伺服电机转速控制

合集下载

直流伺服电机的控制方式

直流伺服电机的控制方式

直流伺服电机的控制方式直流伺服电机实质上就是他励直流电机。

由直流电机的电压方程U=E a+I a R a及电枢电动势表达式E a=C eΦn,可以得到直流伺服电机的转速表达式为式中,U a为电枢电压;E a为电枢感应电动势;I a为电枢电流;R a为电枢回路总电阻;n为转速;Φ为每极主磁通;C e为电动势常数。

上式表明:改变电枢电压U a和改变励磁磁通Φ,都可以改变直流伺服电机的转速n。

因而直流伺服电机的控制方式有两种:一种方法是把控制信号作为电枢电压来控制电机的转速,这种方式称为电枢控制;另一种方法是把控制信号加在励磁绕组上,通过控制磁通来控制电机的转速,这种控制方式称为磁场控制(又称为磁极控制)。

直流伺服电机的工作原理图如图2-9所示。

图2-9 电枢控制时直流伺服电机的工作原理图(1)电枢控制由图2-9所示,在励磁回路上加恒定不变的励磁电压U f,以保证直流伺服电机的主磁通Φ不变。

在电枢绕组上加控制电压信号。

当负载转矩T L一定时,升高电枢电压U a,电机的转速n随之升高;反之,减小电枢电压U a,电机的转速n就降低;若电枢电压U a=0时,电机则不转。

当电枢电压的极性改变后,电机的旋转方向也随之改变。

因此把电枢电压U a作为控制信号,就可以实现对直流伺服电机转速n的控制,其电枢绕组称为控制绕组。

对于电磁式直流伺服电机,采用电枢控制时,其励磁绕组由外施恒压的直流电源励磁;对于永磁式直流伺服电机则由永磁磁极励磁。

下面分析改变电枢电压U a时,电机转速n变化的物理过程。

直流伺服电机实质上就是他励直流电机。

由直流电机的转速表达式及电磁转矩表达式T e=C TΦI a,可以得到保持电机的每极磁通为额定磁通ΦN时,直流电机的机械特性方程为式中,U a为电枢电压;R a为电枢回路总电阻;n为转速;ΦN 为每极额定主磁通;C e为电动势常数;C T为转矩常数;T e为电磁转矩。

根据直流电机的机械特性方程,可以绘制出直流电机降压调速时的机械特性曲线,如图2-10所示,图中,曲线1、2、3分别为对应于不同电枢电压时,直流电机的机械特性曲线;曲线4为负载的机械特性曲线。

伺服电机及其控制原理

伺服电机及其控制原理

伺服电机及其控制原理什么是伺服电机?伺服电机是一种带有反馈控制系统的电机。

很多人可能会想到直流电机或步进电机,但这些电机只能进行开关式的控制,不能有效地调节转速和位置。

相比较而言,伺服电机可以准确地控制转速和位置,因此在机器人技术、自动控制和工业制造等领域得到了广泛应用。

伺服电机的工作原理伺服电机常用于自动控制系统中,其工作原理基于反馈控制的概念。

简单来说,伺服电机将目标位置与当前位置进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标位置匹配。

具体来说,伺服电机常用的控制系统包括位置反馈、速度反馈和加速度反馈等。

伺服电机的控制原理伺服电机的控制原理包括位置控制、速度控制和扭矩控制等。

位置控制在位置控制中,伺服电机将目标位置与实际位置进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标位置匹配。

位置控制系统包括位置传感器、位置反馈回路和控制电路等。

常用的位置传感器包括编码器、光电传感器和霍尔传感器等。

位置反馈回路可以及时地反馈电机的位置信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的位置。

控制电路包括位置控制器、功率放大器和驱动器等。

速度控制在速度控制中,伺服电机将目标速度与实际速度进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标速度匹配。

