权图中找到从单个源点到所有其他节点的最短路径。
3.2 最大流最小割定理Ford-Fulkerson算法用于解决网络流中的最大流问题。
3.3 匹配问题如匈牙利算法,用于解决二分图中的匹配问题。
4. 应用4.1 网络科学图论在网络科学中有广泛应用,如社交网络分析、互联网结构研究等。
4.2 运筹学在运筹学中,图论用于解决物流、交通网络优化等问题。
4.3 生物信息学在生物信息学中,图论用于分析蛋白质相互作用网络、基因调控网络等。
5. 结论图论是数学中一个非常重要和广泛应用的领域。
它不仅在理论上有着深刻的内涵,而且在实际应用中也发挥着关键作用。
随着科技的发展,图论在新的领域中的应用将会不断涌现。
本文提供了图论的基础知识点,包括概念、图的类型、算法和应用。
图论的基础概念和算法

图论的基础概念和算法图论是数学的一个分支,研究的对象是图。
图是由一组互不相连的节点(顶点)和连接这些节点的边(边)组成的数学结构。
图论的基础概念包括顶点、边、路径、环、度数等。
本文将介绍图论的基础概念以及常用的图算法。
一、基础概念1. 图的定义和表示图由顶点集合和边集合组成。
顶点集合用V表示,边集合用E表示。
图可以用邻接矩阵或邻接表来表示。
邻接矩阵是一个二维数组,用来表示图中顶点之间的连接关系。
邻接表是一个链表数组,用来表示每个顶点相邻顶点的列表。
2. 顶点和边顶点是图的基本组成单位,用来表示图中的一个节点。
边是连接两个顶点的线段,用来表示两个顶点之间的关系。
3. 路径和环路径是由一系列相邻顶点连接而成的顶点序列。
路径的长度是指路径上经过的边的数目。
环是起点和终点相同的路径。
4. 度数顶点的度数是指与其相邻的边的数目。
入度是指指向该顶点的边的数目,出度是指由该顶点指向其他顶点的边的数目。
图中顶点的度数可以用来判断顶点的重要性。
二、常用算法1. 广度优先搜索(BFS)广度优先搜索是一种用来遍历和搜索图的算法。
从一个起始顶点开始,逐层扩展,先访问距离起始顶点最近的顶点,然后访问它们的相邻顶点,并逐渐向外扩展。
广度优先搜索可以用来计算两个顶点之间的最短路径。
2. 深度优先搜索(DFS)深度优先搜索是另一种常用的图遍历算法。
从一个起始顶点开始,沿着一条路径尽可能深入地访问图,直到不能再继续深入为止,然后回溯到上一个顶点,继续探索其他路径。
深度优先搜索可以用来计算连通分量、拓扑排序和寻找环等。
3. 最小生成树最小生成树是指图中通过连接所有顶点的子图,并且该子图的边权重之和最小。
常用的最小生成树算法包括Prim算法和Kruskal算法。
Prim算法从一个顶点开始,逐步扩展最小生成树的边,直到包含所有顶点为止。
Kruskal算法则是从边的权重最小的边开始,逐步增加边到最小生成树中,直到包含所有顶点为止。
4. 最短路径算法最短路径算法用来计算两个顶点之间的最短路径。
图论常考知识点总结

图论常考知识点总结1. 图的基本概念图是由顶点集合和边集合构成的。
顶点之间的连接称为边,边可以有方向也可以没有方向。
若图的边没有方向,则称图为无向图;若图的边有方向,则称图为有向图。
图的表示方式:邻接矩阵和邻接表。
邻接矩阵适合存储稠密图,邻接表适合存储稀疏图。
2. 图的连通性连通图:如果图中任意两点之间都存在路径,则称该图是连通图。
强连通图:有向图中,任意两个顶点之间都存在方向相同的路径,称为强连通图。
弱连通图:有向图中,去掉每条边的方向之后,所得到的无向图是连通图,称为弱连通图。
3. 图的遍历深度优先搜索(DFS):从起始顶点出发,沿着一条路往前走,走到不能走为止,然后退回到上一个分支点,再走下一条路,直到走遍图中所有的顶点。
广度优先搜索(BFS):从起始顶点出发,先访问它的所有邻居顶点,再按这些邻居顶点的顺序依次访问它们的邻居顶点,依次类推。
4. 最短路径狄克斯特拉算法:用于计算图中一个顶点到其他所有顶点的最短路径。
弗洛伊德算法:用于计算图中所有顶点之间的最短路径。
5. 最小生成树普里姆算法:用于计算无向图的最小生成树。
克鲁斯卡尔算法:用于计算无向图的最小生成树。
6. 拓扑排序拓扑排序用于有向无环图中对顶点进行排序,使得对每一条有向边(u,v),满足排序后的顶点u在顶点v之前。
