用双棱镜干涉测光波波长 (2)

合集下载

用双棱镜干涉测光波波长

用双棱镜干涉测光波波长

用双棱镜干涉测光波波长
双棱镜干涉法是一种常用的测量光波波长的方法。

在这种方法中,我们使用一对排列
在一起的两个棱镜来分离出不同波长的光并进行干涉。

通过调节棱镜的角度和距离,我们
可以精确测量光波的波长。

在进行双棱镜干涉测量时,首先需要一台光源。

这个光源可以是白光或单色光。

为了
获得更加精确的结果,我们通常使用相干光源,如激光。

相干光源可以产生涡旋状干涉条纹,这对于测量光波的波长非常有用。

接下来,将光源照射在双棱镜的一侧。

这两个棱镜的相对角度和位置都非常重要。


们需要调整它们的角度和距离,使它们之间的光程差为整数倍的波长。

这样才能确保在干
涉的时候产生明显的干涉条纹。

一旦我们找到了正确的角度和距离,我们就可以开始观察干涉条纹了。

这些干涉条纹
是由两个光波相遇并干涉而产生的。

如果两个波长相同,干涉条纹会显现出一系列等距的
暗线和亮线。

然而,如果两个波长不同,干涉条纹会出现偏移,并且不再对齐。

这意味着
我们可以通过观察干涉条纹的形状和位置来测量光波的波长。

在实际测量中,我们通常使用一个显微镜来观察干涉条纹。

显微镜可以放大这些条纹,使得我们可以更加清楚地观察它们的形状和位置。

通过使用一些基本的几何和数学计算,
我们就可以从干涉条纹的位置和形状中得出光波的波长。

双棱镜干涉测钠光波长实验报告明细流程步骤

双棱镜干涉测钠光波长实验报告明细流程步骤

双棱镜干涉测钠光波长实验报告明细流程步骤
1. 实验目的:通过双棱镜干涉测量钠光的波长,并掌握双棱镜干涉的基本原理和实验技巧。

2. 实验器材:光源、单色仪、双棱镜、厚度计、显微镜等。

3. 实验原理:
(1)光的干涉现象:光波的相互作用形成衍射和干涉现象,其中干涉现象的实质是光波的相位差引起的。

(2)双棱镜干涉:通过将光线分离成两条光线,再重合使二者产生干涉现象。

具有正交性的两束光的相位差与参考光屏幕上的亮纹位置有关,因此可以通过双棱镜干涉来测量光波的波长。

(3)钠光的光谱特性:钠光是光谱中最稳定的光线,其波长为589.0nm。

(1)调节光源:调节光源使光线垂直于光学轴线,以免在观测过程中出现偏差。

(2)调节单色仪:将单色光导入光学轴线上,调整单色仪光点到光学轴线上。

(3)调节双棱镜:将双棱镜放置在光路上,调整两个镜头之间的距离,保证两束光线重合。

(4)观察干涉花样:调整双棱镜的位置,观察干涉花样,确定亮纹位置。

(5)测量端点距离:用厚度计测量两条光线的端点距离,记为d。

(6)计算波长:根据原理,波长λ=2d×tanθ/2,其中θ为两束光线的夹角。

(7)重复测量:重复上述步骤,进行多次测量,取平均值作为最终测量结果。

5. 实验结果分析:根据实际测量数据,计算出钠光的波长值为589.5nm,误差为
0.5nm,符合实验要求。

同时,通过实验,掌握了双棱镜干涉测量光波长的基本原理与技巧,对于光学测量技术具有较高的实用价值。

双棱镜干涉测波长资料

双棱镜干涉测波长资料

双棱镜干涉测波长资料双棱镜干涉是一种常见的光学干涉实验,通过使用两个棱镜来创建和测量光的干涉条纹,从而测量光波的波长。

以下是双棱镜干涉测波长的一些资料。

一、实验原理双棱镜干涉实验的原理是利用两个棱镜来拆分和重新组合光波,从而在空间中产生干涉现象。

当光通过棱镜时,会被折射并偏转一定的角度。

通过调整两个棱镜之间的距离和角度,可以使得从两个棱镜出来的光波在空间中产生干涉现象,形成明暗交替的干涉条纹。

干涉条纹的间距与光波的波长有关,可以根据干涉条纹的间距来计算光波的波长。

具体来说,假设两个棱镜之间的距离为d,棱镜的折射率为n,入射光的角度为θ,则干涉条纹的间距可以表示为:Δx = λ × n / (2 × sinθ)其中,λ为光波的波长,n为棱镜的折射率,θ为入射光的角度。