速度控制系统包括速度传感器、速度反馈回路和控制电路等。

常用的速度传感器包括电动机转速传感器和转矩传感器等。

速度反馈回路可以及时地反馈电机的速度信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的速度。

控制电路包括速度控制器、功率放大器和驱动器等。

扭矩控制在扭矩控制中,伺服电机将目标扭矩与实际扭矩进行比较,然后通过控制电路来调整电机转速和位置,以使其尽可能与目标扭矩匹配。

扭矩控制系统包括扭矩传感器、扭矩反馈回路和控制电路等。

常用的扭矩传感器包括压力传感器和力传感器等。

扭矩反馈回路可以及时地反馈电机的扭矩信息,并对信号进行处理和滤波,以便控制电路能够准确地控制电机的扭矩。

伺服电机的转速控制精度考核试卷

伺服电机的转速控制精度考核试卷
A.电机本身的质量
B.电机驱动器的性能
C.传感器分辨率
D.环境温度
2.通常情况下,伺服电机的转速控制是通过哪个环节实现的?()
A.电机本体
B.驱动器
C.传感器
D.控制器
3.以下哪种传感器不常用于伺服电机转速的检测?()
A.编码器
B.旋转变压器
C.霍尔传感器
D.压力传感器
4.在伺服电机转速闭环控制系统中,哪个环节对转速波动有抑制作用?()
A.电机本体的制造公差
B.驱动器的响应速度
C.控制算法的优劣
D.使用环境的温度变化
2.伺服电机的转速闭环控制系统中,以下哪些环节可以提供转速反馈?()
A.编码器
B.旋转变压器
C.霍尔传感器
D.控制器软件算法
3.在进行伺服电机转速控制时,以下哪些措施可以减小系统的稳态误差?()
A.提高比例增益
B.提高积分增益
D.控制器响应速度应与电机转速成反比
20.在伺服电机转速控制系统中,以下哪个环节对提高系统抗负载扰动能力最为重要?()
A.比例环节
B.积分环节
C.微分环节
D.速度反馈环节
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)
1.以下哪些因素会影响伺服电机的转速控制精度?()
( )
6.伺服电机转速闭环控制系统中,_________是连接控制器和执行器的桥梁。
( )
7.在伺服电机转速控制中,_________和_________是影响系统动态响应的两个重要参数。
( )
8.伺服电机的转速控制精度受到_________、_________和_________等因素的影响。