以上就是图论中一些常考的知识点,希望对大家的学习有所帮助。
当然,图论还有很多其他的知识点,比如欧拉图、哈密顿图、网络流等,这些内容都值得我们深入学习和探讨。
图论在实际应用中有着广泛的应用,掌握好图论知识对于提升计算机科学和工程学的技能水平有着重要的意义。
图论的基本概念

图论的基本概念一个图G 是指一个有序三元组(V(G),E(G),G⎰ ),其中V(G)是非空的顶点集,E(G) 是不与V(G)相交的边集,而G⎰是关联函数,它使G 的每条边对应于G 的无序顶点对(不必相异),若e 是一条边,而u 和v 是使得G⎰(e)=uv 的顶点,则称e 连接u 和v ;顶点U 和v 称为e 的端点。
将己知图的顶点放在平面上,并绘制这些对应点和连通它们之间的边,这就是图的绘制,对于表示地图的应用,图绘制可能包含相当多的信息,因为顶点对应于平面中的点, 而且与它们之间的距离有关,我们称这类图为殴几米德图(Euclidean graph)。
G 的一条途径(或通道)是指一个有限非空序列011222...kWv e v e v e v =,它的项交替为顶点和边,使得对1≤i ≤k ,i e 的端点1i v -和i v 。
称w 是从0v 到k v 的一条途径,或一条(0v ,k v )途径顶点。
0v 和k v 分别称为W 的起点和终点,而1v ,2v ,....,1k v -称为它的内部顶点。
整数k 称为w 的长。
若途径W 的边1e ,2e ,…,k e 互不相同,则W 称为迹:这时W 的长恰好是e (W )。
又如果途径W 顶点1v ,2v ,....,k v 也互不相同,则称W 为路。
起点和终点相同的路是环。
如果在图中,从每个顶点到其他每个顶点之间都存在一条路径,则此图为连通图。
无环连通图称为树,树的集合是森林。
连通图的生成树是包括该图所有顶点的一个子图,是一棵单一树。
图的生成森林是包括该图所有顶点的一个子图。
是一个森林。
图的Hamilton 性是一个非常重要的概念,它有着广泛的应用,尤其是在LRP 的VRP 问题中。
如果图G 存在一条长为|V(G)|的圈,则称图G 是一个Hamilton 图,或称该图具有Hamilton 性。
到目前为止所定义的图都是无向图。
在有向图中,边是单向的,定义每条边的顶点对看作是一个有序对,它指定了一个单向邻接,有向图中的边称为有向边,有时也称为弧t 有向边的第一个点称为是源或弧尾,边的最后一个点称为目标或弧首。
图论的基本概念与应用

图论的基本概念与应用图论作为一门理论研究和应用探索的数学学科,不仅在学术和工程领域发挥着巨大作用,而且在现代科技和日常生活中也处处体现。
本文将简单介绍图论的基本概念、应用领域,以及一些相关案例。
一、基本概念图论的研究对象是图。
图是由一些点和连接这些点的线组成的,表示事物之间的某种关系,如网络中的路由、社交网络中的朋友等等。
根据点与线的不同特征,图被分为有向图和无向图。
有向图中的边是有方向的,表示两个节点之间是起点和终点的关系。
无向图中的边没有方向,表示两个节点之间是双向的。
图的另一个重要概念是网络,网络是在边上赋予权值用以表示边的强度或距离的图。
在图论中,我们常用的还有度数和路径的概念。
度数是一个点相邻边的数量,路径是由若干个顶点和它们之间的边所构成的序列,且顶点之间按照连接的顺序排列。
二、应用领域图论被广泛应用于计算机科学、运筹学、生物学、化学、经济学等领域。
在计算机科学中,图论被用于构建搜索引擎、路由算法等多个方面。
在运筹学中,最短路径算法、匹配算法、流量分配算法等问题可通过图论求解。
生物学中,图以蛋白质相互作用网、基因调控网等方式表现生物体内的复杂关系。
在化学中,图被用于描述分子之间的行为和作用。
在经济学中,图常常被用于解决网络流量调度和供应链计算。
三、相关案例1. 社交网络在社交网络中,我们可以将人视为节点,人与人之间的关系视为边,从而构建出一个网络模型。
通过对网络模型的分析,可以发现一些有趣的现象或规律,比如弱连接理论、六度分离理论等,这些理论不仅仅能被应用于社交网络,还可以用于其他领域的研究。
2. 铁路路径优化一个问题是如何生成铁路的最短路径,它既可以被看作是一个有向图问题,也可以看作是一个网络流问题。