二、实验步骤1.准备实验器材:两个相同尺寸的三棱镜、单色光源(如激光笔)、角度计、尺子、实验用的记录纸和笔等。

2.将两个棱镜放置在一张记录纸上,调整两个棱镜之间的距离和角度,使得从两个棱镜出来的光波在空间中产生干涉现象,形成明暗交替的干涉条纹。

3.用单色光源(如激光笔)照射棱镜,使光线垂直于棱镜的平面。

调整光源与棱镜的距离,使得光线可以通过棱镜并照射到干涉条纹上。

4.用角度计测量入射光的角度,并记录下来。

5.用尺子测量干涉条纹之间的距离,并记录下来。

6.改变光源与棱镜的距离或调整棱镜之间的角度,重复步骤2至步骤6,得到多组数据。

7.利用上述公式计算光波的波长,并求出平均值。

三、注意事项1.在实验过程中要保持安静,避免由于环境的干扰而影响实验结果。

2.确保两个棱镜之间的距离和角度调整准确,以免影响干涉条纹的形状和间距。

3.在测量角度和干涉条纹间距时要准确细致,避免误差过大。

4.在使用激光笔等光源时要注意安全,避免直射眼睛或照射易燃物品。

5.在计算光波波长时要根据多组数据求平均值,以提高结果的准确性。

四、实验结果分析根据实验数据,利用上述公式可以计算出光波的波长。

用双棱镜干涉测光波波长分析报告

用双棱镜干涉测光波波长分析报告

用双棱镜干涉测光波波长【实验目的】1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长.【仪器和用具】光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.【实验原理】如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉,菲涅耳利用图1所示的装置,获得了双光束的干涉现象,图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使成S 为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源1S 和2S 发出的一样,满足相干光源条件,因此在两束光的交叠区域21P P 内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹.图1双棱镜干涉实验光路 图2 双棱镜结构设两虚光源1S 和2S 之间的距离为d ,虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为D ,且D d <<,干涉条纹间距为x ∆,则实验所用光源的波长λ为x Dd∆=λ (1) 因此,只要测出d 、D 和x ∆,就可用(1)式计算出光波波长.【实验内容】1.调节共轴(1)按图1所示次序,将单色光源0S ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.(2)点亮光源0S ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区21P P (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?根据观测到的现象,作出判断,进行必要的调节使之共轴.2.调节干涉条纹(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜A B ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,1S 和2S 间距也将减小,这对d 的测量不利.)3.测量与计算(1)用测微目镜测量干涉条纹的间距如,为了提高测量精度,可测出n 条(10~20条)干涉条纹的间距x ,除以n ,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数,重复测量几次,求出x ∆.(2)用光具座支架中心间距测量狭缝至观察屏的距离D.由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差,测量几次,求出D .(3)用透镜两次成像法测两虚光源的间距d .参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f D '>'4,然后维持恒定,沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看到两虚光源1S 和2S 经透镜所成的实像1S '和2S ',其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距1d ,和两缩小像的间距2d ,则按下式即可求得两虚光源的间距d .多测几次,取平均值d .21d d d =(2)图3 用透镜两次成像法测两虚光源的间距d(4)用所测得的x ∆、D 、d 值,代入式(1),求出光源的波长λ.(5)计算波长测量值的标准不确定度.4.注意事项(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.(2)在测量D 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引入相应的修正,否则将引起较大的系统误差.(3)测量1d 、2d 时,由于透镜像差的影响,将引入较大误差,可在透镜L '上加一直径约lcm 的圆孔光阑(用黑纸)以增加1d 、2d 测量的精确度.(可对比一下加或不加光阑的测量结果.)【思考题】1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?2.试证明公式21d d d =.附:测量钠光波长数据记录与处理D = (mm) x ∆= (mm)x D d ∆=λ=Dd d x 21∆不确定度计算举例:用双棱镜测量光源的波长(λ)实验,测量公式为:Dn x d d 121∆=λ 式中1d 为两虚光源经透镜1L 所成二亮线(光源实像)的间距,2d 为透镜移至2L 二亮线的间距,D 为虚光源到其实像的距离。

用双棱镜测定光波波长.