伺服电机控制方法

伺服电机控制方法

伺服电机控制方法
伺服电机控制方法可以分为位置控制、速度控制和力控制等几种方法。

1. 位置控制:伺服电机通过控制位置反馈,使电机转动到指定的位置。

一种常用的方法是PID控制,通过计算电机当前位置与目标位置之间的偏差,并根据比例、积分和微分系数对电机施加适当的控制力,将电机转动到目标位置。

2. 速度控制:伺服电机通过控制电机的转速,使电机以指定的速度运动。

常用的方法是通过测量电机的速度反馈信号,计算出速度误差,并根据比例、积分和微分系数对电机施加适当的控制力,使其达到目标速度。

3. 力控制:伺服电机通过对电机施加适当的控制力,使其产生指定的力或扭矩。

方法之一是通过力传感器或力反馈信号来测量电机输出的力,并根据比例、积分和微分系数计算出力误差,并对电机施加适当的力控制力,以使其达到目标力或扭矩。

以上是常见的三种伺服电机控制方法,选择哪种方法取决于具体的应用需求和系统要求。

伺服电机控制原理

伺服电机控制原理

伺服电机控制原理一、概述伺服电机是一种能够在给定的位置或速度下准确运动的电机,其控制系统通常由三个部分组成:传感器、控制器和执行器。

传感器用于检测电机的实际位置或速度,控制器根据传感器反馈的信息计算出误差并调整输出信号,而执行器则将输出信号转换为电机的动力。

本文将详细介绍伺服电机控制原理。

二、传感器1.编码器编码器是一种能够将旋转运动转换为数字信号的装置。

在伺服电机中,编码器通常安装在电机轴上,用于检测电机实际位置和旋转方向。

编码器可以分为绝对式和增量式两种类型。

绝对式编码器可以直接读取轴的角度信息,而增量式编码器需要通过计算来获取轴的角度信息。

2.霍尔效应传感器霍尔效应传感器是一种能够检测磁场变化并将其转换为电信号输出的装置。

在伺服电机中,霍尔效应传感器通常用于检测电机实际速度。

三、控制系统1.比例积分微分(PID)控制算法PID控制算法是一种常用的控制算法,其根据误差的大小和变化率来调整输出信号。

PID控制器通常由比例、积分和微分三个部分组成。

比例部分根据误差大小进行调整,积分部分根据误差积累量进行调整,而微分部分则根据误差变化率进行调整。

2.闭环控制系统在伺服电机中,控制系统通常采用闭环控制系统。

闭环控制系统通过传感器反馈信息来调整输出信号,从而使电机能够准确运动到给定位置或速度。

闭环控制系统可以提高电机的精度和稳定性。

四、执行器1.直流电机直流电机是一种能够将直流电转换为旋转力矩的装置。

在伺服电机中,直流电机通常作为执行器使用。

2.伺服驱动器伺服驱动器是一种能够将输入信号转换为电机驱动力矩的装置。

伺服驱动器通常具有过载保护和多种保护功能,可以有效保护伺服电机。

五、工作原理1.位置模式在位置模式下,控制系统会将编码器反馈的实际位置与给定位置进行比较,根据差值计算出误差并调整输出信号。

伺服电机会根据输出信号的变化来调整自身的位置,直到实际位置与给定位置相等。

2.速度模式在速度模式下,控制系统会将霍尔效应传感器反馈的实际速度与给定速度进行比较,根据差值计算出误差并调整输出信号。

伺服电机控制系统

伺服电机控制系统

伺服电机控制系统简介伺服电机控制系统是一种能够精确控制转速、位置和加速度等参数的电机控制系统。

它广泛应用于机器人、数控机床、自动化生产线等高精度设备中。

伺服电机控制系统采用了闭环反馈控制原理,通过传感器测量运动参数并与设定值进行比较,控制电机输出的电流、电压和转动角度等。

组成部分伺服电机控制系统主要由以下几个部分组成:电机部分伺服电机是控制系统的核心部分,它能够将电能转换成机械能,实现运动控制。

伺服电机通常采用直流无刷电机或交流电机,输出转矩和角速度等参数。

为了实现更高的精度,通常还配备了编码器,可以精确测量电机角度和转速。

控制器控制器是伺服电机控制系统的大脑,它通过处理运动参数、误差反馈等信息,控制电机输出的电流和电压等参数。

控制器通常采用数字信号处理器(DSP)或微控制器(MCU)等芯片,拥有高效的计算能力和精确的定时能力。

传感器传感器是控制系统的感知器,能够测量运动参数、温度等未知参数,并将其转换为电信号反馈给控制器。

传感器包括位置传感器、加速度传感器、温度传感器等,在控制系统中起到非常重要的作用。

软件伺服电机控制系统需要运行软件来实现各项功能,包括速度控制、位置控制、加速度控制、误差检测等功能。

软件通常由厂家提供,也可以由用户自行开发,运行在控制器上。

工作原理伺服电机控制系统采用闭环反馈控制原理,具体工作流程如下:1.传感器测量电机转速、位置等参数,并将数据反馈到控制器。

2.控制器计算当前误差值,并根据预设的控制算法输出电机的电流、电压和转角度等参数。

3.电机根据控制器输出的参数进行转动,同时传感器测量电机实际转速、位置等参数,并将数据反馈给控制器。