由于铁路上存在许多互联的节点,因此在这种情况下,图论技术可以用于优化路径,解决径路选择和路径总长度最小化等问题。
3. 分子结构预测化学家常常利用图论的相关技术来模拟和预测分子的结构。
在这种情况下,节点表示原子,边表示原子之间的化学键。
图论的基本概念和应用

图论的基本概念和应用图论是数学中的一个分支,研究的是图的性质和图之间的关系。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
图论的基本概念包括图的类型、图的表示方法、图的遍历算法等。
图论在计算机科学、网络分析、社交网络等领域有着广泛的应用。
一、图的类型图可以分为有向图和无向图两种类型。
有向图中的边有方向,表示从一个节点到另一个节点的关系;无向图中的边没有方向,表示两个节点之间的关系是相互的。
有向图和无向图都可以有权重,表示边的权值。
二、图的表示方法图可以用邻接矩阵和邻接表两种方式来表示。
邻接矩阵是一个二维数组,数组的行和列分别表示图中的节点,数组中的元素表示节点之间的边;邻接表是一个链表数组,数组的每个元素表示一个节点,链表中的每个节点表示与该节点相连的边。
三、图的遍历算法图的遍历算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索从一个节点开始,沿着一条路径一直遍历到最后一个节点,然后回溯到上一个节点,再继续遍历其他路径;广度优先搜索从一个节点开始,先遍历与该节点相邻的所有节点,然后再遍历与这些节点相邻的节点,依次类推。
四、图论的应用1. 计算机科学:图论在计算机科学中有着广泛的应用。
例如,图可以用来表示计算机网络中的节点和连接关系,通过图的遍历算法可以实现网络路由和路径规划;图可以用来表示程序中的依赖关系,通过图的遍历算法可以实现代码的分析和优化。
2. 网络分析:图论在网络分析中有着重要的应用。
例如,社交网络可以用图来表示,节点表示用户,边表示用户之间的关系,通过图的遍历算法可以实现社交网络的分析和预测;互联网中的网页可以用图来表示,节点表示网页,边表示网页之间的链接关系,通过图的遍历算法可以实现搜索引擎的排名和推荐算法。
3. 运筹学:图论在运筹学中有着重要的应用。
例如,图可以用来表示物流网络中的节点和路径,通过图的遍历算法可以实现最短路径和最小生成树的计算;图可以用来表示任务调度中的依赖关系,通过图的遍历算法可以实现任务的优化和调度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:图的数学定义与图形表示,在同构(待叙)的意义下 是一一对应的
第14章图论基本概念
6
相关概念
1. 图 ① 可用G泛指图(无向的或有向的) ② V(G), E(G), |V(G)|, |E(G)| ③ n阶图:n 个顶点的图
2. 有限图 3. n 阶零图(0条边)与平凡图(1个顶点) 4. 空图——(运算中出现) 5. 用 ek 表示无向边或有向边
实例
设 V = {v1, v2, …,v5}, E = {(v1,v1), (v1,v2), (v2,v3), (v2,v3),
(v2,v5), (v1,v5), (v4,v5)} 则 G = <V,E>为一无向图
第14章图论基本概念
5
有向图
定义14.2 有向图D=<V,E>, 只需注意E是VV 的多重子集 图2表示的是一个有向图,试写出它的V 和 E
第14章图论基本概念
7
相关概念
6. 顶点与边的关联关系 ① 关联、关联次数 ②环 ③ 孤立点
7. 顶点之间的相邻与邻接关系
第14章图论基本概念
8
相关概念
8. 邻域与关联集 ① vV(G) (G为无向图)
v 的 邻 N (v ) { 域 u |u V ( G ) (u ,v ) E ( G ) u v }
图论的作用:
图与计算机:计算机中数据结构,离不开数组、串、各种 链接表、树和图,因此图是计算机中数据表示、存储和运 算的基础
图与网络:
最大流问题:假设从城市P到城市Q的一个公路网, 公路网中每段公路上每天可以通过的汽车的数量有上限, 那么经过该公路网,每天最多可以有多少辆汽车从城市P 开到城市Q?