用双棱镜测定光波波长.

xk d D

(k 0, 1, 2,)
k

D x k k d
处产生亮条纹;

D 1 1 而当 (k ) 即 x k (k ) 产生暗条纹。 d 2 2 D 这样,两相邻亮条纹的距离为:x x k 1 x k d
如果测得D,d及便可由式求出 λ值。
二.如何测量测量D、d、Δx
用两次成像法测量D、d,如下图示意:
在实验光具座上测出透镜两次移动间距(Δ),同时 用测微目镜测量放大和缩小虚光源的间距(d’、d’’)
d dd
'
''
D 2 f 4 f 2 2
测量 Δx
直接用测微目镜测量多条干涉条纹间距nΔX 注意:用测微目镜测量时,要克服螺距差
四.实验仪器
干涉 滤波 片 可调 狭缝
双棱镜 凸透镜 测微 目镜
辅助屏
五.实验常见问题及处理
1.测量仪器没有调节好就开始测量数据。实验中通 过测微目镜来测量数据,首先要调节测微目镜的 可旋转目镜部分,将分划板上的叉丝调节到自己 认为最清晰,方可开始后面的测量。 2.用测微目镜测量数据,在具体的操作中转动读数 鼓轮时同样要克服螺距差。 3.在实验中往往出现干涉条纹不够清晰,而有些操 作者就开始测量。引起条纹不够清晰的原因很多: 1.)狭缝过宽,引起双缝干涉的条纹对比度降低 2.)狭缝没有与双棱镜的棱脊平行,等等。
三.元件共轴调节
实验装置应调节到下述状态: (1)光具座上各元件等高共轴。 (2)双棱镜的棱脊严格平行于狭缝,且狭缝 宽度适当,以获得清晰的干涉条纹。
具体调节方法如下: 1.调节单狭缝与双棱镜以及测微目镜共轴。(利用 白光干涉中心位置的移动调节) 2.调节透镜使其与上述系统共轴。(可参考透镜焦 距测量实验)

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告【实验目的】1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解.2.学会用双棱镜测定钠光的波长.【实验仪器】光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.【实验原理】如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉.菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L会聚于狭缝S,使S成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹.图1 图2设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ∆,则实验所用光源的波长λ为x d d∆'=λ因此,只要测出d '、d 和x ∆,就可用公式计算出光波波长.【实验内容】1.调节共轴(1)按图1所示次序,将单色光源M,会聚透镜L,狭缝S,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.(2)点亮光源M,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?根据观测到的现象,作出判断,进行必要的调节使之共轴.2.调节干涉条纹(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜AB,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,S1、S 2间距也将减小,这对d '的测量不利.)3.测量与计算(1)用测微目镜测量干涉条纹的间距x ∆.为了提高测量精度,可测出n 条(10~20条) 干涉条纹的间距x ,除以n,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数.重复测量几次,求出x ∆. (2)用光具座支架中心间距测量狭缝至观察屏的距离d .由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差.测量几次,求出d .(3)用透镜两次成像法测两虚光源的间距d '.参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f d '>4,然后维持恒定.沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看到两虚光源S1和S 2经透镜所成的实像1S '和2S ',其中一组为放大的实像,另一组为缩小的的间距1d 和两缩小实像.分别测得两放大像像的间距2d ,则按下式即可求得两虚光源取平均值d '. 的间距d '.多测几次,21d d d ='图3(4)用所测得的x ∆、d '、d 值,代入式(7—1),求出光源的波长λ.(5)计算波长测量值的标准不确定度.【注意事项】(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.(2)在测量d 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引人相应的修正(例如,GP 一78型光具座,狭缝平面位置的修正量为42。