4.控制器根据电机反馈的数据重新调整输出参数,并不断迭代,直到误差值达到设定范围。

应用场景伺服电机控制系统广泛应用于各种高精度设备中,例如:1.机器人:机器人需要精确控制关节运动参数,使用伺服电机可以实现高精度控制,提高机器人运动效率和精度。

伺服电机的三种控制方法

伺服电机的三种控制方法

伺服电机的三种控制方法伺服电机是一种可以对位置、速度和力矩进行准确控制的电机。

它具有以下几种控制方法,分别是位置控制、速度控制和力矩控制。

一、位置控制位置控制是指通过对伺服电机施加电压信号,使其能够准确地达到所需的位置。

常见的位置控制方法有以下三种:1.开环位置控制:开环位置控制是最简单的位置控制方法之一、它通过事先设定好的指令信号,控制伺服电机的运动到达预定的位置。

但由于无法准确感知位置误差,因此容易受到负载变动、摩擦力等因素的影响,导致控制精度较低。

2.简单闭环位置控制:简单闭环位置控制是在开环控制的基础上,增加了位置反馈信息来实现更精确的位置控制。

闭环控制使用编码器或位置传感器等设备来实时感知伺服电机的位置,并与设定的指令信号进行比较,控制电机的转动,减小位置误差。

但简单闭环位置控制无法考虑到负载变化对位置控制的影响。

3.PID闭环位置控制:PID闭环位置控制是在简单闭环控制的基础上,增加了比例、积分和微分控制来进一步提高位置控制精度。

PID控制器根据伺服电机的位置误差、变化速率和累计偏差,调整电机驱动器的输出信号,以实现位置的精确控制。

PID控制器通常调整PID参数,以逐步减小位置误差,使得伺服电机能够快速且准确地达到所需位置。

二、速度控制速度控制是指通过对伺服电机施加电压信号,使其能够达到预设的速度。

常见的速度控制方法有以下几种:1.矢量控制:矢量控制是一种通过使用矢量变量来控制电机的速度和方向的方法。

它可以实现电机的快速启动、减速和正反转,并具有良好的动态响应性能。

矢量控制通常需要精确的位置反馈或速度反馈信号,并使用PI控制器来调整速度误差和电机转矩。

2.开环速度控制:开环速度控制是在没有速度反馈信号的情况下,通过一个开环速度控制器来控制电机的转速。

开环速度控制通常使用一个指令信号,在不考虑负载变化的情况下提供固定转速。

由于没有速度反馈信号,开环速度控制容易受到负载变化和负载扰动的影响,控制精度较低。

伺服电机的速度环和位置环的区别

伺服电机的速度环和位置环的区别

伺服电机是一种在工业控制系统中广泛应用的电动执行器,它们通常用于驱动机械臂、升降装置、传送带等设备。

在伺服电机控制系统中,速度环和位置环是两个重要的闭环控制环节,它们分别负责控制伺服电机的转速和位置,以实现精准的位置控制和速度调节。

下面我们将分别介绍速度环和位置环的区别。

1. 控制对象不同速度环主要负责控制伺服电机的转速,即控制电机的输出转速达到预定值。

它通过对电机转速的闭环控制,使得电机在运动过程中能够根据控制信号按照设定的速度进行稳定运行。

而位置环则是负责控制伺服电机的位置,即控制电机的输出轴达到规定的位置。

它通过对电机位置的闭环控制,使得电机能够精确到位,满足工业生产对精准位置控制的需求。

2. 控制误差计算方式不同在速度环中,控制误差通常是通过测量实际转速与设定转速之间的偏差来计算得出的,然后将这个误差信号送入控制器进行调节,从而实现对电机转速的闭环控制。

而在位置环中,控制误差则是通过测量实际位置与设定位置之间的偏差来计算得出的,然后将这个误差信号送入控制器进行调节,以实现对电机位置的闭环控制。

3. 控制方式不同在速度环中,通常采用的控制方式是以PID控制为主,通过对电机转速控制器的参数进行调节,使得电机能够快速、平稳地达到设定的转速,并且在外部负载发生变化时能够快速调节,保持稳定的输出转速。

而在位置环中,除了PID控制外,还会综合考虑速度控制和加速度控制,以实现对电机位置的精准控制,尤其是在需要进行精密定位和运动轨迹控制的场合。

4. 控制精度要求不同由于速度环主要负责控制电机的转速,其控制精度要求相对较低,通常只需要满足速度偏差在一定范围内能够快速调节即可。

而位置环则需要更高的控制精度,尤其是在对精准位置控制有要求的场合,需要保证位置偏差尽可能小,能够稳定地实现目标位置的跟踪和定位。

速度环和位置环是伺服电机控制系统中两个不可或缺的闭环控制环节,它们分别负责控制电机的转速和位置,具有明显的区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伺服电机转速的PLC控制
发布日期:2009-5-20 14:41:10 (阅2489次)
所属频道: 自动化关键词: PLC 伺服系统模拟量
[摘要]利用西门子PLC输出的模拟量、伺服控制器完成了对伺服电机转速精准的控制。