第五部分 图论
本部分主要内容 图的基本概念 欧拉图、哈密顿图 树
第14章图论基本概念
1
绪论
图论的历史:
图论的第一篇论文是瑞士数学家欧拉(Euler)发表于1736年出版的
圣彼得堡科学院刊物中。讨论一个所谓Konigsberg Seven Bridges Problem。
第14章图论基本概念
2
绪论
最优支撑树问题:某一地区有若干个主要城市,拟修 建高速公路把这些城市连接起来,使得从其中任何一个城 市都可以经高速公路直接或间接到达另一个城市。假设已 经知道了任意两个城市之间修建高速公路的成本,那么应 如何决定在哪些城市间修建高速公路,使得总成本最小?
第14章图论基本概念
3
第十四章 图的基本概念
第14章图论基本概念
11
握手定理
定理14.1 设G=<V,E>为任意无向图,V={v1,v2,…,vn}, |E|=m, 则
n
d(vi ) 2m
i1
证 G中每条边 (包括环) 均有两个端点,所以在计算G中各顶点 度数之和时,每条边均提供2度,m 条边共提供 2m 度.
定理14.2 设D=<V,E>为任意有向图,V={v1,v2,…,vn}, |E|=m, 则
n
n
n
d (v i)2 m , 且d (v i)d (vi) m
i 1
i 1
i 1
此二定理是欧拉1736年给出,是图论的基本定理
第14章图论基本概念
12
握手定理推论
推论 任何图 (无向或有向) 中,奇度顶点的个数是偶数.
证 设G=<V,E>为任意图,令
V1={v | vV d(v)为奇数} V2={v | vV d(v)为偶数} 则V1V2=V, V1V2=,由握手定理可知
v 的 闭 N (v ) N 邻 (v ) { v } 域
v 的关联集 I(v){e|e E (G )e与 v关}联 ② vV(D) (D为有向图)
v的后继元 D (v) 集 {u|uV(D)v,u E(D)uv}
v的先驱元 D (v) 集 {u|uV(D)u,v E(D)uv}
v的邻域ND(v)D (v)D (v)
简单图是极其重要的概念
第14章图论基本概念
10
顶点的度数
定义14.4 (1) 设G=<V,E>为无向图, vV, d(v)——v的度数, 简称度 (2) 设D=<V,E>为有向图, vV,
d+(v)——v的出度 d(v)——v的入度 d(v)——v的度或度数 (3) (G)(最大度), (G)(最小度) 无向图中 (4) +(D), +(D), (D), (D), (D), (D) (5) 度数为1的点称为悬挂点,关联的边为悬挂边; 奇顶点度与偶度顶点
2 m d(v) d(v) d(v)
v V
v V 1
v V 2
由于2m, d (v) 均为偶数,所以 d (v) 为偶数,但因为V1中
vV2
vV1
顶点度数为奇数,所以|V1|必为偶数.
第14章图论基本概念
13
图的度数列
1 . V={v1, v2, …, vn}为无向图G的顶点集,称d(v1), d(v2), …, d(vn)为G的度数列
2. V={v1, v2, …, vn}为有向图D的顶点集, D的度数列:d(v1), d(v2), …, d(vn) D的出度列:d+(v1), d+(v2), …, d+(vn) D的入度列:d(v1), d(v2), …, d(vn)
3. 非负整数列d=(d1, d2, …, dn)是可图化的,是可简单图化的.
v的闭邻N 域 D(v)ND(v){v}
9. 标定图与非标定图(顶点和边指定编号的)
10. 基图(有向图的有向边改为无向边)
第14章图论基本概念
9
多重图与简单图
定义14.3 (1) 无向图中的平行边及重数
关联一对顶点的边多于一条,条数称为重数 (2) 有向图中的平行边及重数(注意方向性) (3) 多重图 (4) 简单图(无平行边和环)
主要内容 图 通路与回路 图的连通性 图的矩阵表示 图的运算 预备知识 多重集合——元素可以重复出现的集合 无序集——AB={(x,y) | xAyB}
第14章图论基本概念
4
14.1 图
定义14.1 无向图G = <V,E>, 其中 (1) V 为顶点集,元素称为顶点 Vertex (2) E为VV 的多重集,其元素称为无向边,简称边 Edge
易知:(2, 4, 6, 8, 10),(1, 3, 3, 3, 4) 是可图化的,后者又是可 简单图化的,而(2, 2, 3, 4, 5),(3, 3, 3, 4) 都不是可简单图化 的,特别是后者也不是可图化的