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告

用双棱镜干涉测光波波长的实验报告实验报告:用双棱镜干涉测光波波长摘要:本实验通过使用双棱镜干涉仪测量光波的波长。

首先使用可见光源发出的光波通过一个狭缝进入光源之后,然后经过一片镜片透射并折射至一个反射镜上。

反射镜会将光波反射回来,经过同样的路径返回光源。

之后,光波会经过双棱镜,在双棱镜的相交面发生干涉,形成明暗相间的条纹。

通过测量条纹的间距,计算得到光波的波长。

最后,将测得的实验数据与理论计算进行对比,验证实验方法的准确性。

引言:干涉是一种波动现象,广泛应用于物理学和光学领域。

双棱镜干涉仪是一种重要的实验装置,用于测量光波的波长。

在本实验中,我们将使用双棱镜干涉仪测量光波波长。

通过实验测量得到的数据,可以验证光波的波动性,加深对干涉现象的理解。

实验原理:双棱镜干涉仪是一种基于干涉现象的实验仪器。

当光波通过双棱镜时,由于两个棱镜的角度不同,光束在接触面的交叉区域会发生干涉现象。

在干涉区域内,光波的相位差会导致明暗相间的干涉条纹出现。

当两束光波经过双棱镜后重新重叠时,如果它们的相位差是整数倍的2π,就会产生干涉增强,形成明纹;如果相位差是奇数倍的π,就会产生干涉抵消,形成暗纹。

两束光波的相位差与光波的波长和棱镜的几何参数有关。

通过测量干涉条纹的间距,就可以反推出光波的波长。

实验步骤:1.将可见光源放置在适当的位置,使得光线能够通过狭缝。

2.调节狭缝的宽度,使得透过狭缝的光线足够亮且窄。

3.将一片透明的玻璃片放置在光源上,将折射后的光线引导到反射镜上。

4.调节反射镜的角度,使得反射后的光线能够重新射回光源。

5.将双棱镜放置在光源后面,并调节双棱镜的间距和入射角度。

6.在干涉区域观察干涉条纹的形成,并使用目镜测量明纹和暗纹之间的距离。

7.重复实验,测量多组数据,计算光波的波长。

8.将实验数据与理论计算进行对比,验证实验方法的准确性。

数据记录和计算:根据测量得到的干涉条纹间距和棱镜的几何参数,我计算出了不同光波波长下的相位差。

双棱镜干涉测量光波波长实验报告

双棱镜干涉测量光波波长实验报告

双棱镜干涉测量光波波长实验报告示例文章篇一:《双棱镜干涉测量光波波长实验报告》嘿,亲爱的小伙伴们!今天我要跟你们分享一个超级神奇的实验——双棱镜干涉测量光波波长!实验开始前,我满心期待,就像要去探索一个神秘的宝藏一样!老师把实验器材摆在桌上,那一堆东西看着就让人兴奋不已。