提高了系统控制的可靠性和精确度。

满足了工业现场的需要。

[关键词]伺服系统;PLC;模拟量
1.引言
伺服电机在自动控制系统中用作执行元件,它将接收到的控制信号转换为轴的角位移或角速度输出。

通常的控制方式有三种:
①通讯方式,利用RS232或RS485方式与上位机进行通讯,实现控制;
②模拟量控制方式,利用模拟量的大小和极性来控制电机的转速和方向;
③差分信号控制方式,利用差分信号的频率来控制电机速度。

简单、方便的实现对伺服电机转速的精确控制是工业控制领域内的一个期望目标,本文主要研究如何利用PLC输出的模拟量实现对伺服电机的速度较为精准的控制。

2.控制系统电路
控制装置选用西门子S7-200系列PLC CPU224XPCN,这种型号的PLC除了带有输入输出点外。

还有1个模拟量输入点和1个模拟量输出点,这一型号PLC所具有的模拟量模块,能够满足控制伺服电机的需要。

触摸屏选用西门子触摸屏,型号为TP177B。

具体控制方案如图l所示,触摸屏是人机对话接口,最初的指令信息要从这里输入。

输入的信息通过通讯端口传送到PLC。

经运算后,PLC输出模拟量,并连接到伺服控制器的模拟量输入端口。

伺服控制器对接收到的模拟量进行内部运算,而后驱动伺服电机达到相应的转速。

伺服电机通过测速元件将转速信息反馈到伺服控制器,形成闭环系统,实现转速稳定的效果。

图1 控制方案
方案中的伺服电机,设计工作转速范围为500~6000RPM,精度要求为±3RPM。

3.控制过程
在触摸屏中设置一个对话框,可输入4位数值,然后将此对话框中的数据属性设置成对应PLC中的整形变量数据(如VW310)。

目的是当在对话框中输人数值后,电机就能够达到与该
数值相同的速度。

PLC输出的模拟量是0~10V,对应的整形数据是0~32000;而伺服电机的输入模拟量是0~l0V。

对应的转速是0-6500 RPM。

由于这些数值都是理论上的,并且最终希望得到的还是输
入值对应上转速即可。

因此,模拟量作为中间环节仅做参考。

需要重点考虑的还是输入值、整形数据和实际转速。

经过直接实测,测试数据如表1所示。

由表1可看出,输入值和实际转速相差甚远,而唯一的办法是通过运算将输入值转换成能对应上实际转速的整形数值。

但是还要首先找到最高转速和最低转速对应的数值。

通过实验发
现,对应关系如表2所示
PLC的模拟量输出和伺服电机转速输出都是线性的,可以根据表2的数据列出直线方程组,计算出输入值和整形数值之间的关系。

2711=500×a+b
30854=600×a+b
解得:a=5117;b=152
设实际转速为x,整形数值为y;那么关系方程为:
y=5117×x+152
通过PLC。

实现则需妻用到数字运算指令,具体如图2所示
图2数字运算指令实现对应关系
运算后,将数据直接传送到模拟量输出口就完成了转换工作(由于输出口不接受双字数据;所以仅传字数据,VB2232即可)。

如图3所示
图3模拟量输出口传送指令
这样.就基本上完成了从对话框输入速度值,经过PLC运算后输出模拟量。

伺服控制器接收到模拟量驱动伺服电机,伺服电机的转速等于输入速度值的过程。

通过经过实际检验,测得输入值、整形数值、实际转速如表3。

4.结束语
本文提出了一种利用西门子200系列PLC所配备的模拟量输出模块,控制伺服电机的方法,方法简单,易于实现,且能够满足转速精度为±3 RPM的工作要求。

相关文档
最新文档