我和小伙伴小明、小红一组,我们仨围在实验桌前,眼睛都直勾勾地盯着那些器材。

老师先给我们讲解了原理,可我一开始听得云里雾里的,心里直犯嘀咕:“这能行吗?”不过,等老师亲自示范了一遍,我好像有点明白了。

这不就像我们一起跳绳,绳子甩起来形成的波浪一样嘛!我们开始动手啦!小明负责调整仪器的位置,那认真的模样,仿佛他是个专业的科学家。

我呢,负责记录数据,眼睛都不敢眨一下,生怕错过了什么重要的信息。

小红则在旁边给我们加油打气,还时不时地提醒我们要小心操作。

“哎呀,小明,你轻点儿,别把仪器碰坏啦!”我着急地喊道。

“放心吧,我心里有数!”小明自信地回答。

经过一番努力,我们终于看到了干涉条纹。

“哇塞,这也太漂亮了吧!”小红忍不住惊叹起来。

我们仔细地观察着条纹,测量着数据。

这过程可不轻松,一会儿这个数据不对,一会儿那个角度又偏了。

我都有点不耐烦了,“怎么这么麻烦呀!”但是,一想到马上就能得出结果,我们又鼓足了劲儿。

终于,所有的数据都测量好了,接下来就是计算波长啦。

这可真是个考验耐心和细心的活儿。

“哎呀,我算得脑袋都大了!”我抱怨着。

“别着急,咱们慢慢算,肯定能算对的。

”小明安慰我。

经过反复的计算和核对,我们得出了结果。

当看到那个数字的时候,我们高兴得差点跳起来。

这次实验可真是太有趣啦!它让我明白,科学可不是随便玩玩的,需要我们认真、耐心,还得团结协作。

难道这不是一次让人难忘的经历吗?难道我们从中学到的知识还不够多吗?我觉得这次实验就像一场冒险,充满了挑战和惊喜!我的观点就是:通过这次实验,我不仅学到了知识,还懂得了合作的重要性,以后我要更加努力地探索科学的奥秘!示例文章篇二:《双棱镜干涉测量光波波长实验报告》哇塞!今天我们在学校做了一个超级有趣的实验——双棱镜干涉测量光波波长!这可把我激动坏了!实验开始前,老师把我们分成了几个小组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用双棱镜干涉测光波波长
【实验目的】
1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长.
【仪器和用具】
光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.
【实验原理】
如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉,
菲涅耳利用图1所示的装置,获得了双光束的干涉现象,图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较
小(一般小于10
).从单色光源发出的光经透镜L 会聚于狭缝S ,使成S 为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源1S 和2S 发出的一样,满足相干光源条件,因此在两束光的交叠区域
21P P 内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗
相间的、等间距干涉条纹.
图1双棱镜干涉实验光路 图2 双棱镜结构
设两虚光源1S 和2S 之间的距离为d ,虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为D ,且D d <<,干涉条纹间距为x ∆,则实验所用光源的波长λ为
x D
d
∆=
λ (1) 因此,只要测出d 、D 和x ∆,就可用(1)式计算出光波波长.
【实验内容】
1.调节共轴
(1)按图1所示次序,将单色光源0S ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.
(2)点亮光源0S ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区21P P (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?
根据观测到的现象,作出判断,进行必要的调节使之共轴.
2.调节干涉条纹
(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜A B ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.
(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,1S 和2S 间距也将减小,这对d 的测量不利.)
3.测量与计算
(1)用测微目镜测量干涉条纹的间距如,为了提高测量精度,可测出n 条(10~20条)干涉条纹的间距x ,除以n ,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数,重复测量几次,求出x ∆. (2)用光具座支架中心间距测量狭缝至观察屏的距离 D.由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免
导致测量结果的系统误差,测量几次,求出D .
(3)用透镜两次成像法测两虚光源的间距d .参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f D '>'4,然后维持恒定,沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看
到两虚光源1S 和2S 经透镜所成的实像1
S '和2S ',其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距1d ,和两缩小像的间距2d ,则按下式即可求得两虚光源的间距d .多测几次,取平均值d .
21d d d =
(2)
图3 用透镜两次成像法测两虚光源的间距d
(4)用所测得的x ∆、D 、d 值,代入式(1),求出光源的波长λ.
(5)计算波长测量值的标准不确定度.
4.注意事项
(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.
(2)在测量D 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引入相应的修正,否则将引起较大的系统误差.
(3)测量1d 、2d 时,由于透镜像差的影响,将引入较大误差,可在透镜L '上加一直径约lcm 的圆孔光阑(用黑纸)以增加1d 、2d 测量的精确度.(可对比一下加或不加光阑的测量结果.)
【思考题】
1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?
2.试证明公式21d d d =.
附:测量钠光波长数据记录与处理
表1.干涉条纹间距x 的测量结果
D = (mm) x ∆= (mm)
表2.用而成成像法测量虚光源像的结果
x D d ∆=
λ=D
d d x 2
1∆
不确定度计算举例:
用双棱镜测量光源的波长(λ)实验,测量公式为:
D
n x d d 1
2
1∆=
λ 式中1d 为两虚光源经透镜1L 所成二亮线(光源实像)的间距,2d 为透镜移至2L 二亮线的间距,D 为虚光源到其实像的距离。

实验时1d 、2d 、x ∆均由精密度为0.01mm 的测微目镜测量,D 由米尺测量。

测量例:1d =2.713mm, )(1d s =0.021mm 2d =0.711mm, )(2d s =0.002mm mm x 335.6=∆,)(x s ∆=0.010mm D=73.72cm n=20 计算出:
cm cm 510967.5)72.7320/(6335.00711.02713.0-⨯=⨯⨯⨯=λ 计算不确定度:
(1)1d 的标准不确定度)(1d u 来源于:
重复测量cm d u A 0021.0)(1=
从估计Δ等于仪器精度0.001cm,由仪器引人的不确定度)(1d u B
cm cm d u B 00058.03/001.0)(1==,
则=)(1d u cm cm /0022.000058.00021.022=+ (2)计算)(2d u
来源于:重复测量cm d u A 0002.0)(2=
仪器误差(同2d )cm d u B 00058.0)(2= 则cm cm d u 00061.000058.00002.0)(222=+= (3)计算)(x u ∆
来源于:重复测量cm x u A 0010.0)(=∆
仪器误差(同1d )cm x u B 00058.0)(=∆ 则cm cm x u 0012.000058.00010.0)(22=+=∆ (2)计算)(D u
来源仪器误差,估计cm cm D u cm B 058.03/1.0)(,1.0===∆ 计算
()()()()()⎥⎦
⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∆∆∂∂+++=
2211u 2
2
2
2D d u d d u d u D x u x λλλλλ)(λc u
cm
cm u c 52
1
2222510037.0])72
.73058.0()6335.00012.0()0711.020061.0()2713.020022.0[(10967.5)(--⨯=⨯+⨯⨯=λ 结果cm 510)04.097.5(-⨯±=λ。

相关文档
最新文档